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We propose offline and online scheduling algorithms for the
charging of Electric Vehicles (EVs) in a single Charging Station
(CS). The station has available cheaper, but limited, energy from
Renewable Energy Sources (RES). Moreover, the EVs are capable
of and willing to participate in Vehicle-to-Vehicle (V2V) energy
transfers, that are used for reducing the charging cost and
increase RES utilization. The algorithms are centralized and
aim to minimize the total charging cost for the EVs. Initially,
we formulate the problem as a Mixed Integer Programming
(MIP) one and we solve it optimally assuming full knowledge
of EV demand and energy generation. Later, we propose an
online algorithm that iteratively calls the offline one and copes
with unknown future interruptions by arriving EVs and with the
inability to predict accurately RES production. Additionally, a
novel technique called Virtual Demand is developed that increases
the demand of already existing EVs, in order to store renewable
energy and later transfer it via V2V to EVs that will arrive at
the CS in the future. This technique is used for mitigating the
inefficiency due to the uncertainty about future actions that real-
time scheduling entails. In a setting with up to 150 EVs and using
real data regarding RES production, our algorithms are shown
to have low execution times, while the use of Virtual Demand
increases RES utilization by 12% and reduces cost by 3.3%.

Index Terms—Electric Vehicles, charging scheduling, Vehicle-
to-Vehicle (V2V), Renewable Energy Source (RES), Mixed Inte-
ger Programming (MIP).

I. INTRODUCTION

LIMATE change induced by the greenhouse effect, is

an overwhelming problem that threatens to disrupt hu-
man societies worldwide. For that reason, recent international
agreements determine that the C'O, emissions, caused by
the consumption of fossil fuels, must be reduced within the
next decades. The transportation sector is accountable for
a substantial portion of fossil fuel consumption. Thus, the
introduction of Electric Vehicles (EVs) is one of the main
pathways to reduce the greenhouse effect.

EVs are more efficient than conventional vehicles in con-
verting the available energy into motion, which means that
even if the electricity they use is produced from fossil fuels,
they result in smaller pollution [1]. However, in order to realise
their intended benefits, the majority of their energy should be
produced by renewable energy sources (RESs). At the same
time, it is a fact that the present electric grid and the power
generating facilities are not sufficiently advanced to sustain
the uncoordinated charging of large numbers of EVs. Thus,
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it is crucial to upgrade the related infrastructure to the so
called smart grid. In spite of the difficulties imposed by EV
introduction, they can offer great opportunities to the grid
and the overall power regulation. For example, coordinated
EV charging can render RES very efficient, despite their
fluctuating production patterns [2].

Electric vehicles have the ability to discharge while con-
nected to the grid, resulting in returning some of the energy
surplus back to it. This is called Vehicle to Grid (V2G) energy
transfer and lets the EVs act as electricity storage devices for
the grid (virtual power plants) [3]. V2G is largely studied
as a way to reduce the discrepancies between the power
production and consumption [4]-[6]. That way, the intermittent
production from RES can be utilized more efficiently [7], [8],
rendering RESs more economically viable [9]. Moreover, V2G
capabilities could be used as means for the EV owners to
interact with a flexible electricity market, both at individual
level [10] as well as a part of EV-coalitions [5], [11].

Extending the idea of V2G, the direct transfer of energy
between EVs (Vehicle to Vehicle energy transfer [6] - V2V)
is also possible (i.e., energy transfer can take place using a
charging station’s infrastructure). V2V can further increase
the flexibility of EVs as grid regulators and strengthen their
position in the electricity market. V2V is expected to be useful
mostly in a context of a group of EVs that work towards a
common goal, be it maximizing the RES usage [12], reducing
their collective charging cost [13], [14], or even providing
stabilization services to the grid [15]. Companies have been
found to use the 9% of EVs sold in the UK the years 1999-
2008 [16] and on 2013 the majority of EVs were bought by
governments and companies [17], thus, a centralized approach
at an organization level is valid.

In order for the V2G and V2V capabilities to be beneficial,
they must be used in an intelligent way. Previous work has
proposed studying the EVs as agents that act on their own
accord [18], [19], while others propose the use of a centralized
aggregator that collects information about the relevant compo-
nents and calculates the optimal actions [14], [20]. However,
a range of parameters needed to calculate an optimal charg-
ing/discharging plan is not always available. For example, EV
owners might be reluctant to share their mobility plans, or
even unable to do so, while the power availability depends
on solar irradiation and end-user consumption, that are hard
to predict accurately. Techniques such as the introduction of
fuzziness [21] aim to simulate more accurately the real world
deployment of such EV-managing, by introducing uncertainty.
Real time charging scheduling is important and can be applied
widely as it depends only on present information, does not
require EVs to predefine their activity, or having precise



knowlegde on future power availability.

In this paper, we study a centralized algorithm that manages
the charging of EVs, in a single Charging Station (CS), that
also acts as an aggregator. The charging cost for all the EVs
is paid by a single organization, that owns the EVs, or has an
agreement with them, and the CS aims to reduce the overall
cost. The setting has available RES, which produces power of
lower cost than the grid’s, but its production is not consistent.
While EVs arrive at, and depart from the CS randomly,
the optimal charging/discharging schedule is produced, taking
advantage of V2V capabilities. We initially study the EV-
charging scheduling in an offline scenario, where the necessary
information is available a priori, to set a benchmark. Consec-
utively, we extend it to be applicable in an online scenario
where the CS is informed about the EVs as they arrive, while
coping with the uncertainty of the RES production.

We advance the state of art in the following ways: 1)
We propose an online algorithm that iteratively uses Mixed
Integer Programming (MIP) in order to optimize the EV-
charging within a single CS, in respect to overall charging cost,
using differently priced sources of electric power. Moreover,
V2V capabilities are incorporated within the online MIP
formulation. 2) We propose introducing one virtual EV that
causes the real EVs that are currently in the CS to store more
RES energy than their actual demand, in order to complement
energy demand of future EVs. 3) Using real data regarding
energy production from solar panels in Belgium we show that
the use of virtual demand increases RES utilization by 12%
and reduces cost by 3.3%, while in all cases our algorithms
have low execution times and good scalability.

The work in this paper draws inspiration from [12], but im-
plements two major advancements: 1) A number of additions
were made to the core functionality that necessitated a large
redesign of the optimization model. 2) A new algorithm for
real time charging scheduling that uses the optimization model
was implemented. Additions to the core functionality include
introducing charging efficiency, different energy sources and
more flexible charging rate. Real time (Online) scheduling
introduces an algorithm that wraps the optimization model
and additionally a novel technique is developed that aims to
mitigate the lack of information about future EV activity.

The rest of the paper is organized as follows: in Section
IT the related work is presented. In Section III the problem
is defined and Section IV presents the offline formulation, in
order to proceed to the online solution in Section V, which
also includes the virtual demand algorithm. Finally, Section
VI presents the evaluation of our algorithms and Section VII
concludes and gives ideas for future work.

II. RELATED WORK

EVs’ large batteries can, if well managed, become a valu-
able asset to a smart electricity grid [4]. As discussed earlier,
the stored energy can be used to smooth out the fluctuating
production of electricity from renewable sources. Moreover,
the provision of V2G services can potentially be very prof-
itable for EV owners. V2G services can be provided either in
an one-to-one basis (each EV will sell its own spare energy

to the grid), or in the form of collectives of EVs which act
as one entity and trade electricity. Indeed, unless operating
through an aggregator, it is impossible for individual EVs to
sell V2G services in electricity markets where buyers typically
buy energy in Megawatt-hours rather than kilowatt-hours [22].

As it is outlined in a previous work of ours [2], the majority
of the related work is focused on managing the charging and
discharging of EVs, in association with the grid. For example,
in [13], [14], [20] the studies use optimization techniques to
schedule the charging of EVs, while utilizing V2V capabilities.
The optimal schedule is determined by hourly-changing elec-
tricity prices. In addition, Galus and Andersson [23] propose
algorithms for an aggregator to trade energy in the energy
market by both managing the charging and discharging of
the EVs. Based on the current SOC (State Of Charge) of
the vehicles, the desired SOC and the time of departure, it is
able to optimise the amount charged in the batteries in order
to make a profit by reselling a quantity that leaves the EVs
with enough to go onto their onward journeys. The researchers
in [24] instead, use particle swarm optimization (PSO) [25]
to optimize charging and discharging of EVs. PSO is used
to schedule the charging and/or discharging activities of the
vehicles so as cost and emissions to be minimized. The authors
show (using data from [26]) that their mechanism can trade-
off emission reduction for cost reduction (i.e., when charging
cost is low, EVs prefer to charge and therefore emissions
are high, whereas, when charging cost is high, emissions are
low as EVs prefer to discharge). However, in these works, a
single centralized aggregator calculates the schedule offline,
assuming full knowledge of EVs’ demand and constraints.

Online scheduling is studied to a lesser extent. He et al. [27]
produce an optimal charging schedule based on prices derived
from forecasts about grid load, in order to minimize charging
cost. The optimization formulation includes V2G capabilities
but no V2V. In addition, Mohamed et al. [21] study the cost
minimization of EV charging. The scenario that is studied is
similar to ours, meaning that there is a single CS equipped with
RES (solar energy) and it utilizes V2V. However, the solution
is based on a fuzzy controller that sets the (dis)charging rates,
according to a set of handcrafted rules that classify the EVs
to various charging levels. Those levels limit the minimum
and maximum rates that the fuzzy controller can set to the
EVs. Moreover, the study covers a limited time period, that is
the standard working hours of a day. Our work instead, uses
mathematical programming to optimize EV charging and it can
handle any level of energy input and output and can easily be
adapted to different problem settings. Also, our work studies
the charging process using RES production in a 24-hour base.
Thus, we cope with the problem of using RES (in particular
Solar energy), during nighttime via V2V.

III. PROBLEM DEFINITION

In this paper, we study a setting where a single Charging
Station (CS) manages the charging of incoming EVs. The
vehicles announce to the CS their arrival and departure time
and the requested amount of energy to charge. The CS acts
as an aggregator that collects the EVs’ charging requests and



constraints and calculates the (dis)charging schedule aiming
to minimize the charging cost. The CS can be aware of the
EV requests either in advance (offline scenario), or in real
time (online scenario). It is assumed that the fleet of EVs
belongs to a single company which covers their collective
charging cost, thus, the EVs are willing to employ their V2G
and V2V abilities. The same strategy could be applied even
if the EVs acted within one EV-coalition. Furthermore, the
CS has a number of parking spots, each one equipped with a
bidirectional charger, that can direct power to (EV charging),
and from (EV discharging) the EVs [28] (such chargers have
already been deployed in the UK and Finland amongst others).
As discussed earlier, the discharging of EVs is often studied
as a mean to regulate grid load, but in our case, such energy is
used to directly charge other EVs. Thus, no energy is returned
to the grid, but the utilization of RES increases. Cost from
battery wear due to charging cycles is omitted, as it is expected
to be insignificant, based on an analysis on similar setting
[29]. Moreover, it is reported that the most important factor
on battery degradation are temperature and depth of discharge
(DOD) [30]. In our setting, temperature is assumed to be
regulated internally and the DOD is partial.

The setting is studied within a discrete time horizon, that
is divided into a number of equal length intervals that we call
Time Points (TPs), t € T'C N. A set of EVs ¢ € A C N arrive
and depart from the CS throughout the time horizon. The set
of vehicles that are present in the CS on a particular time
point ¢ is denoted by A} C A. The EVs are defined by a tuple
pi = {197 197 SoCmaT SoCTe, SoCimit}, where ¢4 € T
and t/? € T are the arrival and departure times of the EV.
SoC™ma* € Rt denotes the maximum charge the battery can
hold, measured in kWh, SoC}“? € [0, SoCI™**] is the desired
energy level or state of charge, SoC!" € [0, SoC™*?] is the
initial energy level at ¢{"". Note that the vehicles request to
reach the specific energy level SoC; “/, which isn’t necessarily
their maximum state of charge. However, it is greater than the
original energy level, meaning all vehicles want to charge.

EV charging takes place either by directing energy through
the grid (G2V) or by directing energy from another EV (V2V).
However, the chargers aren’t perfect, as they suffer from
energy losses. Charging and discharging efficiency has a set
value, eff € (0,1) and is the same for all the chargers in
the CS. Energy that passes through a charger is multiplied
by eff in order to determine the energy that reaches its
destination. For simplicity’s sake, we assume that energy
losses happen only because of the chargers and are solely
dependent to the number of chargers involved. In the case of
G2V energy transfer, a single charger is used and the losses
of this transaction are (1 — eff) X en, where en the initial
energy. In contrast, V2V involves energy transfer via two
chargers and in this case the losses are (1 —ef f2) x en (i.e.,
if energy en is transferred via V2V, the energy that reaches
the second EV is (en X eff) X eff, so the lost energy is
en — (en x eff) x ef f = (1 — eff?) x en). The CS knows
about the chargers’ efficiency and seeks the optimal solution.
Also, the chargers have an upper limit on the transmission
rate (electric power), denoted by the variable ch’®¢ ¢ RT
measured in kW.

The energy itself can come from two main sources: 1)
From the grid that is produced by non renewable means and
thus its cost is elevated, but is available on demand, so it
can be considered unlimited for the scope of our setting. 2)
From photovoltaic (PV) panels that harvest solar power and
is cheaper and environmentally friendlier. The energy from
RES might be produced by designated PV panels, or as a
portion of larger scale production. Thus, the CS has incentives
to consume the energy from RES, rather than the energy from
non-renewable sources, while managing the charging of the
EVs. As the non-RES production is always present, there isn’t
need to use V2V to transfer that kind of energy. Thus, V2V
is used solely to increase RES energy utilization.

The production from PVs isn’t known ahead of time as it
directly relates to cloud coverage and other factors that are
challenging to predict. As a result, the CS schedules the EV
(dis)charging based on the forecasted production of PVs. In
case this amount is higher than the actual one, some of the
energy could be wasted. In the opposite case, where the fore-
casted amount is lower than the actual production, it is possible
that the (dis)charging schedule requires a larger amount of
energy than the available. To compensate that amount, energy
from expensive non-RES (i.e., fossil fuels) is being used,
administering a slightly increased cost. While incorporating
uncertainty via the forecast, the scheduling becomes more
challenging and produces sub-optimal results.

IV. OFFLINE OPTIMIZATION

The problem of the optimal EV charging scheduling is
formulated as a Mixed Integer Programming (MIP) one and
is solved using CPLEX 12.6.2. This formulation is based
on a previous work of ours [12], however a number of
improvements have been made. In contrast to [12], here the
charging efficiency is introduced and charging rate is more
flexible as it can have real values. This means that the updated
algorithm can schedule to charge any amount of energy, as
opposed to handling only integer energy units. Moreover, two
different kinds of RES forecast are incorporated, instead of
fixed RES production values. Also, the chargers’ availability
becomes more direct, as now each parking spot has a dedicated
charger, instead of sharing few chargers. Finally, all EVs must
be charged and the possibility that some EVs solely sell energy
was removed as it is considered unlikely.

Offline optimization has all the information about EVs
(i.e., p;) available in advance. Moreover, it has information
about the RES production, either the actual values, or the
available forecast at +5%4"¢, Using this information, the charg-
ing/discharging schedule that covers all the TPs, is optimized.

A. MIP Formulation of the Problem

The offline formulation is presented in this subsection, start-
ing with the decision variables and following with the objective
function and the constraints. Moreover, some parameters that
are required in the formulation are presented in Table I.

Decision Variables:

1) VtoVi i+ € [0,ch™ x |TP|] is the amount of energy

the EV i transfers to ¢/, during time point ¢.



TABLE I
PREREQUISITE PARAMETERS
Parameters Description
|TP| Duration of one TP in hours

cost(nonRESenergy)

c=
cost(RESenergy)

Cost relation between the two energy
sources

b>c b penalizes residual energy demand. It must
be greater than c to ensure full charging

RESprodfm” Energy production from RES per TP

tstart = Starting TP of the offline scheduling is
always the first TP

tend = T Ending TP of the schedule of the offline

scheduling is always the last TP

2) REStoV;; € [0,ch™ x |TP|] is the amount of energy
from RES given to EV ¢ during time point .

3) nREStoV;; € [0,ch™¢ x |TP|] is the amount of
energy from non-RES given to EV ¢ during ¢.

4) enDem,; € [—SoC]"** SoC™**] is the absolute energy
demand that EV i has after the end of the optimization
process. Negative demand can occur only when virtual
demand exists (see subsection V-A).

Objective Function:

Z b x enDem;

1€A, start

M
tend
+ > > (REStothrcanEStom,t))

t=tstart i€A, spart

minimize(

Constraints:
Vi € A, S0C; 4—o = SoCi™™ ¥

Vi€ AVEE [t 41, 1 1)
SOC@t = SOC’L,t—l"—

(REStOVi,t_1 + nREStow,t_l) xef f+ S
5= (VeoViser x ef 2 = VoV, 1)
'€ A

Vi € A: enDem; = ’SonEq — S0C, 1ena
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vt € [t "] . Y REStoVi, < RESprodi ()
€A

Vi€ AVt e [t 0D VoV gy < k™ x TP ©)
€A

Vi € AVt € [t 1) (REStoVi,t + nREStoV;.,

;
+> Vtovi,,i,t) < ch™ x |TP| @
i’eA
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Vi€ AN € At < t7T < 8Tt > 0P > 0 ©
Vto‘/i,’i’,t =0
Vie At <3t > tder

i€ At <t t >t (10)

REStoV;,; = 0,nREStoV;, = 0

Next we comment on the constraints and the objective:

Constraints (2) and (3) define how the current state of charge
is computed at any ¢. Equation (2) shows that at the first TP
SoC receives the value of EV’s initial energy, while Equa-
tion (3) describes how SoC is computed for all subsequent
TPs. The current SoC is equal to the SoC during previous TP
plus the energy the EV received, minus the energy the EV
provided. Note that the received energy suffers loses defined
by the chargers’ efficiency. Especially, the energy received
from another EV is truncated twice(i.e., once for every charger
involved) and thus, the losses are squared (xef f?).

Equation (4) sets the energy demand an EV has, after all the
scheduled actions take place. Energy demand is defined as the
absolute difference between the required SoC and the SoC at
the end of the time horizon, as it was calculated by (2) and (3).
In the offline scenario, as opposed to online, energy demand
is guaranteed to be zero at the end of the optimization cycle,
which means that all the EVs will get the required energy
by their departure time. This is guaranteed because there is
always available energy form non-RES and because the EVs
don’t require more energy than they can receive within their
parking time, according to their charging rate ch™®*¢.

Inequality (5) constraints the amount of energy the RESs
can discharge during a TP to be less or equal to their
production. Given that the offline scheduling takes place before
the actual charging of the EVs, it is possible that the forecasted
production from RES varies from the actual one. Thus, when
the EVs arrive to the station to charge, there is a correction of
the available energy based on the actual values of production
and any energy deficit is completed by non-RES.

Constraint (6) bounds the maximum amount of energy an
EV can give to any other during a TP. This limit is imposed
by the charger’s charging/discharging rate (ch™®'¢). Moreover,
charging rate also sets an upper bound to the amount of energy
one EV can receive during a TP, where the energy can be from
RES, non-RES, or other EVs (Inequality (7)). Simultaneous
charging and discharging of one EV isn’t prohibited by the
constraints, but the charging efficiency always makes this case
more costly, and thus, it can never occur within this formu-
lation. For example, Grid — EV; — EV, is always more
costly than Grid — EVa, because of chargers’ efficiency.

Objective function (1) breaks down to two parts: The first
summation aims to minimize the total energy demand of the
EVs, as it is calculated by (4), which is equivalently the
summation of Manhattan distance to the desired energy level,
for all the EVs. Note that the energy demand from equation (4)
refers to the energy demand at the end of charging schedule
(i.e., the distance between the desired SOC and the actual
one). As a result of non-RES being practically unlimited, all
vehicles are able to reach their required SoC and this distance
ends up being zero (provided the requirements respect the
limitations of charging rate). So, any concerns about treating
EVs unevenly are dissolved. The second part of the objective
function aims to minimize the overall amount of energy used,
both from RES and non-RES. Constant ¢ expresses the cost
ratio Cozég("gggseniefgy) and makes CS prefer using RES
rather than the alternative non-RES for charging the EVs,
as we set ¢ > 1. Value b : b > ¢ multiplies the residual




energy demand in order to penalize it and while its value
is greater than c, it is ensured that the cost of not having
the desired energy level is greater than the cost of non-RES
energy. That results in always charging the EVs to required
level, even if the more costly (but unlimited) non-RES energy
is used. Unnecessary energy transfers are avoided due to the
objective function that minimizes the energy used, alongside
with constraint (3) that denotes that there are energy loss
caused by chargers’ efficiency.

Finally, Equation (8) bans energy transfers from one EV to
itself. Equation (9) makes sure that energy transfers between
two EVs (V2V) occur only if both of the EVs are present
at the CS at ¢, meaning that ¢ must be after the arrival and
before the departure of both EVs. Similarly, constraint (10)
allows energy transfer from the grid (either RES or non-RES)
to take place only if the recipient EV is present at ¢.

In the next section, we present an online solution to the EV
charging scheduling problem.

V. ONLINE OPTIMIZATION

Knowing EV information ahead of time, isn’t usually pos-
sible. Thus, we formulate an online algorithm that optimizes
the charging schedule while having information only about the
EVs that are present at the CS. Moreover, in this scenario, only
the forecast of RES production is assumed, so the scheduling
deals with imperfect RES production knowledge.

In more detail, the charging schedule is optimized pe-
riodically, using the information that is currently available
regarding the PV power output forecast and the present number
of EVs. Each optimization iteration covers a range that is
calculated by a method similar to a sliding window, whereas
the width isn’t necessarily constant. The start of the sliding
“window” (t%t%"t) slides a constant number of TPs denoted
by variable interval. Given the starting TP of one cycle,
the following cycle will start on ¢5147t = ¢'start | interyal,
meaning interval TPs after previous start. The end of each
optimization cycle (t°"?) is when all the EVs that are present
at the CS during #%%%" Jeave the station and there is no
more charging to be done. So, in order to calculate t*"¢ we
denote the set of EVs Ajstart that are present at the CS at
tstart Then, the end of each optimization cycle is when all
the EVs that belong in A;start depart from the station, or
" = maz(tI?),Vi € Agsrare. In the special case where
no EVs are present in the CS when an optimization cycle is
due to start, then calculation of t5'*"t is overridden, and the
start is postponed until one EV arrives. Also, the scheduling
uses only the known information about the RES production
(RESprodimn), which is the forecast that is available at the
starting time of each optimization cycle. Finally, note that the
greater the value of interval is, the more EV idling may
occur as they wait to enter the next optimization cycle. In
contrast, small values of the variable denote frequent rerun of
the optimization cycle, overall resulting in a trade-off between
computational cost and EV charging delay.

At the end of each optimization cycle, the new SoC of the
EVs is computed, using only the actions (from the schedule)
that are between the start of current iteration and the start of

the new iteration. During this procedure, the real production
from RES is checked whether is enough to cover the scheduled
actions. If the production isn’t sufficient, non-RES energy
compensates, so that the scheduled actions are ensured to
take place. After this process, the SoC!"" is updated with
the current charge, as it represents the state of charge when
the current optimization cycle begins.

For every optimization cycle, the formulation of Section
IV is used while altering the objective function, in order
to mitigate the negative effects of the uncertainty that is
introduced. The modification of the objective function requires
knowledge of the interval variable, as well as the range
of the more accurate forecast, denoted forecastAcc. The
forecast breaks down to two distinct forecasts, the first is
more accurate but has limited range (forecastAcc) and the
second predicts the production for later TPs but is less accurate
(forecastFuzzy). The new objective function is:

>

a; €A start

mim’mize( b x enDem, ;ena

amn

tend

DD

t=tstart a;, €A start
Where:
(t <t 4+ interval) —» w =1
(t > t°""" finterval) A (t < 77" + forecastAcc) — w = wy
(t > t*"" + forecastAcc) = w = ws

(w X REStoV;; + ¢ X nREStoVi,t)>

The new version of the objective function has a multiplier w
on energy that comes from RES. The aim of the multiplier is
to cause RES energy to be used earlier by applying a penalty
to actions that are scheduled for later, and its value can be
one of the three: 1) When the current TP is up to interval
TPs after the start of the optimization cycle, then, multiplier
w = 1 i.e., there is no penalty on those actions. 2) For the
immediately following TPs but while the RES production is
covered by the accurate forecast (forecastAcc), w = wq > 1,
i.e., a small penalty is applied. RES usage within those TPs
is possible to be disrupted by newcomer EVs that will be
included in the next optimization cycle resulting in worse RES
utilization, thus, the penalty applied. For example, if the CS
postpones charging one EV with RES energy until more EVs
arrive, it is possible that when the new EVs arrive the RES
energy will not suffice for the accumulated demand and result
in unnecessary non-RES consumption. 3) For even later TPs
the multiplier is w = ws > wo, i.e. an even greater penalty is
applied. In that case, beyond the possibility of newcomer EVs
disrupting the schedule, RES production is given by the less
accurate forecast, so is expected to result in even worse RES
utilization. For example, if more RES production is predicted
than the actual amount, then the CS could postpone using
RES, with the false expectation of upcoming RES production.
In this case, when the charging is scheduled there might not
be enough RES energy, once again resulting in unnecessary
non-RES usage. The multiplier must always be w < ¢,
because RES energy is preferred to non-RES, even if some
waiting is needed, so the different values are connected with



the inequality 1 < wy < ws < c. Overall, the multiplier
encourages RES energy to be used the earlier possible to avoid
disruption by newcomer EVs and worse RES forecast. Also,
it is assumed that interval < forecastAcc, meaning the new
optimization cycle begins before the accurate forecast expires.

Consecutive optimization cycles are separated by a number
of TPs, thus potentially resulting in EVs idling instead of
charging. This can happen if an EV arrives at the CS on the
period between two consecutive optimization cycles; in that
case it will wait up to interval — 1 TPs to be considered in
the next charging schedule. In the worst case, the EV might
miss (interval — 1) x ch™*¢ x |T'P| kWh, of RES energy
that won’t be available in the future. So, in order to mitigate
this energy loss, we applied greedy EV charging for the “dead”
time until the next optimization cycle begins. Greedy charging
takes place only if all the actions ordered by the schedule
leave unused RES energy, in which case the energy is divided
equally to the EVs that arrived after the current optimization
cycle. Moreover, note that greedy charging uses only RES,
because the aim is to minimize usage of expensive non-RES,
thus lowering the charging cost.

A. Virtual EV

The above formulation uses the available information in
order to find the best solution for the online charging problem,
but does so in a shortsighted way that optimizes the objective
function for each iteration while not considering future pos-
sibilities. This shortsightedness wastes RES energy that could
be used to charge future EVs via a series of V2V actions, and
thus, leads to greater overall cost as more expensive non-RES
energy is used instead. In order to alleviate this problem, we
propose the introduction of a virtual EV, that the CS assumes
will arrive in the future, whose demand incentivizes real EVs
to store RES energy for later actions. In essence, the virtual
EV represents the EVs that are about to arrive and its demand
depends on the prediction about future energy demand.

In order to determine virtual EV’s demand (also called
virtual demand), it is needed to extrapolate the amount of
energy from non-RES that is used per TP, called deficit. That
amount shows how much energy from RES could be used, if
it was available, on each TP. We ran repetitively scheduling
simulations with RES data from different days without the
virtual EV in order to derive the deficit value per TP. Using
those values, we determine the projected deficit per TP (df ct;)
for the current day, using a similar day approach. In detail, the
deficit vector is the mean of the three more similar days to
the current, i.e. the mean of the 3-nearest neighbors. Three
nearest neighbors were selected after experimentation with
different values, as it yielded the best prediction. The similarity
is determined using Euclidean distance between the forecast
of the current day and the RES production of past days. The
Virtual EV’s demand primarily depends on the accumulated
deficit for a number of future TPs, but it is also limited by
the RES forecast production. The virtual demand isn’t the first
priority (the real demand must be satisfied first), so when the
production isn’t enough, the virtual demand is lowered.

Overall, the virtual EV is defined by the tuple
pp = {tO7 tder SoCmar SoCred SoCimit}, where t&'" =

51Tt 4 interval, i.e., it arrives when the next optimization
cycle is going to start, so that it will never actually receive
any energy, as only the scheduled actions for the first TPs
are actually applied. Departing TP (t%? = t°"?) is when
the current optimization cycle ends. The required energy
SoCred € [0, SoCim*] is calculated using the deficit and the
production forecast. The upper bound of the charging capacity
is SoC}"** = M, where M is a very large number, as it is only
a virtual EV and there is no point in limiting its capacity. In
practice, M could be equal to infinity, but in order to be used
in optimization a real value is required. Initial energy is zero,
(SoC™ = () and when t&™" > td¢P, the virtual EV strategy
cannot be applied; this happens if the current optimization
cycle has duration at most equal to interval TPs.

B. Virtual Demand Algorithm

The calculation of virtual demand requires knowledge on
the following variables in order to comply with the energy
production limitations and successfully support the RES uti-
lization:

rsr’utﬂart = Z (maa:(O, SOCZnZt - SOCIEQ)) (12)
a; €A start
dem!™ " = > (max(0,S0C* — SoC{™™))  (13)
a; €A, start
s 7ni7L(tSt"’M+n,|T\)
dfet’”™"" = > (de ficity) (14)
t=tstart Linterval
rend
tRESprod” """ = Z (RESprodzbm”) (15)

t=tstart

rsrot (12) (reservoir) denotes the excess energy that is
stored in all present EVs at the start (¢+*?%"?) of the optimization
cycle. An EV has excess energy when the current SOC is
greater than the required (i.e., needs to discharge). dem!™"""
(13) expresses the energy demand of EVs, excluding those that
have excess energy. dfcttsmrt (14) is the sum of the deficit
for the next n TPs, excluding the first interval TPs. These
are excluded as there is no need to force storing for the EVs
that are already present at the CS, as they can receive energy
directly. The value n denotes how far ahead the deficit should
look, and depends greatly on the type of RESs. The deficit
variable is used for determining the maximum energy that the
EVs should store as virtual energy for future EVs. Finally,
tRESprodtsmt (15) is the total energy production from RES
for the current optimization cycle, calculated from the forecast
available at ¢5%97¢,

The value of virtual demand can cause actions in three
different ways. Initially, it can affect the charging by causing
the present EVs to store enough energy to cover the future
deficit. However, this requires that the RES production is
enough to cover the real demand plus the deficit. Otherwise,
it would use more energy than the available for satisfying the
real EVs, thus forcing non-RES consumption unnecessarily.



Second distinctive virtual demand case is when the production
is more than the actual demand, but not enough to satisfy
both actual demand plus future deficit. In that case, the virtual
demand is the maximum amount that the RES production can
cover, after the actual demand is satisfied. Finally, the last way
it affects the charging is when the RES production doesn’t
meet the actual requirements. Then, the already stored excess
energy from previous optimization cycles (reservoir), comes
into play by giving back some of that stored energy. When the
virtual demand is lower than the stored energy (reservoir), then
the difference between them returns back to the system and
subsequently participates in charging real EVs. It is important
to note that this energy never reaches virtual EV, but only
its demand causes real EVs to potentially store more energy
than they need and later provide it to charge other EVs. Also,
it is impossible for EVs to receive non-RES energy to store,
because it is preferable to schedule direct charging instead of
using V2V as an intermediate step, avoiding V2V losses.

Algorithm 1 Algorithm for calculating virtual demand

Output: virtual”™ ™" : Virtual EV’s demand
{If production plus stored energy is enough to cover the
default virtual demand.}
start
12 if (prod”™ ™" + rerot™ > 7dfff;f4

. start
2. wvirtualt =

) then

¢start
ct

eff*
{If production is not enough to cover the default value,

but enough to cover the real demand, then apply the
greater amount available. }

3: else if (prod'”™""" > dem!™""") then

4 wvirtual™" = rsrot™"" + (prod™ """ — dem!™""")
{If production does not cover real demand, set virtual
demand lower than the reservoir, to return back some
of the stored energy to supplement real demand.}

. start start
s: else if (prod’ < dem! ") then
. start start start start
6. wvirtual®  =rsrvt — (dem'  —prod® )
7: end if
. X start
8: if virtual® < 0 then
\ start R .
9:  wirtual = 0 {Virtual demand cannot be negative.}
10: end if

Algorithm 1 shows how the virtual EV’s demand
(irtual’™ ") is calculated, for each optimization cycle that
starts on t'%"* and ends on ¢°"?. Initially, condition in line 1
is true when the RES production plus the reserved energy in
current tEVs is enough to cover the default virtual demand
%. In that case, virtual amount receives the default
value, which is the total deficit for the next n TPs, divided
by the chargers’ efficiency to the power of 4 (line 2). The
amount is divided by the charging efficiency in order to cover
losses from two consecutive V2V transactions, as the CS is
not aware and cannot account for those potential future losses.
The efficiency of one V2V is eff?, thus the energy that
reaches the destination is multiplied by the same value. So,
if two V2V were to take place the final energy would be
energy’™a = energy™t x ef f? x eff2. Thus, dividing
the deficit by ef f4 causes slightly more energy to be stored,
in order to cover for the losses of two consecutive V2V
steps. Otherwise, when the RES production isn’t enough to

completely cover the demand plus the deficit (line 3), then
virtual demand is the maximum available. The updated virtual
demand is equal to the already stored energy (rsrvtmrt)
plus the difference between production and actual demand
(prodtm” — demt“m), as shown in line 4. Finally, when
production is less than actual demand (line 5), then the stored
energy should be decreased in order to give back some energy.
So, the resulting virtual™ """ is equal to the reservoir value
minus the difference between real demand and production (line
6). Lines 8-9 ensure that virtual demand cannot have negative
value, since that would mean that the virtual EV should give
energy, which isn’t plausible. This happens when the deficit
is greater than the stored energy plus production and means
that some non-RES energy intake will be necessary. Lines 3-
6 could be condensed into one condition and one statement,
but for the sake of discriminating the different use cases, we
present them separately.

Concluding, virtual demand causes an increase in overall
demand when deficit in RES energy is predicted for the next
n TPs. In doing so, present EVs store more energy than
they need, with the purpose of giving it to the virtual EV
which represents future EVs. When the RES production isn’t
sufficient, the virtual demand decreases and portion of the
stored energy is returned to currently charging EVs. It is
possible that some EVs will depart with more energy than
required, if there aren’t EVs to receive the excess energy. This
extra charge is regarded as cost in the evaluation, although in
our scenario where one organization pays for the charging of
all EVs, this error would not have any consequences.

VI. EVALUATION

In this section a number of experiments are conducted
in order to evaluate the formulations and algorithms from
sections IV and V. The time horizon begins at 6:00 am and
ends 48 hours later, so the number of TPs is |T'| = 192 (each
TP is 15 minutes). The duration was selected to be two days, so
that energy transfer between consecutive days is enabled, while
the execution time is not too inflated. Moreover, the increased
duration should validate the robustness of the formulation and
algorithm and enable potential energy propagation via V2V
for longer duration.

Renewable energy in the context of this research comes
from solar power and production data are from solar panels
in Belgium,' while the values are scaled down so that the
maximum production is 75 kW or almost 19 kWh per TP.
Data are from 28 different random days so that they cover
a range of different production fluctuation profiles. Beyond
the actual energy production per TP, two different production
forecasts are provided by the same source, day-ahead forecast
and intra-day, where the second one is more accurate but with
more limited range. In our formulation, the accurate intra-
day forecast is denoted by forecastAcc and the day-ahead is
forecastFuzzy. In the scope of our experiments, when no
perfect knowledge is assumed, the known energy production
is a combination of the two types of forecast. Given the
starting time t'*"t of an optimization cycle, the production

Uhttp://bit.ly/1 ADOxaL



for TPs up until 24 hours later is approximated by intra-
day forecast, while for the following TPs the production is
approximated by day-ahead forecast. Thus, the optimization
is calculated according to the production forecast and for
this reason the charging schedule may have inconsistencies.
If the scheduled amount is greater than the actual production,
the grid compensates; otherwise, if the actual production is
greater, there might be an opportunity cost but no action is
required. The cost relation between the two energy sources is

= C‘ZZZ(ZZ;%RSEGSE"EW;) = 2, which means the cost of energy
from non-RES is double than that from RES.

The EVs’ arrival time is generated using parking occupancy
data from the SFpark program in San Francisco.> Given
the number of occupied parking slots per TP, the differ-
ence between two consecutive TPs (occupancyVector; =
[%]) was extracted and normalized in the range
[0.1,1]. Those values were used via roulette sampling in order
to decide the arrival time of each EV, causing more EVs
to arrive during TPs when parking occupancy increased and
fewer EVs when it decreased. No EVs are assumed to arrive
during the last 3 hours (maximum ¢¢"" = |T'| — 12), so that
they have time to finish charging.

The bidirectional chargers that the CS is equipped with are
level-2 chargers with max charging rate ch”®¢ = 6.6kW h [4].
Their efficiency is ef f = 0.93, which means that 7% of the
transferred energy is wasted (in charging and discharging).

Time spent at the CS is drawn from a Gaussian distribution
with median ;¢ = 32 and standard deviation ¢ = 10, meaning
that 96% of the EVs will stay at the CS for a duration in the
range of [12,52] TPs or [3, 13] hours. As the EVs are assumed
to be driven by employees of a company, the duration is given
by Gaussian distribution with mean being 8 hours (=32TPs),
the typical duration of a workday. Moreover, some drivers have
to travel during their shift while others do overtimes, resulting
in more variable behavior. The departure time is calculated via
the duration spent in the CS, i.e. t?e” = t¢"" +durationQCS,
while respecting the time horizon limit.

In order to make the scenario more diverse and realistic,
EVs with three different battery capacities are considered: 1)
Small with SoC"** = 19kW h, 2) medium with SoC"** =
30kWh, and 3) large with SoC]*** = 60kW h. The percent-
age of EVs that have small batteries is 30%, medium 50%, and
large 20%. Upon arrival, the EVs have an initial battery level
SoCimit which is drawn from uniform distribution within the
EV’s battery range. Moreover, each EV has a required energy
level SoC;“?, which is also drawn from uniform distribution
and has to be greater than the initial energy level. Uniform
distribution is selected because the probability of any initial
energy level is expected to be similar, within the acceptable
range, and similarly for the required energy. We assume that
the required energy amount is always feasible, meaning the
duration spent in the CS must be enough to charge the EV.

Four different configurations are evaluated. 1) Offline Real
Production (ORP): The first configuration is offline, so the
optimization is as described in section IV. All the information
about EVs (arrival and departure times, initial SoC, required

Zhttp://bit.ly/2ysz69w
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SoC) is known in advance. Moreover, the CS has the real
RES production values available, instead of the forecast. The
virtual demand algorithm isn’t applicable in the offline case,
so it isn’t active in this configuration. As a result, Offline
Real Production finds the optimal scheduling, as full prior
knowledge is granted, and thus, it acts as the upper limit and
comparison point for the rest of the configurations. 2) Offline
Forecast (OF): This configuration is also offline, exactly one
optimization cycle occurs that covers the whole time horizon
and the EV information is available a priori, similarly to
the previous configuration. In this case though, the real RES
production data aren’t available. Thus, the optimization is
expected to produce a worse schedule than in the case of
ORP. 3) Online (ON): Next configuration is online, so multiple
optimization cycles occur, as described in Section V. The
CS has information only about the EVs that have arrived on
the station so far and it can use only the forecast of RES
production, with the inherent error it causes. Virtual demand
is not used in this configuration. 4) Online Virtual (ONV):
Finally, Online Virtual extends the previous configuration with
virtual demand, while using only the available EV information
and the RES production forecast. The variable n that is used
on virtual demand algorithm has value n = 48TPs.

A. Experiment - Cost Comparison

Figure (1) shows the cost for charging the EVs, calculated
using the known relation between the cost of RES and non-
RES (called c). Values on vertical axis do not represent a
particular currency, but are consistent for all the configurations
and so is a valid way of comparison. As the figure illustrates,
the total charging cost is lowest for the ORP as it has the
highest amount of information and finds the best solution.
The OF configuration follows with somewhat higher cost, as
expected. The two online configurations result in even more
costly charging, although ONV consistently outperforms ON.
Overall, comparing to ORP as upper limit, OF has 3.3%
greater cost, ONV has 7% and ON 10.7% on average. Those
results show that more information provides, unsurprisingly,
a better solution. Also, virtual demand manages to lower the
cost compared to the simple online solution, with a decrease
in cost of more than 3%. Paired-samples T test shows that
there is a statistically significant difference between the ONV
and ON, with sign. > 0.99. The specific T test compares
the performance of the configurations for every given day and
shows that consistently ONV produces lower cost schedule
than the ON’s, on the same day.
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B. Experiment - RES energy used

Figure (2) shows the average consumption of RES energy.
RES consumption depends on the total demand and the ability
of the configuration to utilize the available RES production.
RES consumption rises almost linearly for up to 90 EVs, but
later it starts leveling off. This is because while the demand
increases with the number of EVs, the production doesn’t
suffice to cover the demand for more than 110 EVs. Also,
when the overall consumption increases, the production that
corresponds to high demand periods is consumed quickly, thus,
energy that is produced on less demanding periods may be
used but in a less effective manner, resulting in reduced RES
utilization. For example, if there is excess RES production
early in the day and all the present EVs are already satisfied, it
might be impossible or too costly to store the energy for future
use during the night, causing this way suboptimal RES use.
Overall, this figure shows the inverse ranking to the cost (fig.
1), the configurations that use more RES have lower charging
cost. Moreover, when the RES consumption decelerates, the
cost increases more steeply. OF uses on average 6.5%, the
ONV 13.5%, and the ON 23.5% less solar energy compared to
ORP. Virtual demand achieved a significant increase in solar
utilization (12%), in relation to the simple online scenario,
verified by paired-sample T test (sign. > 0.99).

C. Experiment - Energy demand covered by RES

Figure 3 illustrates the percentage of demand satisfied from
RES energy. The rest of the demand is covered by non-RES,
adding up to 100%, as the EVs are guaranteed to charge
as required. Also, this graph is related to figure 2, but in
this case the effect of charger inefficiency is also taken into
consideration, as it measures how much RES energy ends
up to the batteries. Comparing the two figures gives insight
about the lost energy due to chargers’ inefficiency. When
there are a few EVs, a great deal of the demand is covered
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by the RES reaching up to 80%. One important reason that
renders impossible to reach 100% coverage by RES is the
fact that many different production profiles from various days
were used. These profiles result in some days not having
enough RES production to cover the demand. Comparing with
figure 2, configurations ORP, OF, and ONV have a larger
gap between them, for fewer EVs. This means that while the
absolute RES consumption is very close among the three, the
actual RES energy that ends up in the batteries is significantly
lower for OF and ONV. This indicates that RES is used less
effectively in those cases. Finally, comparing the two online
configurations, it is apparent that virtual demand is more useful
when the production is greater than the demand (i.e., for fewer
EVs). So, when there is surplus of RES production, virtual
demand is more useful, because it exploits excess RES energy
for storing it for future usage.

D. Experiment - V2V usage

Figure 4 shows the amount of energy that is transferred
via V2V, which can also be interpreted as the impact V2V
capabilities have. The two offline configurations have almost
identical V2V use, which is increasing for up to 90 EVs, while
for more EVs the growth is minimal. This indicates that when
there are many EVs, the need for V2V is lower, as more EVs
mean more options to consume RES energy directly. Thus,
there is less available energy for V2V consumption as the
production is limited. Also, the similarity between the offline
configurations shows that the superiority of ORP is the result
of better immediate RES utilization (Fig. 3), instead of using
more V2V to transfer RES energy through time. The online
configuration ON uses the fewer V2V transactions, which is
easily explained due to the lack of knowledge about future
demand. So, most of RES that is used goes directly towards
EVs, although it is possible to use V2V in a specific scenario:
when the forecast predicts RES production in the close future,
it is possible for some EVs to support EVs that are about
to leave, with the promise to receive back the energy from
RES. This would normally happen in the morning when hasty
EVs could charge from other EVs that have the opportunity
to charge from RES in the future. Last configuration, ONV,
uses great deal more V2V than ON (2.8 times more on
average), which evidently results in lower cost (Fig. 1). The
reason for the increased V2V usage is that the EVs store
temporary RES energy which later is transferred via V2V to
other EVs. This difference between ON and ONV highlights
that the V2V operation is helpful in reducing the overall cost,
in combination with proactive scheduling via virtual demand.
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Overall, for the ONV configuration the V2V usage is relatively
unchanged for different numbers of EVs, which is a result of
the limited RES production. While the offline configurations
have the knowledge to transfer energy way down the line,
ONV takes into consideration a specific window ahead of
time, so V2V possibilities are limited (i.e., 16% less V2V
than ORP). The reason ONV has relative shortsightedness is
to avoid excess loss due to uncontrolled V2V. Finally, note
that for all algorithms the execution time remains low as it
never exceeds 90 seconds for 150 EVs.

E. Experiment - Interval

Figure 5 presents the effects of different values of the
variable interval upon execution duration and total charging
cost. The experiment was conducted using 100 EVs that were
charged according to ONV configuration. This configuration
was selected because only on online configurations is the
variable interval used and virtual demand was applied in
order for it to be tested under different circumstances. The
experiment shows that the execution time reduces with rate
which correlates with the number of optimization cycles.
The value of interval defines how many cycles will be ini-
tiated throughout the optimization horizon with the expres-
sion |cycles| =~ MlnT;:;Ll Together with the fact that the
duration of each cycle does not vary greatly (let it be d),
we can approximate the execution time with the expression
duration ~ d x |cycles| ~ %, which is an hyperbolic
function. The cost increases along with the value of interval.
The reason for that is the idling of the EVs until the aggregator
includes them to the optimization procedure. For example if
one EV arrives to the CS one TP after the optimization cycle
begins, then it will wait interval — 1 TPs until the aggregator
includes it. As a result of this waiting, the aggregator has
less EVs to utilize for the optimization, which limits the
optimizations abilities, and subsequently the cost worsens.

F. Experiment - Various distributions

We tried experimenting with alternative distributions, re-
garding the duration the EVs stay at the CS in order to
examine the effectiveness of the model and the algorithms.
We assume that the vehicles are probable to stay either for a
few hours or for an extended duration. We represent the short
duration as a Gaussian distribution with {y = 10,0 = 5} (TP)
and the longer duration as another Gaussian distribution with
{r = 32,0 = 5} (TP). In order to test how the online algo-
rithm and its augmentations perform under different patterns
of EVs we conducted experiments with different percentages
of EVs split between the two Gaussian distributions described

TABLE 11
CHARGING COST
ORP | OF ONV
(1) 75-25 738 745 832 816
(2) 50-50 814 832 916 877
3) 25-75 858 881 990 938
(4) Original | 1072 | 1119 | 1197 | 1136

above. Three different splits between the two distributions we
tried, (1) 75% of EVs at the CS for duration described by the
first Gaussian and 25% by the second Gaussian, (2) 50-50%
and (3) 25-75%. Also the results from the original method,
(4) Gaussian {u = 32,0 = 10} are presented for comparisons
sake. The experiment was conducted with 100 EVs. Table 11
shows that the order does not change in any case; ORP retains
the lowest cost, followed by OF, ONV and ON, in this order.
The average total cost changes for each different split, which
is a direct result of the total energy demand. As EVs stay at
the CS for shorter duration their demand adopts and is lowered
as to not ask for unobtainable SOC. Overall, this experiment
proves that virtual demand augmentation lowers the cost, under
a variety of different patterns of EV behavior.
VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an MIP-based algorithm to
schedule the charging of EVs. The algorithm’s objective is to
minimize the total charging cost for the EVs and to encourage
RES usage, while not knowing in advance the arrival and
departure time of the EVs, as well as their energy demand.
Moreover, the scheduling refers to a single CS that utilizes
RES with cheaper energy but uncertain production levels.
Prerequisite for the online algorithm is the formulation of the
offline optimization. A novel technique called Virtual Demand
was proposed that aims to improve the online scheduling.
The goal is to integrate the prediction about future demand
into the MIP formulation and consecutively, take advantage
of the V2V capabilities, so that the use of cheaper energy
is promoted, reducing that way the overall charging cost.
Our evaluation shows that the simple online algorithm has
10.7% increased charging cost, because of the unannounced
EVs and the imprecise RES forecast, in comparison with
the optimal offline scenario. However, the Virtual Demand
technique managed to increase solar energy utilization by 12%
and decrease the cost by 3.3% in relation to the simple online
scenario. Moreover, in all cases RES is utilized in great extent
while the execution time remains scalable.

As a future improvement the prediction of energy deficit
can be calculated using more advanced Machine Learning
techniques. Instead of nearest neighbors, it is possible that
other more powerful algorithms would be more effective
and accurate in predicting the deficit vector, given the solar
radiation forecast. Another future improvement could be the
extension of the problem’s scope, by adding more CSs and
incorporating vehicle mobility patterns throughout an area, so
that virtual demand technique gets tested within a larger scale.
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