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Abstract 

Human activity recognition using smartphones and wearables 

is a field gathering a lot of attention. Although a plethora of 

systems have been proposed in the literature, comparing their 

results is not an easy task. As a universal evaluation framework 

is absent, direct comparison is not feasible. This paper 

compares state-of-the-art classifiers already used on mobile 

human activity recognition, under the same conditions. In 

addition, an Android application was developed and the 

method yielding the best results was evaluated in real world in 

a semi-supervised environment. Results shown that deep 

learning techniques have better performance and could be 

transferred to a phone without many modifications. 

1 Introduction 

Human Activity Recognition (HAR) is the task of correctly 

identifying human actions and activities, given a sensory input. 

The input can originate from various sources, such as 

smartphones, wearables, ambient sensors etc. In general, 

sensors can be divided into two categories: external and 

wearables. The former refers to fixed location sensors (ambient 

sensors, Radio Frequency Identification, cameras etc.) and the 

latter to wearable devices. Applications can vary from elder 

and youth care (e.g., infants sleep monitoring) to athlete 

monitoring.  

With smartphones and wearables becoming available to more 

people as well as being equipped with accelerometer and 

gyroscope sensors, they have become a solid choice for data 

gathering [1]. Although the use of those sensors can potentially 

limit the number of recognized activities, their low cost, data 

processing capabilities and people’s familiarity with those 

devices, make them a popular choice. A problem with systems 

exploiting those technologies is the lack of a common 

evaluation framework, as well as experiments on real life 

scenarios with multiple devices. 

Direct comparison between different approaches is a dubious 

task. The use of different datasets, each with its own sampling 

and filtering techniques, as well as the different locations the 

sensors are placed on the body, provide divergent 

accelerometer and gyroscope data. Additionally, each subject 

used for data gathering have a distinct movement profile, 

resulting in subject specific data. A taxonomy proposed in [2] 

attempted to address that problem. Authors took into account 

design and implementation choices and disregarded all the 

already mentioned aspects of a HAR system.  

Another issue is that each proposed method can recognize a 

different set of activities. There are activities that have a similar 

accelerometer and gyroscope profile, such as going up and 

down the stairs, standing, sitting etc. This can potentially lead 

to lower performance on systems recognizing similar actions. 

On par with that, classifying fewer and more distinct activities 

(i.e. mobility/immobility as presented in [3]) results in better 

performance.  

Furthermore, most systems proposed in the literature were only 

evaluated in laboratory and controlled environments and not in 

real life. During data gathering each participant performed 

every action under controlled conditions with definite 

boundaries. Pre-trained models should be evaluated on persons 

acting under noisy and uncontrolled environments, where the 

boundaries and transition between each action are not distinct. 

Activities performed on different terrain, by persons that were 

not used for data gathering can result in different sensor 

reading. In addition to that, while performing experiments on 

mobile devices, the energy efficiency must be taken into 

account. The majority of the literature does not take into 

account the power consumption [4]. This crucial factor has to 

be considered when using mobile devices, since the power 

available for filtering and classification are limited.  

This paper aims to evaluate state-of-the-art classifiers using the 

same set of identified activities. Implemented classifiers were 

trained to recognize the most common set of activities when a 

smartphone is used (i.e. walking, running, sitting, standing, 

laying down, climbing stairs). Also, doing a performance 

comparison of each proposed method, the portability of each 

method to a new set of data was investigated. Lastly, an android 

application was developed in order to investigate the 

performance on real scenarios, in a partially controlled 

environment. 

2 Literature Review 

Various techniques have been proposed in the literature for 

human activity recognition. Apart from statistical models and 

probabilities, machine-learning approaches are a fast-growing 

trend in activity recognition.  

Decision Trees and Random Forests, an ensemble learning 

method, have been extensively used in the literature for activity 
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recognition. In [5], the authors tried to address the problem of 

the device’s orientation by calculating a rotation matrix using 

1-second data, gathered with the person standing.  All input 

was then corrected using that rotation matrix. That technique 

made their approach orientation independent. Similarly, in [6] 

Random Forests were used not only to identify performed 

actions, but also to predict the position (i.e. waist, hand etc.) 

and orientation of the sensor. In [7] several machine-learning 

algorithms used on activity recognition were evaluated, 

including Random Forests and Decision Trees. Apart from 

these, Multilayer Perceptron (MLP), instance-based learning 

and k-Nearest Neighbors (kNN) were implemented. In their 

work, experiments were also conducted in order to evaluate the 

performance of the already mentioned techniques. 

Activity recognition using smartphones and wearables, is also 

used on elderly Ambient Assisted Living. In [8], a fall 

detection for elders was developed using a threshold method. 

When acceleration and position variation (derived from 

gyroscope data) exceed a redefined threshold, an alarm was 

raised. Using Decision Trees, work presented in [3], identified 

inactivity based on smartphone data. Immobility tracking is 

important for elders, as it can be an indicator of health 

problems.  

A combination of smartphones and wrist-worn motion sensors 

was presented in [9]. Authors evaluated the potential increase 

on performance when using data originating from two different 

devices on different body location. Evaluation was done on 

three different classifiers: Naïve Bayes, kNN and Decision 

Trees. The combination of different devices could lead to 

identification of more complex activities, such as drinking 

coffee, talk, smoke, eating etc.  

An increased interested is also observed for Deep Learning 

application on human activity recognition domain. Recurrent 

Neural Networks (RNN) and Convolutional Neural Networks 

(CNN) have been extensively used in the recent literature, not 

only for data originating from smartphones and wearables, but 

also from other sources (i.e. cameras, ambient sensors etc.). In 

[10] a deep CNN was employed, using the accelerometer and 

gyroscope filtered data without performing any other 

transformation on them. In [11] a deep RNN approach was 

proposed and various architectures such as Long Short Term 

Memory (LSTM) were investigated with promising results.  

In [12], a Deep Learning technique was used, along with data 

fusion from various sensors. Data originating from the 

magnetic and motion sensors were fused in order to recognize 

activities of daily living. The Deep Learning approach was 

evaluated against a feed-forward Neural Network and an MLP, 

outperforming both. 

Further leveraging data fusion techniques, in [13] the authors, 

presented a complete framework for activity recognition. The 

method proposed, consisted of 4 different stages: the sensor 

discovery, data acquisition and processing, data fusion and 

classifier. As the first module could recognize the available 

sensors, the proposed solution was not bound to specific 

devices. That framework could provide a solid choice for 

mobile activity recognition, removing the need for device and 

sensor bound solutions.  

 3  Dataset / Features 

As already discussed, it is important to evaluate activity 

recognition techniques on a common dataset in order to 

produce comparable results. The dataset employed in this 

paper is the OPPORTUNITY Activity Recognition Dataset 

[14], [15] a publicly available dataset released by UCI. The 

dataset contains tri-axial accelerometer and gyroscope data as 

well as time and frequency domain features. Data are divided 

into six different classes, each representing one activity: 

walking, standing, laying down, walking upstairs, walking 

downstairs and sitting. According to the authors, a smartphone 

was placed on the waist of 30 volunteers performing the 

aforementioned activities. A sliding window with 50% overlap 

and 128 values fixed-width was used for sampling. Each 

activity was represented by one window. In order to generate 

the training and the test subsets, the main set was divided by 

randomly selecting 21 individuals to form the training set and 

the rest 7 to form the test set. The procedure used to divide the 

dataset, ensured that the classifier will not use data from the 

same subject for training and evaluation. Raw data were 

denoised using a median filter and a 3rd order low-pass 

Butterworth filter with 20Hz cutoff frequency.  

Extracted time and frequency domain features were 

normalized and bounded within the [-1, 1] range. A Fast 

Fourier Transform was employed to extract frequency domain 

features. For the Decision Tree, Random Forest, Multilayer 

Perceptron and k-Nearest Neighbors classifier the selected 

features were the following:  

• max, min and average acceleration of each axis 

• Average of the square roots of the sum of each axis 

values 

• Standard deviations 

• Average of the absolute values of sensor deviations, 

the fast Fourier transform standard deviations of the 

spectrum data 

• Sum of the squared modulus of the coefficients (fast 

Fourier transform energy)  

The Convolutional Neural Network and the Recurrent Neural 

Network were implemented with the raw data as input.  Six 

vectors were used with a size of 128, each containing the raw 

signals, after denoising, for the 3-axis of the accelerometer and 

gyroscope.  

4 Implemented Methods 

Six widely used classifiers where implemented. In the dataset 

used, there are six classes, each representing a single activity. 

Dataset was pre-spited to training and evaluation set. 

The six classifiers were chosen based on their broad usage on 

activity recognition field. The implementation was based on 

already published papers, thus the features used for training 

were the ones proposed in the literature. 

4.1 k-Nearest Neighbours 

K-Nearest Neighbors (kNN) algorithm has been extensively 

used on human activity recognition domain, since naturally it 

can better handle multi-class problems. The algorithm was 

tested with the number of neighbors varying from 2 to 30. Best 
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results were observed when the number of them was set to 18. 

All neighbors were equally weighted. 

4.2 Decision Trees / Random Forests 

Decision trees were implemented based on evaluation of 

different parameters, while using the features proposed on [7]. 

After evaluating the performance of both the Gini and entropy 

criterion, the former was chosen as it was yielding better 

results. The Random Forests ensemble method was 

implemented by using 70 Decision Trees trained with the 

previously chosen parameters. 

4.3 Multilayer Perceptron 

The Multilayer Perceptron (MLP) was implemented using 

Keras with Tensorflow backend. The MLP consists of three 

hidden layers, the first and second layer having 1000 neurons 

while the third 128. The activation function of all layers was 

the ReLU function and the dropout was set to 20%. The 

activation function for the output layer was the Softmax 

function. Table 1 contains the configuration and parameters 

used for the MLP. 

 

Parameter Value 

Learning rate 0.005 

Loss function Mean squared error 

Batch size 64 

Epochs 400 

Patience 40 

 

Table 1. MLP Training parameters 

 

4.4 Convolution Neural Networks 

Convolutional Neural Network, was implemented as proposed 

on [10]. The structure of the CNN was a convolution layer 

followed by a max-pooling layer, repeated three times. ReLU 

function was chosen as activation function. A fully connected 

layer with 1000 neurons was the last layer before the output 

layer. The parameters can be seen on Table 2. 

 

Parameter Value 

Convolution layer 
Feature maps 

96 (192 after the 

1st ) 

Filter size 9 

Max pooling layer 
Strides 3 

Pool size 3 

dropout 80% 

Loss function Mean squared error 

Batch size 128 

Epochs 5000 

Patience 100 

 

Table 2. CNN training parameters 

4.5 Recurrent Neural Networks 

Recurrent Neural Networks, unlike feedforward networks, use 

an internal memory when processing inputs. A variant of RNN, 

the LSTM Neural Network was implemented as proposed on 

[11]. Table 3 contains the parameters used on the model. 

According to the literature, LSTM networks usually 

outperform vanilla RNN, as they are not affected that much by 

the vanishing gradient problem. In total three layers were used 

with 60 units each and 50% dropout, while the Softmax was 

chosen for activation function. 

 

Parameter Value 

Learning rate 0.001 

Loss function Cross entropy 

Batch size 20 

Epochs 80 

Patience 40 

 

Table 3. RNN training parameters 

 4.6 Support Vector Machine 

A Support Vector Machine (SVM) was also implemented. 

Both a linear and a gaussian kernel were tested. Since the 

activity recognition problem is a multiclass classification 

problem, the one against all technique was employed. Error 

tolerance was set to 𝑒 − 4 while the maximum number of 

iterations to 4000. 

5 Results 

All classifiers, were trained on the same set of activities using 

a common dataset. All methods, except the RNN, were trained 

on a machine equipped with i7-4700MQ processor 8 GB RAM 

and NVidia GT 745M 2GB GPU running windows. The RNN 

was trained and evaluated on a PC equipped with an i7-

7700HQ CPU, 16GB RAM and NVidia GTX 1050M 4GB 

GPU, due to the increased computational power needed. 

As already mentioned, the dataset was already split to training 

and evaluation subsets. The training set was randomly split 

with 70% of the subjects forming the train set and 30% the 

validation set. All subjects performed the same set of activity 

drills. After training using the training set, each classifier was 

evaluated against the test set. F1-score was chosen as the 

evaluation metric. Table 4 presents the results of the analysis 

for the 7 classifiers on the six given activities. Numbers in bold 

indicate the highest F1-score for each activity and classifier. It 

is obvious from Table 4 that Deep Learning techniques achieve 

a higher score. More importantly, CNN had the best 

performance with an F1-score of 0.94. It is worth mentioning 

that CNN as well as RNN were the only methods using raw 

signals as input and not extracted features from accelerometer 

and gyroscope data.
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             Classifier 

Activity  
KNN DT RF MLP CNN RNN SVM 

Standing 0.67 0.62 0.72 0.75 0.97 0.96 0.75 

Sitting 0.57 0.59 0.69 0.76 0.97 0.96 0.73 

Laying 0.82 0.71 0.82 0.81 1.00 0.94 0.73 

Walking 0.55 0.46 0.56 0.06 0.89 0.61 0.28 

Walking downstairs 0.70 0.58 0.70 0.66 0.91 0.80 0.68 

Walking upstairs 0.82 0.75 0.84 0.73 0.92 0.77 0.79 

Total 0.69 0.62 0.72 0.62 0.94 0.84 0.68 

 

Table 4. F1 score for each method and activity 

 

Examining the confusion matrix (Table 5), useful results can 

be drawn regarding activities that have a similar accelerometer 

and gyroscope profile. Each row of the confusion matrix 

represents one of the activities performed (ground truth) and 

each column one of the recognized activities. Individual cells 

contain the number of examples that belong to class shown at 

the corresponding row, classified as instances of the class 

shown on the column. Sitting/standing, walking/walking 

downstairs are the pairs that were usually misclassified as each 

other.  More specifically, out of 491 examples belonging to the 

walking class, the MLP had the worst performance classifying 

correctly only 16 examples while 289 examples were 

misclassified as walking downstairs. On the contrary, the 

Convolution Neural Network correctly assigned 446 examples 

to the walking class.  

Regarding the sitting/standing pair of activities, the kNN and 

Decision Trees had the worst performance. The former 

classified 248 out of 471 examples correctly as sitting and 214 

wrongly as standing. The latter, correctly assigned 275 

examples to the sitting class and 156 to standing class. CNN 

and RNN had the best performance when classifying instances 

of the sitting class with 467 and 469 correctly assigned 

examples respectively. The F1-score of each method on each 

individual class can be seen on Table 4. 

 

 Classifier Standing Sitting Laying Walking 
Walking 

downstairs 

Walking 

upstairs 

Standing 

KNN 387 87 22 0 0 0 

DT 323 110 63 0 0 0 

RF 373 88 35 0 0 0 

MLP 343 103 49 0 0 0 

CNN 469 8 19 0 0 0 

RNN 467 9 20 0 0 0 

SVM 410 63 23 0 0 0 

Sitting 

KNN 214 248 9 0 0 0 

DT 156 275 40 0 0 0 

RF 111 341 19 0 0 0 

MLP 56 391 24 0 0 0 

CNN 3 467 1 0 0 0 

RNN 1 469 1 0 0 0 

SVM 131 334 2 0 0 4 

Laying 

KNN 54 55 311 0 0 0 

DT 55 74 291 0 0 0 

RF 41 59 320 0 0 0 

MLP 19 61 340 0 0 0 

CNN 0 5 415 0 0 0 

RNN 2 22 396 0 0 0 

SVM 44 44 332 0 0 0 

Walking 

KNN 1 2 0 249 207 32 

DT 0 0 0 220 189 82 

RF 0 0 0 245 194 52 

MLP 0 1 0 16 289 185 

CNN 0 1 0 446 31 13 

RNN 0 0 0 230 117 144 

SVM 1 1 0 89 248 152 

KNN 0 0 0 92 419 21 
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 Classifier Standing Sitting Laying Walking 
Walking 

downstairs 

Walking 

upstairs 

Walking 

downstairs 

DT 1 0 0 158 306 67 

RF 0 0 0 98 399 35 

MLP 0 0 0 9 438 85 

CNN 1 0 1 21 502 7 

RNN 0 0 0 11 474 47 

SVM 0 0 0 40 424 68 

Walking 

upstairs 

KNN 2 0 0 77 45 413 

DT 0 0 0 109 32 396 

RF 0 0 0 55 21 461 

MLP 0 1 1 0 69 466 

CNN 0 0 0 43 39 455 

RNN 0 0 0 16 59 462 

SVM 0 0 0 10 30 497 

 

Table 5. Confusion Matrix showing the number of examples assigned on each class (columns) per classifier, while performing a 

specific activity (row).  

5.1 Activity recognition Android application 

The classifier with the best performance (CNN) was chosen for 

evaluation on real life semi-supervised environment. The 

application developed was a simple app that gathered the data 

from the phones sensors (accelerometer & gyroscope), applied 

denoise filters and reported the classification results to the user. 

A sliding window was also used with the same parameters as 

the one employed on the dataset. The phone used for evaluation 

was a Samsung Galaxy S6. The model was exported and 

implemented on the phone using the libraries that Tensorflow 

provides. 

 Results from the mobile application, although promising, were 

not on par with results obtained from laboratory evaluation. 

The main reason for that is that the trained data were obtained 

from a 2G accelerometer and gyroscope, while modern mobile 

phones are equipped with a 4G, having higher sensitivity and 

returning values in a bigger range. In order to overcome that 

problem, data were normalized in the range the 2G 

accelerometer is working.  

The android application was evaluated using 10 people 

between 23-35 years old in a semi-supervised environment. All 

subjects had the phone attached on their waist using a belt. No 

person specific calibration was made. All subjects performed 

the same set of activities for the same duration. Experiments 

were observed and the application was constantly reporting the 

recognized activity, both on screen and vocally. The activities 

performed were (in order): standing for approximately 30 

seconds, walking approximately 40 meters, going a staircase 

down/up, walk approximately 10 meters, laying for 30 

seconds, sitting for 30 seconds.  

Results, as can be seen on Table 6, show that the Neural 

Network was able to correctly classify most of the performed 

activities. The accuracy of the CNN when used on the mobile 

phone was 73.87%. Due to the 50% overlap of the sliding 

window used, the transition between activities resulted in 

misclassifications, especially for activities that have a similar 

acceleration profile. This was a result of remnant data from the 

previous activity. Walking downstairs had the worst 

performance as it was not recognized at all. Walking upstairs 

also had the lowest F1 score as it was mostly misclassified as 

walking. 

Walking activity had a low F1 score compared with the results 

obtained during evaluation. We consider that the main reason 

for that is that no user specific calibration was made. 

Additionally, the mobile phone had shifted from its original 

orientation during walking, resulting in inconsistent readings. 

 

 Standing Sitting Laying Walking Upstairs Downstairs 

Recall 58.442% 96.154% 100% 64.122% 100% No data 

Precision 90% 100% 96% 84% 6.667% 0% 

F1 70.8% 98.03% 97.9% 72.73% 12.5% No data 

 

Table 6. Results from smartphone application testing 

6 Conclusion / Future Work 

 Human activity recognition using mobile devices is a research 

area with increased interest. Direct comparison between 

different methods, is not an easy task, as datasets gathered from 

different people and sensors are used, as well as different 

activities are recognized. In our work, state of the art classifiers 

already used in the literature were evaluated on the same set of 

activities, using the same set of data. Deep learning techniques, 

exploiting CNN and RNN methods outperformed the rest of 

the implemented classifiers. Confusion matrices generated, 

allowed the identification of activities pairs that were 

misinterpreted as each other. Those pairs are activities that 

have a similar acceleration profile.  

Experiments were also conducted on real life in a semi-

supervised environment. An android application was 

developed and the CNN (the classifier with the best overall 
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performance) was used to identify activities performed by 

participants on the experiments. Data processing and 

recognition was offline, i.e. on the mobile device. While 

further evaluation is needed, results were promising. 

Orientation of the device still remains a major factor affecting 

performance as well as the exact position of the phone and how 

discrete a person’s movement is. The power demands of the 

application was also measured, in order to evaluate whether it 

is feasible, energy wise, to have all the preprocessing and 

classification on the phone. Power consumption was found to 

be relatively low. 

In addition to the above, a computation load profiling on 

several CPUs is required. As computational power on mobile 

devices is limited, a detailed analysis is important. A profiling 

on RNN running on mobile phones was presented on [16].   

The need for a common evaluation framework was identified 

during our work, a task that has to be addressed in near future. 

Additionally, real life testing has to be more extensive. The rest 

of the classifiers should also be evaluated on a smartphone. It 

is also expected in near future to evaluate the application on 

different age groups and perform the recognized activities on 

multiple terrains, such as roads, gravel, uphill etc.  
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