
Transferring Evolved Reservoir Features in

Reinforcement Learning Tasks

Kyriakos C. Chatzidimitriou1,2, Ioannis Partalas3, Pericles A. Mitkas1,2, and
Ioannis Vlahavas3

1 Dept. of Electrical & Computer Engineering, Aristotle University of Thessaloniki,
Greece

2 Informatics and Telematics Institute, Centre for Research and Technology Hellas
kyrcha@issel.ee.auth.gr, mitkas@eng.auth.gr

3 Dept. of Informatics, Aristotle University of Thessaloniki, Greece
{partalas,vlahavas}@csd.auth.gr

Abstract. The major goal of transfer learning is to transfer knowledge
acquired on a source task in order to facilitate learning on another, dif-
ferent, but usually related, target task. In this paper, we are using neu-
roevolution to evolve echo state networks on the source task and transfer
the best performing reservoirs to be used as initial population on the tar-
get task. The idea is that any non-linear, temporal features, represented
by the neurons of the reservoir and evolved on the source task, along with
reservoir properties, will be a good starting point for a stochastic search
on the target task. In a step towards full autonomy and by taking advan-
tage of the random and fully connected nature of echo state networks,
we examine a transfer method that renders any inter-task mappings of
states and actions unnecessary. We tested our approach and that of inter-
task mappings in two RL testbeds: the mountain car and the server job
scheduling domains. Under various setups the results we obtained in both
cases are promising.

1 Introduction

Reinforcement learning (RL) [9] deals with the problem of how an agent, situated
in an environment and interacting with it, can learn a policy, a mapping of
states to actions, in order to maximize the total amount of reward it receives
over time, by inferring on the immediate feedback returned in the form of scalar
rewards as a consequence of its actions. RL has enjoyed increased popularity
due to its ability to deal with complex and limited feedback problems, while it is
believed to be an appropriate paradigm for creating fully autonomous agents in
the future [8]. Despite the suitability to solve such problems, RL algorithms often
require a considerable amount of training time especially for complex problems.
A solution to speed up the learning procedure is through transfer learning (TL).

TL refers to the process of using knowledge that has been acquired in a
previous learned task, the source task, in order to enhance the learning procedure
in a new and more complex task, the target task. The tasks can belong to either



the same domain, for example two mazes with different structure, or to different
domains, for example checkers and chess board games. The more similar those
two tasks are, the easier it is to transfer knowledge between them. TL is to play
a crucial role in the development of fully autonomous agents since it is believed
that it would be a core component in lifelong learning agents that persist over
time [12].

For agents to perform well under a RL regime in real world problems, there
is the need for function approximators (FAs) to model the policy and be able
to generalize well to unseen environment states. Fully autonomous agents will
need FAs that will adapt to the environment at hand with little, if any, human
intervention [8]. Following this trend, we selected the echo state network (ESN) to
be our FA of choice. Its recurrent neural network nature makes it appropriate for
use as FA in agents dealing with sequential decision making problems, because it
enables temporal computations and can process non-linear and non-Markovian
state signals (Section 2).

In order to augment the capabilities of the adaptive FA approach, in this
work, we tested methods of transferring reservoir topologies (or alternatively
reservoir features). These topologies were adapted in a source RL task to be
used as templates for the initial population of the neuroevolution procedure on
a target RL task. Besides testing network transfer under the standard way of
using mappings between the source and target, state variables and actions, we
evaluated a transfer method agnostic of any mappings, taking advantage of the
random, fully connected nature of ESNs. This procedure is performed at the
microscopic level, that is in the level of the topology and the weights of the
reservoir (Section 3).

Our methodology is evaluated empirically on two RL test-beds: a) the moun-

tain car problem from the area of control and b) the server job scheduling prob-
lem from the area of autonomic computing (Section 4). The results of the ex-
periments from both testbeds (Section 5) are promising under several different
metrics with respect to the base search approach. We discuss related work in the
area and how our approach differs from it (Section 6), closing with the conclu-
sions of our research and plans for future work (Section 7).

2 Background

2.1 Echo State Networks

The idea behind reservoir computing (RC) and in particular ESNs [4] is that a
random recurrent neural network (RNN), created under certain algebraic con-
straints, could be driven by an input signal to create a rich set of dynamics
in its reservoir of neurons, forming non-linear response signals. These signals,
along with the input signals, could be combined to form the so-called read-out

function, a linear combination of features, y = wT · φ(x), which constitutes the
prediction of the desired output signal, given that the weights, w, are trained
accordingly.



The reservoir consists of a layer of K input units, connected to N reservoir
units through a N×K weighted connection matrix W in. The connection matrix
of the reservoir,W , is aN×N matrix. Optionally a backprojection matrixW back

could be present, with dimensions N×L, where L is the number of output units,
connecting the outputs back to the reservoir neurons. The weights from input
units (linear features) and reservoir units (non-linear features) to the output are
collected into a L × (K + N) matrix, W out. For this work, the reservoir units
use f(x) = tanh(x) as an activation function, while the output units use either
g(x) = tanh(x) or the identity function, g(x) = x.

Best practices for generating ESNs, that is procedures for generating the
random connection matrices W in,W and W back, can be found in [4]. Briefly,
these are: (i) W should be sparse, (ii) the mean value of weights should be
around zero, (iii) N should be large enough to introduce more features for better
prediction performance, (iv) the spectral radius, ρ, of W should be less than 1
to practically (and not theoretically) ensure that the network will be able to
function as an ESN. Finally, a weak uniform white noise term can be added to
the features for stability reasons.

In this work, we consider discrete time models and ESNs without backpro-
jection connections. As a first step, we scale and shift the input signal, u ∈ R

K ,
depending on whether we want the network to work in the linear or the non-
linear part of the sigmoid function. The reservoir feature vector, x ∈ R

N , is
given by Equation 1:

x(t+ 1) = f(Winu(t+ 1) +Wx(t) + v(t+ 1)) (1)

where f is the element-wise application of the reservoir activation function and v

is a uniform white noise vector. The output, y ∈ R
L, is then given by Equation 2:

y(t+ 1) = g(Wout[u(t+ 1)|x(t+ 1)]) (2)

with g, the element-wise application of the output activation function and |, the
aggregation of vectors.

For RL tasks with K continuous states and L discrete actions, we can use
an ESN to model a Q-value function, where each network output unit l, can be
mapped to an action al, l = 1 . . . L, with the network output value yl denoting
the long-term discounted value, Q(s, al) of performing action al, when the agent
is at state s. Given g(x) = x, this Q-value can be represented by an ESN as:

yl = Q(s, al) =

K∑

i=1

wout
li si +

K+N∑

i=K+1

wout
li xi−K , l = 1, . . . , L (3)

while actions can be chosen under the ǫ-greedy policy [9].
Linear Gradient Descent (GD) SARSA TD-learning can be used to adapt

weights [9, 10], where the update equations take the form of:

δ = r + γQ(s, a′)−Q(s, al) (4)

wout
l

′

= wout
l + αδ[s|x] (5)

with a′ the next action to be selected and α the learning rate.



2.2 NeuroEvolution of Augmented Reservoirs

NeuroEvolution of Augmented Topologies (NEAT) [7] is a topology and weight
evolution of artificial neural networks algorithm, constructed on four principles
that made it a reference algorithm in the area of NE. First of all, the network,
i.e. the phenotype, is encoded as a linear genome (genotype), making it mem-
ory efficient with respect to algorithms that work with full weight connection
matrices. Secondly, using the notion of historical markings, newly created con-
nections are annotated with innovation numbers. NEAT during crossover aligns
parent genomes by matching the innovation numbers and performs crossover on
these matching genes (connections). The third principle is to protect innovation
through speciation, by clustering organisms into species in order for them to
have time to optimize by competing only in their own niche. Last but not least,
NEAT starts with minimal networks, that is networks with no hidden units, in
order (a) to initially start with a minimal search space and (b) to justify every
complexification made in terms of fitness. NEAT complexifies networks through
the application of structural mutations, by adding nodes and connections, and
further adapts the networks through weight mutation by perturbing or restart-
ing weight values. The above successful ideas could be used in other NE settings
in the form of a meta-search evolutionary procedure. In our case, we follow these
ideas to achieve an efficient search in the space of ESNs.

NeuroEvolution of Augmented Reservoirs (NEAR) [2] utilizes NEAT as a
meta-search algorithm and adapts its four principles to the ESN model of neural
networks. The structure of the evolutionary search algorithm is exactly the same
as in NEAT with adaptations being made mainly with respect to gene represen-
tation, crossover with historical markings, clustering, including some additional
evolutionary operators related to ESNs. An important difference from NEAT is
that both evolution and learning are used in order to adapt networks to the prob-
lem at hand. NEAR, to its advantage, incorporates TD learning in order to make
a local gradient descent search on the output matrix, W out, of the ESN and to
locate good solutions that reside nearby instead of performing just evolutionary
search. In this work we use NEAR with the Lamarckian type of evolution, where
learned weights, W out, are transferred from generation to generation instead of
being reset to zero before each generation.

3 Transfer of Reservoir Topologies

The idea behind our work is that certain parts of high performing ESNs in the
source task could be reused as templates of the networks that make up the initial
population in the target task. These certain parts should be ESN properties that
distinguish one network from the other. In our case we have selected:

– the reservoir, denoted by matrix W , and along with it, the number N of neu-
rons in the reservoir, the graph of the topology and the connection weights,

– the density D of the reservoir, and
– the spectral radius ρ, a factor used to dampen signals in the reservoir.



Our goal is to alleviate completely the problem of mappings in state and action
variables between tasks by just transferring the reservoir connection matrix W

and its particularities, leaving the other matrices W in and W out to be handled
by the NEAR method. In particular, like in the standard way of generating
ESN, W in is randomly initialized and later adapted through NEAR, while W out

is also initialized randomly and under an evolutionary weight mutation operator
that uses perturbation, appropriate weights are derived. This makes the trans-
fer agnostic of any state or action mappings, since these are randomly created
through the matrices W in and W out, only to be later adapted through NEAR
to the problem at hand.

We have targeted our approach on transferring evolved reservoir repositories
using the following methodologies. The prime symbol is used to denote properties
of the target task ESN.

1. Reservoir-Transfer: The mapping agnostic method, that transfers the
reservoir matrix W ′ = W and the spectral radius ρ′ = ρ and randomly
initializes W out and W in matrices, as discussed in the paragraph above (Fig-
ure 1).

2. Mapping: Use mappings that relate state and action variables from the
source to the target task in the same way as that presented in [15] for the
NEAT algorithm. The matrix W is transferred as is. The state and action
mappings indicate which connection weight from matrices W in and W out of
the final network of the source task, will be set to which position in matrices
W ′in and W ′out of the initial networks of the target task. Such mappings are
provided by a domain expert (Figure 2). This specific setup was chosen in
order to test the mapping agnostic approach against a reference inter-task
mapping methodology using neural networks.

3. Mapping+Doubling: Use mappings to account forW in andW out weights,
but also increase the reservoir neurons (i.e. the hidden neurons) in order to
account for the increased task complexity. The increase is directly propor-
tional to the number of state and action variables growth, from the source
to the target task. We have used doubling because in our testbeds we have
a doubling in the number of state and action variables. Thus, we have cre-
ated the new reservoir matrix W ′ to contain the matrix W in its upper left
(1 ≤ i′ ≤ N , 1 ≤ j′ ≤ N) and lower right (N+1 ≤ i′ ≤ N ′, N+1 ≤ j′ ≤ N ′)
blocks, with the rest of the matrix elements set to 0 (Figure 3). This method
was chosen in order to survey whether, in the presence of a higher dimen-
sional target task, the computational units of the network need to be aug-
mented as well. In fact, we wanted to experimentally test if the two reservoirs
could handle the same number of variables each as in the source task and
let the neuroevolution algorithm grow connections between them.

In all the above cases the basic properties of an ESN, N,D and ρ, are transferred
implicitly in the first two cases (through matrix W ) and explicitly in the case of
ρ (by setting it initially in all target task genomes).

We have focused our attention on source-target task pairings that diverge
from each other due to an increase in the dimensional complexity of the problem,



Fig. 1. In this setting only the reservoir, implicitly including the N and the D proper-
ties, is transferred along with spectral radius ρ. W in and W out matrices are randomly
initialized and adapted through the NEAR process. The figure is an example of reser-
voir transfer in the mountain car domain discussed in the next section.

Fig. 2. Besides reservoir transfer, weights found in the source task for W in and W out

matrices are transferred to the target task using inter-task mappings as described
in [15].

but belong to the same domain. For example, situating the agent from a two
dimensional (2D) problem to a three dimensional (3D) version or increasing
the number of things it has to control, leading to an increase in the number of
sensors (state variables) and actuators (actions). The main objectives of transfer
learning are: (a) increased asymptotic performance of the transfer enabled agent
over the basic one and (b) improvement in adaptation time to reach pre-specified
thresholds of performance, a metric known as time-to-threshold.

4 Domains

4.1 Mountain Car

For the mountain car (MC) domain we use the version by [6]. In the standard
2D task an underpowered car must be driven up to a hill. The state of the



Fig. 3. Going a step beyond, and exploiting the doubling with respect to the number
of state and action variables, the reservoir is doubled along with inter-task mappings.

environment is described by two continuous variables: horizontal position x ∈
[−1.2, 0.6] and velocity vx ∈ [−0.007, 0.007]. The actions are {Neutral, Left and
Right} which modify the velocity by −0.001, 0 and 0.001, respectively. At each
time step, an amount of −0.0025 ∗ cos 3x is added to the velocity, in order to
represent the gravity.

In our case, each episode starts with the car at a random position in the
valley, having a random speed, and ends when x becomes greater than 0.5. At
each time step, the agent selects among the three available actions and receives
a reward of -1. The objective is to move the car to the goal state as fast as
possible.

The 3D MC extends the 2D task by adding an extra spatial dimension. The
3D task was originally proposed in [14]. The state is composed by four continuous
variables: the coordinates in space x, and y ∈ [−1.2, 0.6], as well as the velocities
vx and vy ∈ [−0.07.0.07]. The available actions are {Neutral, West, East, South,
North}.

Along with the version discussed above, one more MC version was tested,
which we will call the non-Markovian (NM) one, since the speed variable or vari-
ables in the 3D case, are kept from the agent, and only its position or positions
in the 3D case are given, making the task more challenging. Each episode lasts
2500 time steps in all four MC versions after which another episode begins.

In this work we use the mountain car software4 that is based on version 3.0
of the RL-Glue library5 [11].

4.2 Server Job Scheduling

Server job scheduling (SJS) [17] is a domain that belongs to the realm of auto-
nomic computing. It was previously used for performing transfer learning with
the NEAT algorithm in [15]. Certain types of jobs are waiting in the job queue

4 Available at http://library.rl-community.org/
5 Available at http://glue.rl-community.org/



of a server to be processed as new jobs arrive in the queue. Each job type has a
utility function that changes over time and represents the user anticipation over
having the job scheduled. Certain users want quicker response from the server,
while others are not as eager. The goal of the scheduler is to pick a job (action)
based on the status of the queue (state), receiving as utility the value of the
function of the scheduled job type at the timestep of execution (immediate re-
ward). The performance is calculated as the sum of utilities (long term reward)
when the queue empties. Each task begins with the scheduler finding 100 jobs in
the queue, while at each time step a new job is added to the queue for the first
100 ticks. Each episode lasts 200 timesteps. For the state variable and action
setup we used the modeling found in [17]. Job types 1 and 3 were used for the
source tasks and all four jobs for the target task. The state variable mapping
was to match the inputs concerned with job type 1 with the inputs of job type
2 and the inputs about job type 3 with inputs of job type 4.

5 Experiments

Each one of the experiments was conducted 10 times. The population was ini-
tialized with 100 individual networks and was evolved over 50 generations. In
each generation, every individual was allowed to learn over 100 episodes with
randomly initializing the starting state variables both in the MC and the SJS
domains. In each generation, the champion network was evaluated for 1000 ad-
ditional episodes with random restarts and its performance was recorded as the
average fitness over those episodes. In the presence of transfer learning, before
starting the evolution of the networks in the target task, the initial popula-
tion was initialized as discussed in Section 3 with the seed network being the
champion network produced by a neuroevolution procedure using the NEAR
methodology in the source task.

Table 1 presents the results of the four approaches for all testbeds. The
results illustrate the asymptotic performance of the agent for each task, i.e. the
total reward received over time under the policy produced by the champion
ESN over the 100 randomly initialized episodes. Our first observation is that, as
the testbed difficulty increases, the performance gains of transferring reservoir
features is even more evident.

The SJS domain can be considered a much more difficult domain than the
MC, at least in terms of the number of state variables and actions the agent has
to handle. In this specific testbed, as far as the average asymptotic performance
is concerned, all transfer methods outperform evolution from scratch with a
difference that is statistically significant at the 95% level under t-test. Moreover
a smaller variation in the asymptotic behavior of the algorithms is observed
under the transfer regimes. This is of particular value, when we are dealing
with autonomous agents, which have to build such mechanisms without human
supervision.

Last but not least, even though the mapping method has better performance
overall, it does not statistically dominate over the mapping agnostic method.



Table 1. The average and standard deviation of the generalization performance for all
the domains and algorithms under examination.

Domain Mean Sd

MC-M-Scratch -100.04 3.51
MC-M-Reservoir -96.47 4.48
MC-M-Mapping -97.67 4.40
MC-M-Map+Double -97.95 4.32

MC-NM-Scratch -293.52 47.86
MC-NM-Reservoir -288.52 62.31
MC-NM-Mapping -261.92 59.30
MC-NM-Map+Double -279.71 33.67

SJS-Scratch -5243.08 82.20
SJS-Reservoir -5187.02 31.24
SJS-Mapping -5176.42 16.74
SJS-Map+Double -5187.17 30.46

In fact, this could indicate that the reservoir along with its properties captures
crucial information of the domain in this inter-task transfer. This kind of infor-
mation could be specific sub-graphs existing in the reservoir, which together with
specific weight values in the connections, calculate temporal features needed to
produce efficient policies faster than when starting from scratch.

In both testbeds, the reservoir transfer methods win most of the races towards
the performance threshold targets than the baseline version. This can be seen
in the Figures 4, 5 and 6. The reservoir transfer method wins the race 7 times,
followed by the mapping transfer method with 6 times and the mapping with
reservoir doubling with 1 times, indicating a dominance of the transfer methods
versus evolving a network from scratch with respect to this criterion. We also,
note that in the Markovian variation of the MC domain, the agnostic method
is the best algorithm as it preserves a slightly better performances against its
rivals.

6 Related Work

This section presents related work in TL and contrasts it with the proposed
approach. For a broader review of TL in reinforcement learning domains the
reader can refer to a comprehensive survey of the field [12].

The transfer of neural networks has been studied in [15] and [1]. More specif-
ically, Taylor et al. [15] proposed a method, named Transfer via inter-task map-

pings for Policy Search Reinforcement Learning (TVITM-PS), that initializes
the weights of the target task, using the learned weights of the source task, by
utilizing mapping functions. In particular, in [15], they proposed a TL method
for policy search algorithms where the policies are represented as neural net-
works. The internal structure of the source networks along with the weights are
copied to the target task using predefined or learned mapping functions. We have



 0

 10

 20

 30

 40

 50

-400 -350 -300 -250 -200

G
en

er
at

io
ns

Steps to goal

Scratch
Mapping
Doubling
Agnostic

Fig. 4. The number of generations to reach pre-specified performance thresholds in the
Markovian MC problem.

 0

 10

 20

 30

 40

 50

-400 -350 -300 -250 -200

G
en

er
at

io
ns

Steps to goal

Scratch
Mapping
Doubling
Agnostic

Fig. 5. The number of generations to reach pre-specified performance thresholds in the
non-Markovian MC testbed.

evaluated this method with respect to ESNs and the NEAR algorithm, which is
the first time to our knowledge. Such a test has value since ESNs have inherently
more connections than NEAT derived networks. Additionally, we have tested a
method that tries to take advantage of the fully, random, connectivity of ESNs
and does not require the use of mappings, with promising results.

Finally, in [1] Bahceci and Miikkulainen introduce a method that trans-
fers pattern-based heuristic in games. A population of evolved neural networks
(which represent the patterns) to a target task as the starting population. In
contrast our method allows different action and state spaces between the source
and target tasks, and also is agnostic of any mappings.

Several other approaches have been proposed in the past for transfer learning.
More specifically, [3] describes an algorithm which reuses policies from previously
learned source tasks, while methods that use rules extracted from experience pre-



 0

 10

 20

 30

 40

 50

-5350 -5300 -5250 -5200 -5150

G
en

er
at

io
ns

Steps to goal

Scratch
Mapping
Doubling
Agnostic

Fig. 6. The number of generations to reach pre-specified utility thresholds for the SJS
domain.

viously gained in a source task have been proposed in [5, 16]. Both our testbeds
have been used before in TL research. The 2D to 3D MC source-target pair has
been used in [13], while the SJS in [15].

7 Conclusions and Future Work

In this paper we presented a method in the field of transfer learning and more
specifically a method of transferring reservoir topologies and weights from a
source task in order to facilitate adaptation of ESNs in a more complex target
task. The main contribution of this paper is a method that renders any inter-
task mappings of states and actions unnecessary. We believe that this is a step
towards the fully automation of the transfer learning procedure.

We have tested the approach in three different problems from two different
domains. Results indicated that as the difficulty of the task increases in terms of
complexity in the states and actions, the gains from transferring knowledge are
more evident. We hypothesize that as problems become increasingly difficult, the
population initialization of NE methods will play an even more crucial role. The
mapping approach is the method that outperformed any other, since it is difficult
to beat expert knowledge with randomly assigned weights. On the other hand,
transferring just reservoir and its properties seems to be a viable solution when
the problem’s dimensionality increases and mappings are becoming obscure. The
NEAR methodology as is, is capable of finding solutions quite rapidly in the
above problems, so the statistically significant improvement in the asymptotic
performance on the server job scheduling task, is a promising result for further
gains through reservoir transfer in much more demanding environments.

We plan to investigate the reservoir transfer approaches in more difficult
testbeds like the keepaway domain. Additionally, we plan to work on cross-
domain reservoir transfer, where the source and the target tasks belong to dif-



ferent domains. Finally, another issue that deserves further research is the sensi-
tivity of the transfer learning method discussed in this paper with the presence
of noise for both the source and the target tasks.

References

1. Bahceci, E., Miikkulainen, R.: Transfer of evolved pattern-based heuristics in
games. In: IEEE Symposium on Computational Intelligence and Games (2008)

2. Chatzidimitriou, K.C., Mitkas, P.A.: A neat way for evolving echo state networks.
In: European Conference on Artificial Intelligence. pp. 909–914 (2010)

3. Fernández, F., Veloso, M.: Probabilistic policy reuse in a reinforcement learning
agent. In: 5th international joint conference on Autonomous agents and multiagent
systems. pp. 720–727 (2006)

4. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPTT, RTRL,
EKF and the ‘‘echo state network’’ approach. Tech. Rep. GMD Report 159, Ger-
man National Research Center for Information Technology (2002)

5. Madden, M.G., Howley, T.: Transfer of experience between reinforcement learning
environments with progressive difficulty. Artif. Intell. Rev. 21(3-4), 375–398 (2004)

6. Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility traces.
Machine Learning 22(1-3), 123–158 (1996)

7. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

8. Stone, P.: Learning and multiagent reasoning for autonomous agents. In: Proceed-
ings of the 20th International Joint Conference on Artificial Intelligence. pp. 13–30
(January 2007), http://www.ijcai-07.org/

9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

10. Szita, I., Gyenes, V., Lőrincz, A.: Reinforcement learning with echo state networks.
In: Artificial Neural Networks ICANN 2006. Lecture Notes in Computer Science,
vol. 4131/2006, pp. 830–839. Springer Berlin / Heidelberg (2006)

11. Tanner, B., White, A.: Rl-glue: Language-independent software for reinforcement-
learning experiments. Journal of Machine Learning Research 10, 2133–2136 (2010)

12. Taylor, M., Stone, P.: Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research 10, 1633–1685 (2009)

13. Taylor, M.E., Jong, N.K., Stone, P.: Transferring instances for model-based rein-
forcement learning. In: Machine Learning and Knowledge Discovery in Databases.
vol. 5212, pp. 488–505 (September 2008)

14. Taylor, M.E., Kuhlmann, G., Stone, P.: Autonomous transfer for reinforcement
learning. In: AAMAS ’08: Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems. pp. 283–290 (2008)

15. Taylor, M.E., Whiteson, S., Stone, P.: Transfer via inter-task mappings in pol-
icy search reinforcement learning. In: 6th international joint conference on Au-
tonomous agents and multiagent systems. pp. 1–8 (2007)

16. Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Skill acquisition via transfer learning
and advice taking. In: 17 th European Conference on Machine Learning. pp. 425–
436 (2005)

17. Whiteson, S., Stone, P.: Evolutionary function approximation for reinforcement
learning. Journal of Machine Learning Research 7, 877–917 (May 2006)


