
September 23, 2008 15:38 WSPC-IJAIT 00421-cor

International Journal on Artificial Intelligence Tools
Vol. 17, No. 5 (2008) 903–924
c© World Scientific Publishing Company

VISUAL MODELING OF DEFEASIBLE LOGIC RULES

WITH DR-VisMo

EFSTRATIOS KONTOPOULOS

Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, GR-54124, Greece

skontopo@csd.auth.gr

NICK BASSILIADES

Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, GR-54124, Greece

nbassili@csd.auth.gr

GRIGORIS ANTONIOU

Institute of Computer Science, Foundation for Research and Technology, Hellas (FORTH),
Heraklion, GR-71110, Greece

antoniou@ics.forth.gr

ANNA SERIDOU

Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, GR-54124, Greece

aseridou@csd.auth.gr

903

The standardization of the Semantic Web has reached as far as ontologies and ontology languages. 

However, in order for the full potential of the Semantic Web to be achieved, the ability of reasoning 

over the available information is also essential. Rules can assist in this affair and various logics have 

been proposed for the Semantic Web domain. One of them is defeasible reasoning that deals with 

incomplete and conflicting information. However, despite its solid mathematical notation, it may be 

confusing to end users. To confront this downside, we proposed a representation schema for 

defeasible logic rule bases, which is based on directed graphs that feature distinct node and 

connection types. This paper presents DR-VisMo, a defeasible logic rule base editor and 

visualization system that implements this representation approach. The system also features a 

stratification algorithm for visualizing rule bases that deals with decisions, regarding the 

arrangement of the various elements in the graph. DR-VisMo is implemented as part of VDR-

DEVICE, an environment for modeling and deploying defeasible logic rule bases on top of RDF 

ontologies. 

Keywords: Semantic Web; defeasible reasoning; directed graphs; visualization. 

1.   Introduction 

The standardization of the Semantic Web
1
 has reached as far as ontologies and ontology 

languages, with OWL, the Web Ontology Language, being currently the leading standard 
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in ontology representation. However, in order for the full potential of the Semantic Web 

to be achieved, the ability of reasoning over the information available in the Web is also 

essential, as stated by Tim Berners-Lee et al.
1
 Rules can assist in this affair, by providing 

a well-known reasoning mechanism, with established theory and implementations. 

Various logics have been proposed for the Semantic Web domain. One of them is 

defeasible reasoning,
2
 a member of the non-monotonic reasoning family that represents a 

rule-based approach to reasoning with incomplete and conflicting information. It can 

represent facts, rules, priorities and conflicts among rules. Compared to mainstream non-

monotonic reasoning, the main advantages of defeasible reasoning are enhanced 

representational capabilities
3
 coupled with low computational complexity.

4
 

Defeasible reasoning features a solid mathematical notation, which gives it 

credibility. However, the very same mathematical background may seem confusing to 

end users. Directed graphs (digraphs) can assist in confronting this drawback. They are a 

flexible visualization tool, offering a comprehensible way to represent relationships 

between entities.
5 
Their applicability, however, is balanced by the fact that it is difficult to 

associate data of a variety of types with the nodes and with the connections between the 

nodes in the graph. 

This paper presents DR-VisMo, a defeasible logic rule base editor and visualization 

system. The representation schema of the software is based on directed graphs and was 

presented in a previous work of ours.
6
 By applying digraphs, we attempt to exploit their 

expressiveness, but also try to mitigate their main disadvantage, mentioned above, by 

proposing distinct node types for rules and atomic formulas and distinct connection types 

for each rule type in defeasible logic and for superiority relationships. DR-VisMo also 

features a stratification algorithm
7
 for visualizing rule bases. The algorithm deals with 

decisions, regarding the arrangement of the various elements in the graph, a task that 

considerably improves clarity. Notice that stratification is solely used for visualization 

purposes and is indifferent, regarding the underlying defeasible logic inference engine, 

since rule cycles in defeasible logic (with the presence of strong negation) are treated 

skeptically and no conclusion is derived. The main contribution of the paper, 

nevertheless, involves the presentation of DR-VisMo as a whole, including its rule 

authoring module. DR-VisMo is implemented as part of VDR-DEVICE,
8
 an environment 

for modeling and deploying defeasible logic rule bases on top of RDF ontologies. 

The rest of the paper is organized as follows: Section 2 describes the key aspects of 

applying directed graphs for the representation of defeasible logic rules, emphasizing on 

the representation of arguments and conditions. The next section describes DR-VisMo, 

focusing on its two main functionalities, namely, the rule authoring and rule base 

visualization modules. Section 4 presents a user evaluation of the system, while the             

next section discusses related work, followed by the conclusions and ideas for future 

research. 
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2.   Defeasible Logics and Digraphs 

A defeasible theory D (i.e. a knowledge base or a program in defeasible logic) consists of 

three basic components: a set of facts (F), a set of rules (R) and a superiority relationship 

(>). Therefore, D can be represented by the triple (F, R, >). 

The representation of defeasible logic rules in our approach is based on the 

methodology presented by Nute,
9
 who applies d-graphs for visualizing a defeasible logic 

rule base. However, the method we adopt adds extra features to the graph that offer 

expressiveness. More specifically, each rule base in our approach is represented by an 

oriented graph G: = (V, A) (a directed graph with no bi-directed edges
5
), where: 

• V is a set of vertices, with each vertex being either a rectangle that represents a literal 

and is called a “literal box”, or a circle, representing a rule, and 

• A is a set of arcs, formally defined A ⊆ {(x, y) | x, y ∈ V}, where each arc is directed 

from a graph element x to another graph element y, respectively. Similarly to Nute’s 

approach,
9
 arcs belong to several types: one for each rule type in defeasible logic 

(strict rules, defeasible rules and defeaters), one for superiority relationships, plus a 

fifth connection type, used for consistency purposes. More details are included in a 

subsequent section. 

2.1.   Rule types in defeasible logic 

The full theoretical approach, regarding the graphical representation of defeasible 

reasoning elements has been thoroughly described;
6
 here only a brief outline will be 

made. First of all, let us consider Alice, a music fan, who wants to create a music-related 

rule base. The first rule type in defeasible reasoning is strict rules, denoted by A → p            

and interpreted in the typical sense: whenever the premises are indisputable, then so                 

is the conclusion. Thus, if Alice would like to express the statement: “A hard rock               

song is a kind of rock song”, she would have to formalize the following strict rule: 

r1: hard_rock(X) → rock(X), which is represented by the digraph in Fig. 1. 

 r1 

¬ 

hard_rock(X) 

¬ 

rock(X) 

 

Fig. 1. Visual representation of strict rule r1. 

Each literal box consists of two adjacent (and conflicting) “atomic formula boxes”, 

where the upper one represents a positive and the lower one a negated atomic formula. 

This way, these two conflicting, but also related, atomic formulas are depicted together 

distinctively, maintaining their independence. Notice also that for the sake of presentation 

clarity we currently only represent the predicate and not the literal (i.e. predicate plus all 

the arguments). Nevertheless, the full representation (presented later) includes a full-

fledged representation of literals. 
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Defeasible rules, on the other hand, can be defeated by contrary evidence and are 

denoted by A ⇒ p. Two examples are: r2: rock(X) ⇒ likes(X) (“Alice usually likes 

rock songs”) and r3: hard_rock(X) ⇒ ¬likes(X) (“Alice typically does not like 

hard rock songs”). Both are depicted in Fig. 2. 

 

r2 

r3 

¬ 

hard_rock(X) 

¬ 

rock(X) 

¬ 

likes(X) 

 

Fig. 2. Representing defeasible rules r2 and r3. 

Defeaters, denoted by A ∼> p, do not actively support conclusions, but can only 

prevent some of them. If Alice, for example, would like to express the fact that she may 

not like cover versions of rock songs, she would have to formalize the defeater: 

r2’: cover(X) ∼> ¬likes(X). This defeater can defeat, for example, rule r2 

mentioned above and it can be represented by Fig. 3. Rule r2’ actually introduces 

ambiguity regarding cover songs and Alice’s preferences, which should be resolved 

through other rules. However, the defeater alone cannot actively support the conclusion 

that Alice does not like a song, simply because it is a cover version. 

 

r2’ 
¬ 

cover(X) 

¬ 

likes(X) 

 

Fig. 3. Visual representation of defeater r2′. 

Finally, the superiority relationship among the rule set R is an acyclic relation > on 

R, used, in order to resolve conflicts among rules. For example, given the defeasible rules 

r2 and r3 above, no conclusive decision can be made about whether Alice does like hard 

rock music or not, because rules r2 and r3 contradict each other. But if the superiority 

relationship r3 > r2 is introduced, then r3 overrides r2 and we can indeed conclude that 

Alice does not like hard rock. In this case, rule r3 is called superior to r2 and r2 inferior 

to r3. A fourth connection type is introduced for superiority relationships, which is 

displayed in Fig. 4. 

 r3 r2 >>>>>>>>>>>>>>> 
 

Fig. 4. Visual representation of r3 > r2. 

According to defeasible logic proof theory,
10

 in order to show that q is provable 

defeasibly there are two choices: (1) to show that q is already definitely provable, using a 

strict rule; or (2) to show that there is a strict or defeasible rule with head q whose body 
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literals have been defeasibly proven and there are no possible “attacks”, that is, reasoning 

chains in support of ¬q. Formally, we must show that ¬q is not definitely provable. Also 

we must consider the set of all rules which are not known to be inapplicable and which 

have head ¬q (here we consider defeaters, too, whereas they could not be used to support 

the conclusion q). Essentially each such rule attacks the conclusion q. For q to be 

provable, each attacker must be counterattacked by another rule with head q with                   

the following properties: (i) the counter-attacker must be applicable, and (ii) it must                

be stronger than (i.e. superior to) the attacker. Thus each attack on the conclusion q            

must be counterattacked by a stronger rule. 

2.2.   Representing arguments and conditions 

So far we have shown how rules are represented by interconnecting literal boxes with 

rule nodes. However, we have not yet included how literal arguments are presented, 

either being variables or constants. Also, variables are usually associated with simple 

conditions, such as Y>=1960, which could be represented as predicates, but it is 

practically more convenient to consider them more closely related to the closest literal 

that contains the corresponding variable as an argument. 

Arguments are incorporated inside the literal box just after the predicate name. The 

set of all arguments for each literal box is called argument pattern. For instance, the 

literal year(X,2000), which could state that the year a song X was released is 2000, is 

represented as in Fig. 5 (a). Simple conditions associated with any of the variables of a 

literal can also appear inside the literal box, each on a separate line (called condition 

pattern) below the literal. For example, if the fragment year(X,Y),Y>=1960 appears in 

a rule condition, it can be represented as in Fig. 5 (b). 

A certain predicate, say year, can appear many times in a rule base, in rule 

conditions or even rule conclusions. All literal boxes of the same predicate can be 

grouped, so that the user can realise that all these boxes refer to the same set of literals. 

To this end, we introduce the notion of a predicate box, a container for all literal boxes 

that refer to the same predicate. The literal boxes inside the predicate box "share" the 

predicate name that is located at the top of the predicate box. This approach is a 

temporary convention, needed in order to introduce the complete representation in the 

following sections. The literal boxes inside predicate boxes that express conditions on 

instances of the specific predicate extension are called predicate patterns. For example, 

the literal boxes of Fig. 5 can be grouped inside a predicate box as in Fig. 6. Notice that 

each predicate pattern contains exactly one argument pattern and zero, one or more 

condition patterns. 

 

¬ 

year(X,2000) 

¬ 

year(X,Y) 

Y >= 1960 (a) (b) 

 

Fig. 5. Representing (a) arguments of literals and (b) simple conditions on variables. 
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 year 

¬ 

(X,2000) 

¬ 

(X,Y) 

Y >= 1960 

 

Fig. 6. Predicate box and predicate patterns. 

3.   DR-VisMo: Defeasible Reasoning — Visualizing and Modeling 

DR-VisMo is a visual rule editor that assists users in modeling and visualizing defeasible 

logic rule bases. It is implemented as part of the VDR-DEVICE
8
 system, an integrated 

development environment for deploying defeasible logic rule bases on top of RDF 

ontologies. 

The core component of VDR-DEVICE is DR-DEVICE,
11

 a reasoning system that 

processes RDF data, performs the defeasible inference procedure, produces the results 

and exports them as RDF data. The reasoning system employs an object-oriented RDF 

data model, which is different from the established triple-based RDF data model, treating 

properties as typical encapsulated attributes of resource objects. This way, properties of 

resources are not scattered across several triples, as in most other RDF inference systems, 

increasing query performance due to fewer joins.
12

 

DR-DEVICE rule bases are expressed in an extension
11

 of RuleML. Extensions               

deal with two aspects of DR-DEVICE, namely defeasible logic and its CLIPS
13 

implementation. Defeasible logic extensions include rule types, superiority relations and 

conflicting literals, while CLIPS-related extensions deal with constraints on predicate 

arguments and functions. 

A fragment of a rule is displayed in Fig. 7. The names (rel elements) of the operator 

(_opr) elements of atoms are class names, since atoms actually represent CLIPS 

objects.
13

 RDF class names, used as base classes in the rule condition, are referred to via 

the href attribute of the rel element (e.g. hard_rock in Fig. 7, which responds to hard 

rock songs), while derived class names are text values of the rel element. Atoms have 

named arguments (slots), which correspond to object/RDF properties. Since RDF 

resources are represented as CLIPS objects, atoms in the rule body correspond to queries 

over RDF resources of a certain class with certain property values, while atoms in the 

rule head correspond to templates of materialized derived objects, which are exported as 

RDF resources at the end of the inference process.
11,12

 

The following two sections describe the processes of developing (section 3.1) and 

visualizing (section 3.2) a defeasible logic rule base with the help of DR-VisMo, while 

section 3.3 presents the system architecture and functionality. 



 Visual Modeling of Defeasible Logic Rules with DR-VisMo 

 

909

3.1.   Rule base development 

The rule base graph consists of a variety of elements. Initially, for each class that the user 

wants to be created, a class box with the same name is constructed. Class boxes are the 

equivalent of predicate boxes, described previously, and they are populated with one or 

more class patterns, the equivalent of predicate patterns. 

In practice, class patterns express selection conditions over instances of the specific 

class. Visually, class patterns appear as literal boxes. This mapping is justified by the fact 

that atoms – expressed in the RuleML-like language of VDR-DEVICE – are actually 

atomic formulas (they correspond to queries over RDF resources of a certain class with 

certain property values). Thus, the truth value associated with each returned class 

instance will be either positive or negative. 

Similarly to class boxes, class patterns are populated with one or more slot patterns, 

which are the equivalent of argument and condition patterns. There are, however, certain 

differences that arise from the different nature of the tuple-based model of predicate logic 

and the object-based model of VDR-DEVICE. In the latter, class instances are queried 

via named slots rather than positional arguments. Not every slot needs to be queried and 

the position of the slot inside the object is irrelevant. Therefore, instead of a single-line 

argument pattern there is a set of slot patterns in many lines; each slot pattern is identified 

by the slot name. Furthermore, in the VDR-DEVICE RuleML-like syntax, simple 

conditions are attached to the slot patterns; this is reflected to the visual representation 

where condition patterns are encapsulated inside the associated slot patterns. 

An example of all the above is seen in Fig. 7, which shows a class box (created with 

DR-VisMo) that contains three class patterns applied on the hard_rock class and a code 

fragment matching the third class pattern, written in the RuleML-like syntax of VDR-

DEVICE. The class patterns contain 1, 2 and 3 slot patterns respectively. The argument 

list of each slot pattern is divided in two parts, separated by a colon; the variable is placed 

on the left and the corresponding expressions and conditions are placed on the right. The 

  

   

 <atom> 
<_opr> 

<rel href="hard_rock"/> 

</_opr> 

<_slot name="name"> 

<ind>x</ind> 

</_slot>  

<_slot name="artist"> 

<ind>"Rainbow"</ind> 

</_slot>  

<_slot name="year"> 

<_and> 

<var>y</var> 

<function_call name="&gt;"> 

<var>y</var> 

<ind>1980</ind> 

</function_call> 

</_and> 

</_slot> 

</atom> 
 

Fig. 7. A class box example and a code fragment for the second class pattern. 
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variable in the slot pattern is used, in order for the slot value to be unified, with the latter 

having to satisfy the list of constraints. In other words, slot patterns represent conditions 

on slots (or class properties). In the case of constant values, only the left-hand side is 

utilized; the second and third class patterns, for instance, contain such examples. To sum 

things up, the first class pattern represents a query on all instances of the hard_rock class 

that have a name, i.e. all the named hard-rock songs; the second class pattern queries all 

the named hard-rock songs that were performed “live”, while the third one represents a 

query on all the hard-rock songs by the “Rainbow” band that were released after 1980. 

Besides class boxes, class patterns and slot patterns, users can also create rule circles 

that represent rules and arcs that connect the nodes in the graph. Rule circles contain the 

unique rule ID assigned by the user and their appearance was described in a previous 

section. As for the connections in the graph, there exist five types of them, as stated 

earlier: three for the rule type (strict, defeasible, defeater), one for the superiority 

relationship, plus a simple arrow connection type for connecting the class patterns of rule 

bodies to the rule circles. A sample rule graph, containing several of the features 

described above can be seen in Fig. 9. 

3.2.   Rule base visualization 

Besides modeling defeasible logic rule bases, DR-VisMo can also visualize an existing 

rule base. The first step involves collecting the class names.  

3.2.1.   Collecting the class names 

The RDF Schema documents, designated by the user, are being parsed and the names of 

the classes found are collected in the base class set (CSb), which already contains 

rdfs:Resource, the superclass of all RDF user classes: 

CSb := { rdfs:Resource } 

foreach 〈 S, P, O 〉 ∈ RDFS 

if P=rdf:type and O=rdfs:Class 

then CSb := CSb ∪ { S } 

where RDFS represents the set of all subject-predicate-object triples found in the RDF 

Schema documents. 

There also exists the derived class set (CSd), containing the names of the derived 

classes, i.e. classes which lie at rule heads (conclusions). CSd is initially empty and is 

dynamically extended every time a new class name appears inside the rel element of the 

atom in a rule head (or a negated atom). 

CSd := ∅ 

foreach c ∈ rel(_opr(atom(_head(imp)))) ∪ rel(_opr(atom(neg(_head(imp))))) 

CSd := CSd ∪ { c } 

The function f1(f2(…fn(x))) evaluates the XPath expression //x/fn/…/f2/f1 and 

returns the corresponding node-set. When there is a single clause f, it simply corresponds 

to the expression //f. Attributes are retrieved via the composite function @f, which 
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corresponds to the expression //@f. CSd is mainly used for loosely suggesting possible 

values for the rel elements in the rule head, but not constraining them, since rule heads 

can either introduce new derived classes or refer to already existing ones. Notice that in 

some rules the atom element may not be the direct child of the _head element because a 

neg element may lie in between. 

The union of the above two sets results in the full class set CSf (CSf := CSb ∪ CSd), 

which is used for constraining the allowed class names, when editing the contents of the 

rel element inside atom elements of the rule body. 

3.2.2.   Determining class boxes, class patterns and slot patterns 

Class Boxes, Class Patterns and Slot Patterns are objects needed to visualize the class-

related nodes of the rule graph. The structure of these objects is depicted in Table 1. 

Table 1. The structure of class boxes, class patterns and slot patterns. 

Class name Attributes Explanation 

Class Box (C_B) N Class box name 

P The set of class patterns of a class box 

Class Pattern (C_P) N Name of corresponding class box 

Body The rule in the body of which the class pattern appears 

Head The rule in the head of which the class pattern appears 

S The set of slot patterns of a class pattern 

In The rule arrow that ends in the class pattern 

(when the class pattern is a conclusion of a rule) 

Out The class arrow that emanates from the class pattern 

(when the class pattern is in a rule body) 

Slot Pattern (S_P) N Slot pattern name 

Var The list of variables of a slot pattern 

Constraint The list of constraints of a slot pattern 

 

For each class c, a class box cb with the same name is constructed and placed inside 

the corresponding class box set CBb, CBd and CBf : 

CB
b
 := ∅ 

foreach c ∈ CS
b 

create cb of class C_B 

CB
b
 := CB

b
 ∪ { cb } 

cb.N := c 

CB
d
 := ∅ 

foreach c ∈ CS
d 

create cb of class C_B 

CB
d
 := CB

d
 ∪ { cb } 

cb.N := c 

CB
f
 := CB

b
 ∪ CB

d
 

Class boxes are initially empty and are dynamically populated with one or more class 

patterns as follows: for each atom element a inside a rule head or body, a new class 

pattern cp is created and is inserted into the class box, whose name cb matches the class 

name that appears inside the specific atom. The set of all class patterns is denoted by CP. 
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CP := ∅ 

foreach r ∈ imp  

foreach a ∈ atom(_body(r)) ∪ atom(neg(_body(r)) 

foreach cb ∈ CBf 

cb.P:= ∅ 

if cb.N = rel(_opr(a)) 

then  

create cp of class C_P 

cb.P := cb.P ∪ { cp } 

cp.N := cb.N 

cp.Body := @ruleID(_rlab(r)) 

CP := CP ∪ { cp } 

There is a corresponding procedure for the class patterns of the rule heads: 

foreach r ∈ imp  

foreach a ∈ atom(_head(r)) ∪ atom(neg(_head(r)) 

foreach cb ∈ CBf 

cb.P:= ∅ 

if cb.N = rel(_opr(a)) 

then  

create cp of class C_P 

cb.P := cb.P ∪ { cp } 

cp.N := cb.N 

cp.Head := @ruleID(_rlab(r)) 

CP := CP ∪ { cp } 

Similarly to class boxes, class patterns are empty, when they are initially created, but 

are soon populated with one or more slot patterns. For each _slot element inside an 

atom, a slot pattern sp is created that consists of a slot name (contained inside the 

corresponding attribute) and, optionally, a variable and a list of value constraints. Slot 

pattern sp is then inserted into the storage of the class pattern cp that corresponds to the 

relevant atom a. The set of all slot patterns is denoted by SP. 

SP := ∅ 

foreach α ∈ atom 

foreach s ∈ @name(_slot(a)) 

foreach cb ∈ CBf 

foreach cp ∈ cb.P 

if cb.N = rel(_opr(a))) 

then  
create sp of class S_P 

SP := SP ∪ { sp } 

sp.N := s  

cp.S := cp.S ∪ { sp } 
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Each of the slot pattern parts (slot name, variable and list of value constraints) is 

being retrieved from the children (direct and indirect) of the _slot element in the XML 

tree representation of the rule base. 

foreach α ∈ atom 

foreach s ∈ _slot(a) 

foreach v ∈ var(s) ∪ var(_and(s)) 

foreach cb ∈ CBf 

foreach cp ∈ cb.S 

foreach sp ∈ cp.S 

if cb.N=rel(_opr(a)) ∧ sp.N=@name(s)  

then sp.Var:= sp.Var ∪ { v } 

foreach c ∈ ind(s) ∪ _not(s) ∪ ind(_and(s)) ∪ function_call(_and(s))) 

foreach cb ∈ CBf 

foreach cp ∈ cb.S 

foreach sp ∈ cp.S 

if cb=rel(_opr(a)) ∧ sp.N=@name(s) 

then sp.Constraint:= sp.Constraint ∪ { c } 

3.2.3.   Rule circles and arrow types 

Rule Circles and Arrows are objects that are needed in order to visualize the rule nodes 

and the arcs of the rule graph. The structure of these objects is depicted in Table 2. 

Note that some of the attributes above are applied later on, in section 3.2.4, where the 

algorithm for visualizing a rule base is thoroughly presented. 

Table 2. The structure of rule circles and arrows. 

Class name Attributes Explanation 

Rule Circle (R_C) N Rule name 

In The set of incoming arrows 

Out The outgoing arrow 

Rule Arrow (R_A) N Rule name  

In The rule circle from which the arrow emanates  

Out The class box node to which the arrow ends  

Type The arrow type (plain|expandable – see section 3.2.4) 

Orient The arrow orientation (plain|dotted – see section 3.2.4) 

Superiority Arrow 

(SR_A) 

SUP The superior rule of the superiority relation  

INF The inferior rule of the superiority relation  

In The rule circle from which the arrow emanates  

Out The rule circle to which the arrow ends  

Class Arrow (C_A) In The class pattern node from which the arrow emanates  

Out The rule circle to which the arrow ends  

N A tuple of the class pattern and the corresponding rule 

that uniquely identifies the class arrow 
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For every rule in the rule base a rule circle is constructed, whose name matches the 

value of the ruleID attribute in the _rlab element of the corresponding rule. The set of 

all rule circles is denoted by RC and all rules are included in the rule set RS. The rule type 

is equal to the value of the ruletype attribute inside the _rlab element of the 

respective rule and can only take three distinct values (strictrule, defeasiblerule, 

defeater). The corresponding arrow sets are denoted by SA, DA and FA. The set of all 

arrows originating from rule circles is denoted by RA. Rule circles are connected with the 

arrows representing rules, regardless their type. 

RS := RC := SA := DA := FA := ∅ 

foreach r ∈ imp 

RS := RS ∪ { r } 

create rc of class R_C 

create ar of class A_R 

rc.N := ar.N := @ruleID(_rlab(r)) 

RC := RC ∪ { rc } 

rc.Out := ar 

ar.In := rc 

if @ruletype(_rlab(r)) = strictrule  

then  

 SA := SA ∪ {  ar } 

 rc.Type := strictrule 

if @ruletype(_rlab(r)) = defeasiblerule  

then  

 DA := DA ∪ {  ar } 

 rc.Type := defeasiblerule 

if @ruletype(_rlab(r)) = defeater  

then  

 FA := FA ∪ {  ar } 

 rc.Type := defeater 

RA = SA ∪ DA ∪ FA 

The superiority relationship is represented as an attribute (superior) inside the 

superior rule element. For each such relationship, a superiority arrow object is created, 

linking the superior rule with the inferior rule. The set of all superiority arrows is SRA. 

SRA := ∅ 

foreach r ∈ imp 

foreach sr ∈ @superior(_rlab(imp)) 

create sar of class SR_A 

SRA := SRA ∪ { sar } 

sar.SUP := sar.In := @ruleID(_rlab(r)) 

sar.INF := sar.Out := sr 

r.Out := sr.In := sar 
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The arrows between the class patterns of the rule body and the rule circles are 

contained in the CA set: 

CA := ∅ 

foreach cp ∈ CP 

create car of class C_A 

CA := CA ∪ { car } 

car.N := 〈 cp, cp.Body 〉  

cp.Out := cp.Body.In := car 

car.In := cp 

car.Out := cp.Body 

car.Out.Premises := car.Out.Premises ∪ { cp } 

where the 〈cp, cp.Body〉 tuple uniquely identifies such arrows, because the same class 

pattern can be re-used in the body of many rules.  

What remains to be established is how the arrows between the rule circles and the 

class patterns of the rule head are constructed. These arrows are contained in the RA set, 

presented above. Class patterns of the rule head are connected to rule arrows as follows: 

foreach ar ∈ RA 

foreach cp ∈ CP 

if cp.Head = ar.N 

then  

cp.In := ar 

ar.Out := cp 

ar.In.Conclusion := cp 

3.2.4.   The visualization algorithm 

After having collected all the necessary graph elements and having populated all the class 

boxes with the appropriate class and slot patterns, three sets exist: (i) the base class boxes 

set CBb that contains the class boxes corresponding to base classes, (ii) the derived class 

boxes set CBd that contains the class boxes corresponding to derived classes, and (iii) the 

set RC that includes all the rule circles of the rule base. 

The next important task is the placement of each element in the graph. To this end, an 

algorithm for the visualization of the rule base was implemented, which utilizes common 

rule stratification techniques.
14

 Unlike the latter, however, that focus on computing the 

minimal model of a rule set, our algorithm aims at the optimal visualization outcome, 

namely the simplest graph possible. The algorithm is displayed in Fig. 8. 

The algorithm gives a left-to-right orientation to the flow of information, placing the 

graph elements in strata (or columns), with the first stratum located on the utmost left and 

the numbering of the strata following the same left-to-right orientation. In other words, 

the proposed algorithm deals with the “stratification” of the graph elements, calculating 

the optimal stratum, in which each graph element has to be placed.  
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During the execution of the algorithm, the following steps can be distinguished: 

(i) All the base class boxes are placed in stratum #1. 

(ii) The algorithm enters a loop, consecutively assigning strata to rule circles and 

derived class boxes, incrementing each time the stratum counter by 1. 

(a) A rule circle is assigned to a stratum, when all its premises belong to previous 

strata, with at least one of them belonging to the immediately previous 

stratum. 

(b) A class box is assigned to a stratum, if it contains the conclusions of rules in 

the immediately previous stratum. 

 str:=1 

foreach cb∈CBb do cb.Stratum:=str 

while |RC|≠0 do 

RuleTemp:=∅ 

str:=str+1 

foreach R∈RC do 

if ((∀p∈R.Premises → p.N.Stratum<str) ∧ 

(∃p'∈R.Premises ∧ p'.N.Stratum)=str-1)) 

then R.Stratum:=str, RC:=RC-{R}, RuleTemp:=RuleTemp ∪{R} 

foreach R∈RuleTemp do 

foreach p∈R.Premises do 

if p.N.Stratum=str-1  

then Type:=plain else Type:=expandable,  

foreach X∈R.In do 

 if X.In=p ∧ X.Out=R 

 then X.Type := Type 

str:=str+1 

CbTemp:=∅ 

foreach R∈RuleTemp do  

if unknown(R.Conclusion.N.Stratum)  

then R.Conclusion.N.Stratum:=str,  

CbTemp:=CbTemp∪{R.Conclusion.N}  

foreach R∈RuleTemp do 

if R.Conclusion.N∈CbTemp  

then Orient:=plain else Orient:=dotted, 

foreach X∈R.Out do 

if X.In=R ∧  X.Out=R.Conclusion 

then X.Orient:= Orient 
 

Fig. 8. The rule stratification algorithm. 

In the cases of cycles in the graph (i.e. a conclusion of a rule serves as a premise for 

another rule in a previous stratum), neither the conclusion is drawn again, nor the arrow 

connecting the rule with the conclusion is drawn backwards. Instead, in order to prevent 

graph cluttering, a special type of “dotted” arrow is applied, commencing from the rule 

circle and ending in three dots “…”. By clicking on the arrow, the user is presented with 

a popup window, displaying the rule at full detail, including its premises and conclusion. 

Also, according to the algorithm, only the arcs that connect two consecutive graph 

elements are drawn by default. When the stratum difference between a class pattern and a 

rule circle is greater than 1, the arrow that connects them is qualified as “expandable” 

(contrary to “plain”). Expandable arrows are not drawn by default, but can be included in 

the graph, by “expanding” (or revealing) all the arcs of the corresponding rule. 
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3.2.5.   Example 

This section outlines an example that better illustrates the representation approach as well 

as the functionality of the algorithm described in the previous sections. Suppose that we 

have the following rule base: 

r1: hard_rock(X) → rock(X) 

r2: rock(X) ⇒ likes(X) 

r3: hard_rock(X) ⇒ ¬likes(X) 

r4: hard_rock(X), artist(X,“Rainbow”) ⇒ likes(X) 

The first three rules were encountered in section 2.1, while rule r4 reads as “Alice likes 

hard rock songs by Rainbow”.  

In VDR-DEVICE the ΟΟ data model is used (instead of the predicate/relational 

model). So, predicates like rare and artist are actually represented as attributes of the 

class hard_rock. Therefore, in the example three classes are needed, as Table 3 

indicates: one base class (hard_rock) and two derived classes (rock and likes). Thus, 

the three “key” sets, as described in sections 3.2.2 and 3.2.3 will be formulated as 

follows: 

CB
b
 := { hard_rock } 

CB
d
 := { rock, likes } 

RC := { r1, r2, r3, r4 } 

After applying the algorithm, it comes up that four strata are needed to display all the 

graph elements. Table 4 displays the final stratum assignments, according to the 

algorithm. The first stratum is mapped to the first column on the left, the second stratum 

to the column on the right of the first one and so on. Nodes in one column are never 

connected with nodes in the same column, except from the case of rule superiority. 

Table 3. Classes, included in the example. 

Base Class hard_rock 

Derived Classes rock, likes 

Table 4. Stratum assignments. 

stratum #1 hard_rock 

stratum #2 r1, r3, r4 

stratum #3 rock, likes 

stratum #4 r2 

 

Figure 9 displays the resulting graph, produced by DR-VisMo, which is compliant               

with the algorithm and the representation approach presented previously. The main 

window of the program is composed of a left-hand-side panel, where the rule graph is 

displayed and a right-hand-side panel, which shows the properties of the graph element 

selected on the left. Notice the “dotted” arrow “leaving” rule r2. As explained earlier, this 
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arrow type is applied in cases of rule conclusions appearing in earlier strata than the rule. 

By clicking on the arrow, a pop-up window presents the user with details, regarding the 

corresponding rule, displaying its premises and conclusion. 

 
 

Fig. 9. Implementation of the visualization algorithm. 

3.3.   System architecture and functionality 

The previous sections focused on the various elements of the rule graph, while the 

following subsections describe in detail the five modules that comprise DR-VisMo. The 

overall architecture of the system is displayed in Fig. 10.  

 
Graphical User Interface ModuleGraphical User Interface ModuleGraphical User Interface ModuleGraphical User Interface Module    

Visual Rule Visual Rule Visual Rule Visual Rule 

Authoring ModuleAuthoring ModuleAuthoring ModuleAuthoring Module    

Graph HandlingGraph HandlingGraph HandlingGraph Handling    

ModuleModuleModuleModule    
UserUserUserUser    

User Guidance User Guidance User Guidance User Guidance 

ModuleModuleModuleModule    

Rule Base Rule Base Rule Base Rule Base 

Extraction ModuleExtraction ModuleExtraction ModuleExtraction Module    

 

Fig. 10. DR-VisMo architecture. 

3.3.1.   Visual rule base authoring module 

This module is the backbone of the system, since its primary function deals with the 

visual development and visualization of the rule base created. More specifically, the 

module is responsible for the creation of the visual constructs (rule circles, class boxes, 

class patterns, slot patterns) that represent rules and atomic formulas in the graph as well 

as the connections among the various graph elements (see section 3.1). Furthermore, the 

rule base authoring module is also responsible for rendering the rule graph, not only 
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throughout its development stages, but also during the points, when users browse certain 

parts of the graph or when they move around the graph or its various subparts.  

The module communicates closely with two other modules: the graph handling and 

the user guidance module, described in the following two subsections. The graph 

handling module is responsible for displaying the corresponding properties of the graph 

elements. Therefore, since the two modules present different aspects of the same rule 

base, there cannot be any inconsistencies in the information they show. As for the latter 

module, it is triggered by the authoring module during the development of a rule base for 

controlling the input data and preventing syntactic and semantic errors, by displaying 

relevant error messages. 

3.3.2.   Graph handling module 

This module is primarily responsible for handling the information, stored in the rule 

graph. More specifically, it displays the properties, corresponding to the various graph 

elements and is responsible for handling changes, performed by the user. The following 

modifications are allowed: 

• Changing the name of visual constructs. 

• Appending class patterns into class boxes. 

• Inserting slot patterns into or removing slot patterns from a class pattern. 

• Handling the connections among the visual constructs (positive/negated atomic 

formula, rule type, superiority relationships). 

• Removing connections among visual constructs. 

These modifications are automatically reflected to the graph visualization, since the 

graph handling module closely cooperates with the rule base authoring module. 

Furthermore, this module also cooperates with the user guidance module, for preventing 

erroneous or inconsistent alterations to the properties of the graph elements. 

3.3.3.   User guidance module 

The user guidance module accepts input from the previous two modules and is 

responsible for detecting and correcting potential errors on behalf of the user. Its main 

functionality deals with inspecting the created slot patterns for syntactic validity (see 

section 3.1 and Fig. 7). In case of a syntactic error, the module has to detect the mistake, 

point the user to it and propose ways of correcting it, by displaying relevant error 

messages. 

3.3.4.   User interface module 

The user interface module comprises the sole means of interaction with the user. 

Therefore, its design rationale includes user-friendliness and efficiency. Furthermore, 

besides containing the rule authoring and graph handling modules, the user interface is 

also responsible for communicating with the RuleML extraction module that will encode 

the defeasible logic rule base in the RuleML-compatible syntax of DR-VisMo. 
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3.3.5.   Rule base extraction module 

This module is primarily concerned with encoding the developed rule graph into a 

RuleML-compatible document. This, however, is a two-step process: firstly, the module 

receives the graph information from the user interface and creates an intermediary file 

that corresponds to the rule base. Then, an XSLT transformation is performed, which 

transforms the latter file into a RuleML-compatible document. Depending on the desired 

RuleML version of the exported file, a different XSLT transformation is applied. 

Currently, the system supports RuleML versions 0.86 and 0.91, but can be easily 

extended to support more recent (or older) versions as well. 

4.   Evaluation 

DR-VisMo was evaluated by post-graduate students (25 in total) attending a Semantic 

Web course at the Department of Informatics at our university. The students were given a 

defeasible logic rule base in textual form and were asked to model it using the software. 

They were also requested to answer an on-line questionnaire for assessing DR-VisMo. 

The questionnaire was not aimed at the usability of the software facilities; instead, its 

primary objective was to allow the users to evaluate the representation schema adopted 

by the system. The survey was divided in two major parts: the first part contained 

questions, related to the intuitiveness and user-friendliness of the proposed representation 

of defeasible logic rule bases, while the second part asked the users to evaluate the degree 

of assistance that this representation schema offers during the development of a rule base. 

Regarding the former part of the survey, users generally seemed to understand and 

appreciate the adopted representation methodology. More specifically, 72% of the 

participants found the representation intuitive, 88% found it easy to understand, 80% 

found it aesthetically satisfactory, all of them (100%) found it interesting, while only 

12% found it incomprehensible and unacceptable. 

The evaluation results, regarding the latter part were also encouraging: all of the 

participants (100%) believed that DR-VisMo indeed assists in the development of a 

defeasible logic rule base, 76% believed that the system considerably improves 

productivity (i.e. minimizes development time), 72% considered that the representation 

gives a better overview of the rule dependencies, while only 16% of the users would 

rather use another tool. 

Overall, the result of using the system was considered acceptable and impressive by 

44% and 30% of the users, respectively. There were users, nevertheless, that would prefer 

more features in the proposed representation (32%), while, on the other hand, DR-VisMo 

made defeasible logic attractive to 76% of the participants. Some shortcomings that users 

detected and will be dealt with in our future improvements of the system include handling 

more than one variable in a class pattern, representing conflicting literals and including 

negation-as-failure in the representation. 
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5.   Related Work 

d-GRAPHER
15

 is system that consists of a visual defeasible graph (d-graph) editor and a 

prolog-based inference engine. The system includes error-checking routines that prevent 

the construction of illegal graphs, displaying appropriate error messages. Although d-

GRAPHER was the first system that offered visual development of d-graphs, adopting a 

representation that comprised the starting point for DR-VisMo, it presents, nevertheless,      

a number of drawbacks: the rule bases produced are of an elementary level of 

expressiveness, not allowing conjunction/disjunction of atoms or representation of slot 

variables and value constraints. Furthermore, the system is not able to represent more 

expressive rule bases and is, thus, an isolated solution. 

To the best of our knowledge, no other visual defeasible reasoning rule editors exist. 

There exist, however, several visual editors for other types of logic. The editor of 

TIGER
16

 is such an example. TIGER is an environment for modeling domains, using a 

visual language. One of its subsystems is its visual rule editor, which deals with graph 

rules. In TIGER, graph rules are used to manipulate the graph representation of a 

language element and define syntax-directed editor commands. Since TIGER and VDR-

DEVICE are two highly differentiated systems, it is pointless to compare the respective 

visual rule editors. Nevertheless, according to its designers, TIGER has been successfully 

applied in a variety of scenarios, including the design of activity and sequence diagrams, 

Petri nets and automata. 

On the other hand, several graphical rule editors exist. The Protégé SWRL Editor,
17

 

for instance, is such a case. As its name implies, the software operates within Protégé-

OWL
18

 and allows users to seamlessly switch between SWRL rule editing and editing of 

OWL entities, also allowing for incorporation of OWL entities into rules. SWRL Editor 

deals with Horn-like rules, expressed in terms of OWL concepts, offering, however, a 

lower degree of expressiveness, since it does not support the development of defeasible 

logic rules. Another difference with DR-VisMo is the fact that the former is graphical, 

contrary to the latter, which is purely visual.  

Another SWRL editor is RuleVisor,
19

 implemented as part of the SAWA (Situation 

Awareness Assistant) framework. The editor assists in the construction and maintenance 

of SWRL rules, also cooperating with ontologies that provide the content, upon which a 

rule set is to be built. The tool offers a user-friendly, yet frame-based and elementary, 

development environment, which, especially in the cases of rule bases of a considerable 

size, proves to be rather impractical. 

A further paradigm of a graphical rule editor is Oryx, the graphical front-end for 

Mandarax,
20

 which is a pure object oriented rule base engine for deduction rules. Oryx 

consists of two parts, namely, a standalone and a server application. Oryx supports 

verbalization of knowledge and, thus, includes a formal natural-language-based rule 

editor as well as a repository for managing the vocabulary and a graphical user interface 

library. Nevertheless, similarly to other aforementioned systems, Oryx cannot model 

defeasible logic rules and it also comprises a graphically-based rule editor paradigm. 
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On the other hand, there exists a variety of systems that implement rule representation 

and visualization, although we didn’t come across any system that can visually represent 

defeasible logic rules yet. Such an example is VisiRule,
21

 a graphical tool (module of 

LPA Win Prolog) for delivering business rule and decision support applications. The user 

draws a flowchart that represents the decision logic and VisiRule produces Flex code and 

compiles it. The system offers guidance during the construction process, constraining 

errors, based on the semantic content of the emerging program. This reduces the 

possibility of constructing invalid or meaningless links, improving productivity and 

helping detect errors early within the design process. 

Finally, a knowledge representation paradigm, “borrowed” from the domain of Law, 

is eGanges,
22

 a legal expert system shell that provides negotiation support for domestic 

conflict prevention applications. The system employs a plug-in, called Negaid that adopts 

a knowledge representation scheme, which is a tree-like structure, called a “river”. The 

nodes in the river are antecedents in the conditional propositions of the procedural or 

conflict resolution rule system, while arrows represent inference and indicate the flow of 

extended deduction. Although eGanges and DR-VisMo both display inference steps and 

interrelations among rules and antecedents, the two systems are remotely associated and 

deal with differentiated domains; thus a comparison here regarding their functionalities 

would be rather misplaced. 

6.   Conclusions and Future Work 

This paper argued that logic and rules are the primary means of realizing the Semantic 

Web vision, by offering the ability of reasoning over the information scattered in                    

the Web. Defeasible reasoning was proposed as an approach that can assist towards                

this affair. It represents a non-monotonic reasoning approach that features high 

expressiveness and low computational overhead. Furthermore, it is highly suitable for the 

Semantic Web, since it can handle inconsistent and conflicting information, a situation 

that is often encountered in highly dynamic environments like the Web.  

Defeasible reasoning is based on a solid mathematical notation, which sometimes 

may seem confusing to the end user. A system, called DR-VisMo, for authoring and 

visualizing defeasible logic rule bases was presented in this paper, aiming at alleviating 

this problem. DR-VisMo adopts a representation schema, based on enhanced directed 

graphs that feature distinct node types for rules and atomic formulas and distinct 

connection types for each rule type in defeasible logic and for superiority relationships. 

For the visualization of defeasible logic rule bases, DR-VisMo also implements a 

stratification algorithm that deals with decisions, regarding the arrangement of the 

various elements in the graph. 

The motivation behind DR-VisMo is associated with the lack of tools for visual 

modeling and representation of rule bases in general and defeasible logic rule bases in 

particular. As seen in the “Related Work” section, no modern systems exist currently for 

authoring defeasible reasoning rule bases, while there is also a deficiency of tools for rule 

bases of other types of logics. And, as the user evaluation presented earlier (see section 4) 
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demonstrates, the system indeed seems to assist users in the development of defeasible 

logic rule bases, significantly reducing the time needed for the task. The assessment 

results were overall encouraging. 

As for our future research goals, a variety of tasks still remains to be addressed. 

Potential improvements of DR-VisMo include enhancing visual representation with 

negation-as-failure and variable unification, for simplifying the display of multiple 

unifiable class patterns. The improvement of the syntax control module is also necessary, 

for offering better guidance to the end user, during the addition of new slots and 

conditions inside a class pattern. Other improvements were also proposed by the users, 

who participated in the evaluation. 

Expressive visualization of a defeasible logic rule base can lead to proof explanations. 

By adding visual rule execution tracing, proof visualization and validation to DR-VisMo, 

we will then be able to delve deeper into the Proof layer of the Semantic Web 

architecture, implementing facilities that would increase the trust of users towards the 

Semantic Web. 
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