
Hyperparameter tuning using Quantum Genetic
Algorithms

1st Athanasios Lentzas
School of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece
alentzas@csd.auth.gr

2nd Christoforos Nalmpantis
School of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece
christofn@csd.auth.gr

3rd Dimitris Vrakas
School of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece
dvrakas@csd.auth.gr

Abstract—Correctly tuning the hyperparameters of a machine
learning model can improve classification results. Typically hy-
perparameter tuning is made by humans and experience is
needed to fine tune them. Algorithmic approaches have been
extensively studied in the literature and can find better results.
In our work we employ a quantum genetic algorithm to address
the hyperparameter optimization problem. The algorithm is
based on qudits instead of qubits, allowing more available
states. Experiments were performed on two datasets MNIST
and CIFAR10 and results were compared against classic genetic
algorithms.

Index Terms—hyperparameter tuning, quantum genetic algo-
rithms, evolutionary programming, machine learning, optimiza-
tion.

I. INTRODUCTION

In machine learning, correctly tuning the several parameters
of a model could affect its performance. This process is usually
carried out by hand, by observing the results and progressively
refining the parameters. Hand tuning requires experience,
constant attendance and can consume a fair amount of time.
Algorithmic approaches have been proposed in the literature
[9] allowing the automation of the procedure, reducing time
required and yielding better results.

Evolutionary programming has been extensively used in
optimization problems [16]. Hyperparameter tuning is an
optimization problem, where the best value for each parameter
is selected in order to increase the accuracy of the model
[13]. Genetic algorithms have been used to tune parameters on
various machine learning models, from deep neural networks
[15], [20], to support vector machines [2], [3].

A variation of genetic algorithm, based on quantum physics
have been proposed in the literature [11]. Published papers
have shown that quantum genetic algorithms have faster con-
vergence while still maintain a global search ability.

A plethora of quantum-inspired evolutionary algorithms
have been published [21]. In this paper, Quantum Genetic
algorithm was employed to address the hyperparameter tuning
problem. A variation of the classical implementation was

This research has been co-financed by the European Regional Development
Fund of the European Union and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH–CREATE–INNOVATE (project code:95699 - Energy Control-
ling Voice Enabled Intelligent Smart Home Ecosystem)

used, based on qudits. Our approach was evaluated on the
MNIST [8] and CIFAR10 [18] datasets. Results obtained were
compared against results from classic genetic algorithm.

Section 2 covers quantum genetic algorithm. Both qubit and
qudit based algorithms are presented and discussed. Section
3 describes the setup of the experiments conducted. Section
4 shows the result of the experiments and the efficiency of
quantum genetic algorithm on hyperparameter optimization.
The paper concludes with future work on Section 5.

II. QUANTUM GENETIC ALGORITHMS

Genetic algorithm (GA) is an evolutionary type of algorithm
extensively used in optimization problems [4]. The main idea
behind GA is to mimic evolutionary process as seen in nature.
An initial population of chromosomes (made from genes) is
created and evaluated. The best individuals are then selected as
parents and new chromosomes are created. During the breed
step, a mutation can occur, changing the value of a gene.

Inspired by Quantum Computing, and based on quantum
mechanics, Quantum Genetic Algorithm (QGA) was proposed
[6], [11]. The main characteristic of QGA is the faster con-
vergence to the local best, while performing global search.
Instead of bits, the smallest unit of information is a qubit [5].
A qubit can be on the ’0’ or ’1’ state, just like a normal bit, or
on the superposition state. When on superposition, the qubit
is on both states simultaneously, but collapses to one of them
when observed [11]. The state of a qubit can be described by
(1), where α and β are complex numbers and represent the
probability amplitudes of each state.

|q〉 = α|0〉+ β|1〉 (1)

When observing the state of a qubit, |α|2 and |β|2 are the
probabilities that the qubit is on the ’0’ or the ’1’ state
respectively. It is guaranteed that the normalization state (2)
is satisfied.

|α|2 + |β|2 = 1 (2)

A chromosome in QGA is a set of Ν qubits. The chro-
mosome’s state vector represents all the information of the
quantum system. As qubits are always on the superposition
state until observed, a chromosome that has m qubit can

represent 2m states. In order to represent the same number
of states on classic GA, 2m chromosomes are needed.

Instead of the crossover operation used in GA, in QGA a
quantum gate is used. The simplest form of a quantum gate,
that performs the phase rotation can be seen in (3).

R(θ) =
cosθ −sinθ
sinθ cosθ

(3)

Applying the quantum gate on the initial state vector |q〉
(1) a new state vector |q’〉 is created (4). Quantum inspired
genetic algorithms have also been extended by implementing
GA operators, such as quantum disaster and mutation [19], as
well as exploiting parallelization [7] reducing computing time.

R(θ)|q′〉 = cos(θ0 + θ)
sin(θ0 + θ)

(4)

A. Qudit Quantum Genetic Algorithm

Instead of the classical QGA using qubits, an algorithm
using qudits [12] to encode a chromosome can be used. A
qudit, is a quantum unit of information of n states, able to
be in any superposition of those. The simplest form of many
valued logic is the ternary quantum logic using qutrits. Qutrit
based QGA was evaluated and compared against QGA using
qubits [17]. Results shown that QGA using qutrits had a faster
convergence compared to conventional QGA.

A chromosome based on qudits can be represented as a
matrix of N qudits, each with μ states (5). An individual is
determined by N qudits, with (6) representing the state of
the i qudit. After initialization, the qudit can be in any of
the available states with equal probability. The initial state
representation of the qudit can be seen in (7).

α1 α2 · · · αN−1 αN

β1 β2 · · · βN−1 βN
γ1 γ2 · · · γN−1 γN
...

...
...

...
...

µ1 µ2 · · · µN−1 µN

(5)

{
αi, βi, ..., µi

}
(6)

|q〉 = 1
√
µ
|0〉+ 1

√
µ
|1〉+ · · · 1

√
µ
|µ〉 (7)

After the initialization of the population, each chromosome
is observed. Observation forces each qudit to collapse to one
of the available states. Evolution of the generation is based
on the modification of the probability amplitudes. The best
chromosome of the generation is chosen and each qudit’s
state is examined. For every individual on the population,
each qudit is modified by increasing the probability amplitude
of the state matching the best chromosome, while decreasing
the rest. As a result after evolution, the states that produced
the best solution are more likely to appear. By decreasing the
probability amplitudes of non optimal states, it is guaranteed
that (2) is not violated.

A parameter r is used to denote the decrease rate of
probability amplitudes of non-optimal values. Parameter r can
be adaptive or static. According to [17] static rate could reduce
the convergence speed of the algorithm, thus an adaptive
rate was employed. The aforementioned process simulates a
quantum rotation, with the angle of the rotation determined by
the rate the probability amplitudes change. As the value of r
increases, the rotation angle decreases and vice versa.

B. Quantum Disaster

Evolution process, as described above, may cause the QGA
to fall into a local optimal solution. In order to escape from
local optimal solutions quantum disaster was employed [10].
During quantum disaster a number of chromosomes, except
for the best, are re-initialized. This is achieved by changing
the probability amplitudes of each qudit, resulting in the initial
state shown on (7). The result of the aforementioned procedure
is the extension of the search area for optimal value.

Quantum disaster was evaluated in order to justify its
usage. Experiments were performed on CIFAR10 dataset.
QGA with and without quantum disaster were implemented.
Both algorithms run for 10 generations and the experiment was
repeated 10 times. As seen on Fig. 1 the average best solution
per generation was better when quantum disaster was enabled.
Additionally, the best solution found while using quantum
disaster, was approximately 3% better. The main difference
was that the best solution was found on every run when
quantum disaster was on. Without quantum disaster, the best
solution was only found once, as the algorithm was trapped
on local optimal solutions.

Figure 1. Average best solution per generation with and without Quantum
Destruction

As already mentioned, QGA can converge to the local
solution while performing global search. Quantum disaster
operation promotes that ability. Comparing the average fitness
of GA and QGA (see Fig 2), the global search functionality
can be seen. The average fitness curve for classic GA is
smoother compared to QGA. As individuals from the QGA
population search different areas for optimal solution, the
average fitness fluctuates.

Figure 2. Average fitness of GA & QGA population (10 evolution periods)

III. OUR APPROACH

In our work hyperparameter tuning was performed using
QGA based on qudits. Instead of a predefined number of
states, commonly used in related work, our approach works
with any number of states. Each parameter may have different
number of available states. As a result the search space can
be expanded resulting in better results. The number of states
is limited by hardware and constrained by available time - the
bigger the search space, the longer time required.

Our approach was evaluated against GA. QGA based on
qutrits [17] and binary QGA [11] could not be compared with
the method proposed on this paper. As the aforementioned
methods require three and two states respectively, the search
space would be limited resulting in non comparable results. N-
state QGA were implemented with a wide range of possible
values for each parameter. As a result, the value chosen for
each parameters was closer to optimal.

A. Experiments

Hyperparameter tuning using QGA experiments were per-
formed on a PC equipped with Intel i9 CPU, 64 GB Ram,
Nvidia Titan XP GPU running Ubuntu. The relevant algo-
rithms were implemented on Python programming language,
using Keras with Tensorflow backend [1].

Two datasets were used for the experiments, the MNIST and
CIFAR10. The hyperparameters tuned were: the number of
neurons, number of layers, activation function and optimizer.
Available values for each parameter can be seen on Table-I.
One of the assumptions made on the experiments was that
each layer had the same number of neurons.

Both GA and QGA were implemented and evaluated on
the same datasets. Classic GA were implemented with 0.2
chance for mutation, 0.4 of the population retained after each
generation and 0.1 probability of a rejected network to remain
in the population. During evolution, two different random
chromosomes from the retained population were chosen as
parents and two children were bred. The process was repeated
until the number of children bred were the same as the chro-

mosomes rejected. Each gene of the chromosome represented
the value of one of the parameters.

Implementation of the QGA was based on the qudit ap-
proach already discussed. The chromosome consisted of four
qudits. The available states of each qudit were the values
presented on Table-I. The probability of quantum disaster was
set to 0.1. The value of r was adaptive, changing if the best
solution remained the same in successive generations. Initial
probability amplitudes were set to 1√

n
for each state, where n

was the number of available states of the qudit.
Hyperparameter tuning was performed on a Multilayer

Perceptron (MLP). The accuracy of the trained MLP was
used as fitness function. Since the optimal values of the
parameters were unknown beforehand, both algorithms run for
10 generations and the overall best network was returned as
optimal solution. Population was set to 20 chromosomes for
both GA and QGA. For each algorithm, experiments were
repeated 20 times. The top 10 chromosomes and the average
accuracy of the generation were logged.

IV. RESULTS

Results obtained from the experiments showed that QGA
performed better compared to GA (Table II). On MNIST
dataset the performance of both algorithms was similar. The
overall best solution returned by the QGA was slightly better
but found one generation after the overall best returned by
GA. On CIFAR10 dataset, QGA outperformed the GA. The
best solution had an accuracy score of 56.69% compared to
53.18%. In addition to that, it was found on the 4th generation
compared to the 7th.

The two algorithms returned different solutions for both
datasets (see Table III). As GA are prone to local optimum
entrapment, the best solution depended on the initial popula-
tion. If the best individual on the first generation was close to
a local optimal solution, the implemented genetic algorithm
could not always escape and converge to the global best.

Examining the average of the best solution on each gener-
ation QGA outperformed GA on each trial. As seen on Fig. 3
and Fig. 4, for MNIST and CIFAR10 datasets respectively,
solutions provided by QGA was always better compared to
GA. Additionally, on CIFAR10 dataset (Fig. 4) it is clear that,
most of the times, the best solution was found earlier compared
to GA. Finding the best solution (or one that is close to the
best) as soon as possible is crucial when the search space is big
and the optimal values are unknown, since it could potentially
reduce the algorithm’s generations. Execution time for both
algorithms was similar and QGA did not add a significant
computational overhead.

V. CONCLUSION

Hyperparameter tuning is a research area with increased in-
terest. In this paper we investigated the use of quantum genetic
algorithm on the specific problem. QGA were implemented
along with quantum disaster operation. QGA with and without
quantum destruction were evaluated before implementing the
aforementioned operation. Using quantum disaster allowed the

Table I
AVAILABLE VALUES FOR EACH PARAMETER.

Parameter Values Number of States
Number of neurons 8, 16, 32, 64, 128, 256, 300, 512, 768, 850, 1024, 2048 12
Number of layers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 15

Activation function relu, elu, tanh, sigmoid, softmax, selu, expontential, linear, softplus, softsign 10
Optimizer rmsprop, adam, sgd, adagrad, adadelta, adamax, nadam 7

Table II
RESULTS FOR MNIST & CIFAR10 DATASETS

Algorithm MNIST Best MNIST Generation CIFAR10 Best CIFAR10 Generation
GA 98.51% 6th 53.18% 8th

QGA 98.68% 7th 56.69% 4th

Table III
BEST PARAMETERS RETURNED

Parameter GA QGA
MNIST CIFAR10 MNIST CIFAR10

Number of Neurons 1800 256 1200 512
Number of Layers 2 1 2 8

Activation relu sigmoid sigmoid softplus
Optimizer adagrad sgd adamax adamax

Figure 3. Average best solution per generation for MNIST dataset

algorithm to avoid local optimal solutions and converge to
global best.

Results showed that QGA converged to the local solution
while still performing global search, thus escaping local op-
timal. N-state QGA were employed with different number
of states for each parameter tuned. The best solution found
on both datasets (MNIST and CIFAR10) was better and was
found earlier (generation wise) compared to classic GA.

Compared to classic QGA and QGA based on qutrits, N-
state QGA are more suitable for hyperparameter tuning. As
the number of possible states for each parameter varies, a
state independent approach is recommended. In our work, the
search space can be, in theory, expanded indefinitely. The only
limitations are hardware and execution time.

Figure 4. Average best solution per generation for CIFAR10 dataset

VI. FUTURE WORK

In our work the evolutionary algorithms did not alter the
topology of the MLP. There are methods proposed in the
literature that employ GA not only to tune the various param-
eters of a neural network, but also alter it’s architecture and
topology [14]. QGA could potentially improve such techniques
and further investigation is needed.

Experiments were only performed on a MLP classifier.
Future work should focus on classifiers with more complex
layer architecture such as convolution neural networks. A
proper representation of the problem has to be proposed as
different types of layers are available (max pooling layer,
convolution layer etc). In addition to that, common layer
architecture must be taken into consideration, i.e. a convolution
layer is usually followed by a max pooling layer.

Additionally, it is necessary to perform a detailed analysis
on the parameter r, used to modify the probability amplitudes.
Although work on that area has already been published [17],
further investigation is required. The value of r determines
how fast the algorithm switches to local search. Thus, it is
important to explore how to properly change it during the
execution of the algorithm, in order to achieve better results.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan Xp GPU used for this
research.

REFERENCES

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J.,
Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan,
V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: A system
for large-scale machine learning. In: 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). pp. 265–
283. USENIX Association, Savannah, GA (2016)

[2] Cohen, G., Hilario, M., Geissbuhler, A.: Model selection for support
vector classifiers via genetic algorithms. an application to medical
decision support. In: Barreiro, J.M., Martı́n-Sánchez, F., Maojo, V., Sanz,
F. (eds.) Biological and Medical Data Analysis. pp. 200–211. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004)

[3] Friedrichs, F., Igel, C.: Evolutionary tuning of multiple svm parameters.
Neurocomputing 64, 107 – 117 (2005), trends in Neurocomputing: 12th
European Symposium on Artificial Neural Networks 2004

[4] Goldberg, D.E., Holland, J.H.: Genetic Algorithms in Search, Opti-
mization, and Machine Learning David E. Goldberg The University of
Alabama T. Machine Learning (1979)

[5] Kendon, V.: Quantum computing. In: Computational Complexity: The-
ory, Techniques, and Applications (2013)

[6] Kuk-Hyun Han, Jong-Hwan Kim: Genetic quantum algorithm and its
application to combinatorial optimization problem. In: Proceedings of
the 2000 Congress on Evolutionary Computation. (2002)

[7] Kuk-Hyun Han, Kui-Hong Park, Ci-Ho Lee, Jong-Hwan Kim: Paral-
lel quantum-inspired genetic algorithm for combinatorial optimization
problem (2002). https://doi.org/10.1109/cec.2001.934358

[8] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning
applied to document recognition. Proceedings of the IEEE (1998).
https://doi.org/10.1109/5.726791

[9] Luo, G.: A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. Network Modeling Analysis
in Health Informatics and Bioinformatics 5(1), 18 (May 2016).
https://doi.org/10.1007/s13721-016-0125-6

[10] Miao, H., Wang, H., Deng, Z.: Quantum genetic algorithm and its
application in power system reactive power optimization. In: CIS 2009
- 2009 International Conference on Computational Intelligence and
Security (2009). https://doi.org/10.1109/CIS.2009.133

[11] Narayanan, A., Moore, M.: Quantum-inspired genetic algorithms (2002)
[12] Nisbet-Jones, P.B.R., Dilley, J., Holleczek, A., Barter, O., Kuhn, A.: Pho-

tonic qubits, qutrits and ququads accurately prepared and delivered on
demand. New Journal of Physics (2013). https://doi.org/10.1088/1367-
2630/15/5/053007

[13] Sammut, C., Webb, G.I.: Hyperparameter Optimization. In: Encyclope-
dia of Machine Learning and Data Mining, pp. 625–625. Springer US,
Boston, MA (2017)

[14] Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning
through evolving neural network topologies. In: Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation. pp. 569–
577. GECCO’02, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2002)

[15] Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming
approach to designing convolutional neural network architectures. In:
Proceedings of the Genetic and Evolutionary Computation Confer-
ence. pp. 497–504. GECCO ’17, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3071178.3071229

[16] Taylor, C.E.: Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. Complex Adaptive Systems. John H. Holland. The Quar-
terly Review of Biology (2004)

[17] Tkachuk, V.: Quantum Genetic Algorithm Based on Qutrits and
Its Application. Mathematical Problems in Engineering (2018).
https://doi.org/10.1155/2018/8614073

[18] Tobergte, D.R., Curtis, S.: Learning Multiple Layers of Features from
Tiny Images. Journal of Chemical Information and Modeling (2013).
https://doi.org/10.1017/CBO9781107415324.004

[19] Wang, H., Liu, J., Zhi, J., Fu, C.: The Improvement of Quantum Genetic
Algorithm and Its Application on Function Optimization. Mathematical
Problems in Engineering (2013)

[20] Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H., Patton, R.M.:
Optimizing deep learning hyper-parameters through an evolutionary al-
gorithm. In: Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments. pp. 4:1–4:5. MLHPC ’15, ACM,
New York, NY, USA (2015). https://doi.org/10.1145/2834892.2834896

[21] Zhang, G.: Quantum-inspired evolutionary algorithms: A survey and
empirical study. Journal of Heuristics 17(3), 303–351 (Jun 2011).
https://doi.org/10.1007/s10732-010-9136-0

