
September 23, 2008 15:38 WSPC-IJAIT 00421-cor

International Journal on Artificial Intelligence Tools
Vol. 17, No. 5 (2008) 903–924
c© World Scientific Publishing Company

VISUAL MODELING OF DEFEASIBLE LOGIC RULES

WITH DR-VisMo

EFSTRATIOS KONTOPOULOS

Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, GR-54124, Greece

skontopo@csd.auth.gr

NICK BASSILIADES

Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, GR-54124, Greece

nbassili@csd.auth.gr

GRIGORIS ANTONIOU

Institute of Computer Science, Foundation for Research and Technology, Hellas (FORTH),
Heraklion, GR-71110, Greece

antoniou@ics.forth.gr

ANNA SERIDOU

Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, GR-54124, Greece

aseridou@csd.auth.gr

903

The standardization of the Semantic Web has reached as far as ontologies and ontology languages.

However, in order for the full potential of the Semantic Web to be achieved, the ability of reasoning

over the available information is also essential. Rules can assist in this affair and various logics have

been proposed for the Semantic Web domain. One of them is defeasible reasoning that deals with

incomplete and conflicting information. However, despite its solid mathematical notation, it may be

confusing to end users. To confront this downside, we proposed a representation schema for

defeasible logic rule bases, which is based on directed graphs that feature distinct node and

connection types. This paper presents DR-VisMo, a defeasible logic rule base editor and

visualization system that implements this representation approach. The system also features a

stratification algorithm for visualizing rule bases that deals with decisions, regarding the

arrangement of the various elements in the graph. DR-VisMo is implemented as part of VDR-

DEVICE, an environment for modeling and deploying defeasible logic rule bases on top of RDF

ontologies.

Keywords: Semantic Web; defeasible reasoning; directed graphs; visualization.

1. Introduction

The standardization of the Semantic Web
1
 has reached as far as ontologies and ontology

languages, with OWL, the Web Ontology Language, being currently the leading standard

E. Kontopoulos et al.

904

in ontology representation. However, in order for the full potential of the Semantic Web

to be achieved, the ability of reasoning over the information available in the Web is also

essential, as stated by Tim Berners-Lee et al.
1
 Rules can assist in this affair, by providing

a well-known reasoning mechanism, with established theory and implementations.

Various logics have been proposed for the Semantic Web domain. One of them is

defeasible reasoning,
2
 a member of the non-monotonic reasoning family that represents a

rule-based approach to reasoning with incomplete and conflicting information. It can

represent facts, rules, priorities and conflicts among rules. Compared to mainstream non-

monotonic reasoning, the main advantages of defeasible reasoning are enhanced

representational capabilities
3
 coupled with low computational complexity.

4

Defeasible reasoning features a solid mathematical notation, which gives it

credibility. However, the very same mathematical background may seem confusing to

end users. Directed graphs (digraphs) can assist in confronting this drawback. They are a

flexible visualization tool, offering a comprehensible way to represent relationships

between entities.
5
Their applicability, however, is balanced by the fact that it is difficult to

associate data of a variety of types with the nodes and with the connections between the

nodes in the graph.

This paper presents DR-VisMo, a defeasible logic rule base editor and visualization

system. The representation schema of the software is based on directed graphs and was

presented in a previous work of ours.
6
 By applying digraphs, we attempt to exploit their

expressiveness, but also try to mitigate their main disadvantage, mentioned above, by

proposing distinct node types for rules and atomic formulas and distinct connection types

for each rule type in defeasible logic and for superiority relationships. DR-VisMo also

features a stratification algorithm
7
 for visualizing rule bases. The algorithm deals with

decisions, regarding the arrangement of the various elements in the graph, a task that

considerably improves clarity. Notice that stratification is solely used for visualization

purposes and is indifferent, regarding the underlying defeasible logic inference engine,

since rule cycles in defeasible logic (with the presence of strong negation) are treated

skeptically and no conclusion is derived. The main contribution of the paper,

nevertheless, involves the presentation of DR-VisMo as a whole, including its rule

authoring module. DR-VisMo is implemented as part of VDR-DEVICE,
8
 an environment

for modeling and deploying defeasible logic rule bases on top of RDF ontologies.

The rest of the paper is organized as follows: Section 2 describes the key aspects of

applying directed graphs for the representation of defeasible logic rules, emphasizing on

the representation of arguments and conditions. The next section describes DR-VisMo,

focusing on its two main functionalities, namely, the rule authoring and rule base

visualization modules. Section 4 presents a user evaluation of the system, while the

next section discusses related work, followed by the conclusions and ideas for future

research.

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

905

2. Defeasible Logics and Digraphs

A defeasible theory D (i.e. a knowledge base or a program in defeasible logic) consists of

three basic components: a set of facts (F), a set of rules (R) and a superiority relationship

(>). Therefore, D can be represented by the triple (F, R, >).

The representation of defeasible logic rules in our approach is based on the

methodology presented by Nute,
9
 who applies d-graphs for visualizing a defeasible logic

rule base. However, the method we adopt adds extra features to the graph that offer

expressiveness. More specifically, each rule base in our approach is represented by an

oriented graph G: = (V, A) (a directed graph with no bi-directed edges
5
), where:

• V is a set of vertices, with each vertex being either a rectangle that represents a literal

and is called a “literal box”, or a circle, representing a rule, and

• A is a set of arcs, formally defined A ⊆ {(x, y) | x, y ∈ V}, where each arc is directed

from a graph element x to another graph element y, respectively. Similarly to Nute’s

approach,
9
 arcs belong to several types: one for each rule type in defeasible logic

(strict rules, defeasible rules and defeaters), one for superiority relationships, plus a

fifth connection type, used for consistency purposes. More details are included in a

subsequent section.

2.1. Rule types in defeasible logic

The full theoretical approach, regarding the graphical representation of defeasible

reasoning elements has been thoroughly described;
6
 here only a brief outline will be

made. First of all, let us consider Alice, a music fan, who wants to create a music-related

rule base. The first rule type in defeasible reasoning is strict rules, denoted by A → p

and interpreted in the typical sense: whenever the premises are indisputable, then so

is the conclusion. Thus, if Alice would like to express the statement: “A hard rock

song is a kind of rock song”, she would have to formalize the following strict rule:

r1: hard_rock(X) → rock(X), which is represented by the digraph in Fig. 1.

 r1

¬

hard_rock(X)

¬

rock(X)

Fig. 1. Visual representation of strict rule r1.

Each literal box consists of two adjacent (and conflicting) “atomic formula boxes”,

where the upper one represents a positive and the lower one a negated atomic formula.

This way, these two conflicting, but also related, atomic formulas are depicted together

distinctively, maintaining their independence. Notice also that for the sake of presentation

clarity we currently only represent the predicate and not the literal (i.e. predicate plus all

the arguments). Nevertheless, the full representation (presented later) includes a full-

fledged representation of literals.

E. Kontopoulos et al.

906

Defeasible rules, on the other hand, can be defeated by contrary evidence and are

denoted by A ⇒ p. Two examples are: r2: rock(X) ⇒ likes(X) (“Alice usually likes

rock songs”) and r3: hard_rock(X) ⇒ ¬likes(X) (“Alice typically does not like

hard rock songs”). Both are depicted in Fig. 2.

r2

r3

¬

hard_rock(X)

¬

rock(X)

¬

likes(X)

Fig. 2. Representing defeasible rules r2 and r3.

Defeaters, denoted by A ∼> p, do not actively support conclusions, but can only

prevent some of them. If Alice, for example, would like to express the fact that she may

not like cover versions of rock songs, she would have to formalize the defeater:

r2’: cover(X) ∼> ¬likes(X). This defeater can defeat, for example, rule r2

mentioned above and it can be represented by Fig. 3. Rule r2’ actually introduces

ambiguity regarding cover songs and Alice’s preferences, which should be resolved

through other rules. However, the defeater alone cannot actively support the conclusion

that Alice does not like a song, simply because it is a cover version.

r2’
¬

cover(X)

¬

likes(X)

Fig. 3. Visual representation of defeater r2′.

Finally, the superiority relationship among the rule set R is an acyclic relation > on

R, used, in order to resolve conflicts among rules. For example, given the defeasible rules

r2 and r3 above, no conclusive decision can be made about whether Alice does like hard

rock music or not, because rules r2 and r3 contradict each other. But if the superiority

relationship r3 > r2 is introduced, then r3 overrides r2 and we can indeed conclude that

Alice does not like hard rock. In this case, rule r3 is called superior to r2 and r2 inferior

to r3. A fourth connection type is introduced for superiority relationships, which is

displayed in Fig. 4.

 r3 r2 >>>>>>>>>>>>>>>

Fig. 4. Visual representation of r3 > r2.

According to defeasible logic proof theory,
10

 in order to show that q is provable

defeasibly there are two choices: (1) to show that q is already definitely provable, using a

strict rule; or (2) to show that there is a strict or defeasible rule with head q whose body

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

907

literals have been defeasibly proven and there are no possible “attacks”, that is, reasoning

chains in support of ¬q. Formally, we must show that ¬q is not definitely provable. Also

we must consider the set of all rules which are not known to be inapplicable and which

have head ¬q (here we consider defeaters, too, whereas they could not be used to support

the conclusion q). Essentially each such rule attacks the conclusion q. For q to be

provable, each attacker must be counterattacked by another rule with head q with

the following properties: (i) the counter-attacker must be applicable, and (ii) it must

be stronger than (i.e. superior to) the attacker. Thus each attack on the conclusion q

must be counterattacked by a stronger rule.

2.2. Representing arguments and conditions

So far we have shown how rules are represented by interconnecting literal boxes with

rule nodes. However, we have not yet included how literal arguments are presented,

either being variables or constants. Also, variables are usually associated with simple

conditions, such as Y>=1960, which could be represented as predicates, but it is

practically more convenient to consider them more closely related to the closest literal

that contains the corresponding variable as an argument.

Arguments are incorporated inside the literal box just after the predicate name. The

set of all arguments for each literal box is called argument pattern. For instance, the

literal year(X,2000), which could state that the year a song X was released is 2000, is

represented as in Fig. 5 (a). Simple conditions associated with any of the variables of a

literal can also appear inside the literal box, each on a separate line (called condition

pattern) below the literal. For example, if the fragment year(X,Y),Y>=1960 appears in

a rule condition, it can be represented as in Fig. 5 (b).

A certain predicate, say year, can appear many times in a rule base, in rule

conditions or even rule conclusions. All literal boxes of the same predicate can be

grouped, so that the user can realise that all these boxes refer to the same set of literals.

To this end, we introduce the notion of a predicate box, a container for all literal boxes

that refer to the same predicate. The literal boxes inside the predicate box "share" the

predicate name that is located at the top of the predicate box. This approach is a

temporary convention, needed in order to introduce the complete representation in the

following sections. The literal boxes inside predicate boxes that express conditions on

instances of the specific predicate extension are called predicate patterns. For example,

the literal boxes of Fig. 5 can be grouped inside a predicate box as in Fig. 6. Notice that

each predicate pattern contains exactly one argument pattern and zero, one or more

condition patterns.

¬

year(X,2000)

¬

year(X,Y)

Y >= 1960 (a) (b)

Fig. 5. Representing (a) arguments of literals and (b) simple conditions on variables.

E. Kontopoulos et al.

908

 year

¬

(X,2000)

¬

(X,Y)

Y >= 1960

Fig. 6. Predicate box and predicate patterns.

3. DR-VisMo: Defeasible Reasoning — Visualizing and Modeling

DR-VisMo is a visual rule editor that assists users in modeling and visualizing defeasible

logic rule bases. It is implemented as part of the VDR-DEVICE
8
 system, an integrated

development environment for deploying defeasible logic rule bases on top of RDF

ontologies.

The core component of VDR-DEVICE is DR-DEVICE,
11

 a reasoning system that

processes RDF data, performs the defeasible inference procedure, produces the results

and exports them as RDF data. The reasoning system employs an object-oriented RDF

data model, which is different from the established triple-based RDF data model, treating

properties as typical encapsulated attributes of resource objects. This way, properties of

resources are not scattered across several triples, as in most other RDF inference systems,

increasing query performance due to fewer joins.
12

DR-DEVICE rule bases are expressed in an extension
11

 of RuleML. Extensions

deal with two aspects of DR-DEVICE, namely defeasible logic and its CLIPS
13

implementation. Defeasible logic extensions include rule types, superiority relations and

conflicting literals, while CLIPS-related extensions deal with constraints on predicate

arguments and functions.

A fragment of a rule is displayed in Fig. 7. The names (rel elements) of the operator

(_opr) elements of atoms are class names, since atoms actually represent CLIPS

objects.
13

 RDF class names, used as base classes in the rule condition, are referred to via

the href attribute of the rel element (e.g. hard_rock in Fig. 7, which responds to hard

rock songs), while derived class names are text values of the rel element. Atoms have

named arguments (slots), which correspond to object/RDF properties. Since RDF

resources are represented as CLIPS objects, atoms in the rule body correspond to queries

over RDF resources of a certain class with certain property values, while atoms in the

rule head correspond to templates of materialized derived objects, which are exported as

RDF resources at the end of the inference process.
11,12

The following two sections describe the processes of developing (section 3.1) and

visualizing (section 3.2) a defeasible logic rule base with the help of DR-VisMo, while

section 3.3 presents the system architecture and functionality.

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

909

3.1. Rule base development

The rule base graph consists of a variety of elements. Initially, for each class that the user

wants to be created, a class box with the same name is constructed. Class boxes are the

equivalent of predicate boxes, described previously, and they are populated with one or

more class patterns, the equivalent of predicate patterns.

In practice, class patterns express selection conditions over instances of the specific

class. Visually, class patterns appear as literal boxes. This mapping is justified by the fact

that atoms – expressed in the RuleML-like language of VDR-DEVICE – are actually

atomic formulas (they correspond to queries over RDF resources of a certain class with

certain property values). Thus, the truth value associated with each returned class

instance will be either positive or negative.

Similarly to class boxes, class patterns are populated with one or more slot patterns,

which are the equivalent of argument and condition patterns. There are, however, certain

differences that arise from the different nature of the tuple-based model of predicate logic

and the object-based model of VDR-DEVICE. In the latter, class instances are queried

via named slots rather than positional arguments. Not every slot needs to be queried and

the position of the slot inside the object is irrelevant. Therefore, instead of a single-line

argument pattern there is a set of slot patterns in many lines; each slot pattern is identified

by the slot name. Furthermore, in the VDR-DEVICE RuleML-like syntax, simple

conditions are attached to the slot patterns; this is reflected to the visual representation

where condition patterns are encapsulated inside the associated slot patterns.

An example of all the above is seen in Fig. 7, which shows a class box (created with

DR-VisMo) that contains three class patterns applied on the hard_rock class and a code

fragment matching the third class pattern, written in the RuleML-like syntax of VDR-

DEVICE. The class patterns contain 1, 2 and 3 slot patterns respectively. The argument

list of each slot pattern is divided in two parts, separated by a colon; the variable is placed

on the left and the corresponding expressions and conditions are placed on the right. The

 <atom>
<_opr>

<rel href="hard_rock"/>

</_opr>

<_slot name="name">

<ind>x</ind>

</_slot>

<_slot name="artist">

<ind>"Rainbow"</ind>

</_slot>

<_slot name="year">

<_and>

<var>y</var>

<function_call name=">">

<var>y</var>

<ind>1980</ind>

</function_call>

</_and>

</_slot>

</atom>

Fig. 7. A class box example and a code fragment for the second class pattern.

E. Kontopoulos et al.

910

variable in the slot pattern is used, in order for the slot value to be unified, with the latter

having to satisfy the list of constraints. In other words, slot patterns represent conditions

on slots (or class properties). In the case of constant values, only the left-hand side is

utilized; the second and third class patterns, for instance, contain such examples. To sum

things up, the first class pattern represents a query on all instances of the hard_rock class

that have a name, i.e. all the named hard-rock songs; the second class pattern queries all

the named hard-rock songs that were performed “live”, while the third one represents a

query on all the hard-rock songs by the “Rainbow” band that were released after 1980.

Besides class boxes, class patterns and slot patterns, users can also create rule circles

that represent rules and arcs that connect the nodes in the graph. Rule circles contain the

unique rule ID assigned by the user and their appearance was described in a previous

section. As for the connections in the graph, there exist five types of them, as stated

earlier: three for the rule type (strict, defeasible, defeater), one for the superiority

relationship, plus a simple arrow connection type for connecting the class patterns of rule

bodies to the rule circles. A sample rule graph, containing several of the features

described above can be seen in Fig. 9.

3.2. Rule base visualization

Besides modeling defeasible logic rule bases, DR-VisMo can also visualize an existing

rule base. The first step involves collecting the class names.

3.2.1. Collecting the class names

The RDF Schema documents, designated by the user, are being parsed and the names of

the classes found are collected in the base class set (CSb), which already contains

rdfs:Resource, the superclass of all RDF user classes:

CSb := { rdfs:Resource }

foreach 〈 S, P, O 〉 ∈ RDFS

if P=rdf:type and O=rdfs:Class

then CSb := CSb ∪ { S }

where RDFS represents the set of all subject-predicate-object triples found in the RDF

Schema documents.

There also exists the derived class set (CSd), containing the names of the derived

classes, i.e. classes which lie at rule heads (conclusions). CSd is initially empty and is

dynamically extended every time a new class name appears inside the rel element of the

atom in a rule head (or a negated atom).

CSd := ∅

foreach c ∈ rel(_opr(atom(_head(imp)))) ∪ rel(_opr(atom(neg(_head(imp)))))

CSd := CSd ∪ { c }

The function f1(f2(…fn(x))) evaluates the XPath expression //x/fn/…/f2/f1 and

returns the corresponding node-set. When there is a single clause f, it simply corresponds

to the expression //f. Attributes are retrieved via the composite function @f, which

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

911

corresponds to the expression //@f. CSd is mainly used for loosely suggesting possible

values for the rel elements in the rule head, but not constraining them, since rule heads

can either introduce new derived classes or refer to already existing ones. Notice that in

some rules the atom element may not be the direct child of the _head element because a

neg element may lie in between.

The union of the above two sets results in the full class set CSf (CSf := CSb ∪ CSd),

which is used for constraining the allowed class names, when editing the contents of the

rel element inside atom elements of the rule body.

3.2.2. Determining class boxes, class patterns and slot patterns

Class Boxes, Class Patterns and Slot Patterns are objects needed to visualize the class-

related nodes of the rule graph. The structure of these objects is depicted in Table 1.

Table 1. The structure of class boxes, class patterns and slot patterns.

Class name Attributes Explanation

Class Box (C_B) N Class box name

P The set of class patterns of a class box

Class Pattern (C_P) N Name of corresponding class box

Body The rule in the body of which the class pattern appears

Head The rule in the head of which the class pattern appears

S The set of slot patterns of a class pattern

In The rule arrow that ends in the class pattern

(when the class pattern is a conclusion of a rule)

Out The class arrow that emanates from the class pattern

(when the class pattern is in a rule body)

Slot Pattern (S_P) N Slot pattern name

Var The list of variables of a slot pattern

Constraint The list of constraints of a slot pattern

For each class c, a class box cb with the same name is constructed and placed inside

the corresponding class box set CBb, CBd and CBf :

CB
b
 := ∅

foreach c ∈ CS
b

create cb of class C_B

CB
b
 := CB

b
 ∪ { cb }

cb.N := c

CB
d
 := ∅

foreach c ∈ CS
d

create cb of class C_B

CB
d
 := CB

d
 ∪ { cb }

cb.N := c

CB
f
 := CB

b
 ∪ CB

d

Class boxes are initially empty and are dynamically populated with one or more class

patterns as follows: for each atom element a inside a rule head or body, a new class

pattern cp is created and is inserted into the class box, whose name cb matches the class

name that appears inside the specific atom. The set of all class patterns is denoted by CP.

E. Kontopoulos et al.

912

CP := ∅

foreach r ∈ imp

foreach a ∈ atom(_body(r)) ∪ atom(neg(_body(r))

foreach cb ∈ CBf

cb.P:= ∅

if cb.N = rel(_opr(a))

then

create cp of class C_P

cb.P := cb.P ∪ { cp }

cp.N := cb.N

cp.Body := @ruleID(_rlab(r))

CP := CP ∪ { cp }

There is a corresponding procedure for the class patterns of the rule heads:

foreach r ∈ imp

foreach a ∈ atom(_head(r)) ∪ atom(neg(_head(r))

foreach cb ∈ CBf

cb.P:= ∅

if cb.N = rel(_opr(a))

then

create cp of class C_P

cb.P := cb.P ∪ { cp }

cp.N := cb.N

cp.Head := @ruleID(_rlab(r))

CP := CP ∪ { cp }

Similarly to class boxes, class patterns are empty, when they are initially created, but

are soon populated with one or more slot patterns. For each _slot element inside an

atom, a slot pattern sp is created that consists of a slot name (contained inside the

corresponding attribute) and, optionally, a variable and a list of value constraints. Slot

pattern sp is then inserted into the storage of the class pattern cp that corresponds to the

relevant atom a. The set of all slot patterns is denoted by SP.

SP := ∅

foreach α ∈ atom

foreach s ∈ @name(_slot(a))

foreach cb ∈ CBf

foreach cp ∈ cb.P

if cb.N = rel(_opr(a)))

then
create sp of class S_P

SP := SP ∪ { sp }

sp.N := s

cp.S := cp.S ∪ { sp }

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

913

Each of the slot pattern parts (slot name, variable and list of value constraints) is

being retrieved from the children (direct and indirect) of the _slot element in the XML

tree representation of the rule base.

foreach α ∈ atom

foreach s ∈ _slot(a)

foreach v ∈ var(s) ∪ var(_and(s))

foreach cb ∈ CBf

foreach cp ∈ cb.S

foreach sp ∈ cp.S

if cb.N=rel(_opr(a)) ∧ sp.N=@name(s)

then sp.Var:= sp.Var ∪ { v }

foreach c ∈ ind(s) ∪ _not(s) ∪ ind(_and(s)) ∪ function_call(_and(s)))

foreach cb ∈ CBf

foreach cp ∈ cb.S

foreach sp ∈ cp.S

if cb=rel(_opr(a)) ∧ sp.N=@name(s)

then sp.Constraint:= sp.Constraint ∪ { c }

3.2.3. Rule circles and arrow types

Rule Circles and Arrows are objects that are needed in order to visualize the rule nodes

and the arcs of the rule graph. The structure of these objects is depicted in Table 2.

Note that some of the attributes above are applied later on, in section 3.2.4, where the

algorithm for visualizing a rule base is thoroughly presented.

Table 2. The structure of rule circles and arrows.

Class name Attributes Explanation

Rule Circle (R_C) N Rule name

In The set of incoming arrows

Out The outgoing arrow

Rule Arrow (R_A) N Rule name

In The rule circle from which the arrow emanates

Out The class box node to which the arrow ends

Type The arrow type (plain|expandable – see section 3.2.4)

Orient The arrow orientation (plain|dotted – see section 3.2.4)

Superiority Arrow

(SR_A)

SUP The superior rule of the superiority relation

INF The inferior rule of the superiority relation

In The rule circle from which the arrow emanates

Out The rule circle to which the arrow ends

Class Arrow (C_A) In The class pattern node from which the arrow emanates

Out The rule circle to which the arrow ends

N A tuple of the class pattern and the corresponding rule

that uniquely identifies the class arrow

E. Kontopoulos et al.

914

For every rule in the rule base a rule circle is constructed, whose name matches the

value of the ruleID attribute in the _rlab element of the corresponding rule. The set of

all rule circles is denoted by RC and all rules are included in the rule set RS. The rule type

is equal to the value of the ruletype attribute inside the _rlab element of the

respective rule and can only take three distinct values (strictrule, defeasiblerule,

defeater). The corresponding arrow sets are denoted by SA, DA and FA. The set of all

arrows originating from rule circles is denoted by RA. Rule circles are connected with the

arrows representing rules, regardless their type.

RS := RC := SA := DA := FA := ∅

foreach r ∈ imp

RS := RS ∪ { r }

create rc of class R_C

create ar of class A_R

rc.N := ar.N := @ruleID(_rlab(r))

RC := RC ∪ { rc }

rc.Out := ar

ar.In := rc

if @ruletype(_rlab(r)) = strictrule

then

 SA := SA ∪ { ar }

 rc.Type := strictrule

if @ruletype(_rlab(r)) = defeasiblerule

then

 DA := DA ∪ { ar }

 rc.Type := defeasiblerule

if @ruletype(_rlab(r)) = defeater

then

 FA := FA ∪ { ar }

 rc.Type := defeater

RA = SA ∪ DA ∪ FA

The superiority relationship is represented as an attribute (superior) inside the

superior rule element. For each such relationship, a superiority arrow object is created,

linking the superior rule with the inferior rule. The set of all superiority arrows is SRA.

SRA := ∅

foreach r ∈ imp

foreach sr ∈ @superior(_rlab(imp))

create sar of class SR_A

SRA := SRA ∪ { sar }

sar.SUP := sar.In := @ruleID(_rlab(r))

sar.INF := sar.Out := sr

r.Out := sr.In := sar

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

915

The arrows between the class patterns of the rule body and the rule circles are

contained in the CA set:

CA := ∅

foreach cp ∈ CP

create car of class C_A

CA := CA ∪ { car }

car.N := 〈 cp, cp.Body 〉

cp.Out := cp.Body.In := car

car.In := cp

car.Out := cp.Body

car.Out.Premises := car.Out.Premises ∪ { cp }

where the 〈cp, cp.Body〉 tuple uniquely identifies such arrows, because the same class

pattern can be re-used in the body of many rules.

What remains to be established is how the arrows between the rule circles and the

class patterns of the rule head are constructed. These arrows are contained in the RA set,

presented above. Class patterns of the rule head are connected to rule arrows as follows:

foreach ar ∈ RA

foreach cp ∈ CP

if cp.Head = ar.N

then

cp.In := ar

ar.Out := cp

ar.In.Conclusion := cp

3.2.4. The visualization algorithm

After having collected all the necessary graph elements and having populated all the class

boxes with the appropriate class and slot patterns, three sets exist: (i) the base class boxes

set CBb that contains the class boxes corresponding to base classes, (ii) the derived class

boxes set CBd that contains the class boxes corresponding to derived classes, and (iii) the

set RC that includes all the rule circles of the rule base.

The next important task is the placement of each element in the graph. To this end, an

algorithm for the visualization of the rule base was implemented, which utilizes common

rule stratification techniques.
14

 Unlike the latter, however, that focus on computing the

minimal model of a rule set, our algorithm aims at the optimal visualization outcome,

namely the simplest graph possible. The algorithm is displayed in Fig. 8.

The algorithm gives a left-to-right orientation to the flow of information, placing the

graph elements in strata (or columns), with the first stratum located on the utmost left and

the numbering of the strata following the same left-to-right orientation. In other words,

the proposed algorithm deals with the “stratification” of the graph elements, calculating

the optimal stratum, in which each graph element has to be placed.

E. Kontopoulos et al.

916

During the execution of the algorithm, the following steps can be distinguished:

(i) All the base class boxes are placed in stratum #1.

(ii) The algorithm enters a loop, consecutively assigning strata to rule circles and

derived class boxes, incrementing each time the stratum counter by 1.

(a) A rule circle is assigned to a stratum, when all its premises belong to previous

strata, with at least one of them belonging to the immediately previous

stratum.

(b) A class box is assigned to a stratum, if it contains the conclusions of rules in

the immediately previous stratum.

 str:=1

foreach cb∈CBb do cb.Stratum:=str

while |RC|≠0 do

RuleTemp:=∅

str:=str+1

foreach R∈RC do

if ((∀p∈R.Premises → p.N.Stratum<str) ∧

(∃p'∈R.Premises ∧ p'.N.Stratum)=str-1))

then R.Stratum:=str, RC:=RC-{R}, RuleTemp:=RuleTemp ∪{R}

foreach R∈RuleTemp do

foreach p∈R.Premises do

if p.N.Stratum=str-1

then Type:=plain else Type:=expandable,

foreach X∈R.In do

 if X.In=p ∧ X.Out=R

 then X.Type := Type

str:=str+1

CbTemp:=∅

foreach R∈RuleTemp do

if unknown(R.Conclusion.N.Stratum)

then R.Conclusion.N.Stratum:=str,

CbTemp:=CbTemp∪{R.Conclusion.N}

foreach R∈RuleTemp do

if R.Conclusion.N∈CbTemp

then Orient:=plain else Orient:=dotted,

foreach X∈R.Out do

if X.In=R ∧ X.Out=R.Conclusion

then X.Orient:= Orient

Fig. 8. The rule stratification algorithm.

In the cases of cycles in the graph (i.e. a conclusion of a rule serves as a premise for

another rule in a previous stratum), neither the conclusion is drawn again, nor the arrow

connecting the rule with the conclusion is drawn backwards. Instead, in order to prevent

graph cluttering, a special type of “dotted” arrow is applied, commencing from the rule

circle and ending in three dots “…”. By clicking on the arrow, the user is presented with

a popup window, displaying the rule at full detail, including its premises and conclusion.

Also, according to the algorithm, only the arcs that connect two consecutive graph

elements are drawn by default. When the stratum difference between a class pattern and a

rule circle is greater than 1, the arrow that connects them is qualified as “expandable”

(contrary to “plain”). Expandable arrows are not drawn by default, but can be included in

the graph, by “expanding” (or revealing) all the arcs of the corresponding rule.

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

917

3.2.5. Example

This section outlines an example that better illustrates the representation approach as well

as the functionality of the algorithm described in the previous sections. Suppose that we

have the following rule base:

r1: hard_rock(X) → rock(X)

r2: rock(X) ⇒ likes(X)

r3: hard_rock(X) ⇒ ¬likes(X)

r4: hard_rock(X), artist(X,“Rainbow”) ⇒ likes(X)

The first three rules were encountered in section 2.1, while rule r4 reads as “Alice likes

hard rock songs by Rainbow”.

In VDR-DEVICE the ΟΟ data model is used (instead of the predicate/relational

model). So, predicates like rare and artist are actually represented as attributes of the

class hard_rock. Therefore, in the example three classes are needed, as Table 3

indicates: one base class (hard_rock) and two derived classes (rock and likes). Thus,

the three “key” sets, as described in sections 3.2.2 and 3.2.3 will be formulated as

follows:

CB
b
 := { hard_rock }

CB
d
 := { rock, likes }

RC := { r1, r2, r3, r4 }

After applying the algorithm, it comes up that four strata are needed to display all the

graph elements. Table 4 displays the final stratum assignments, according to the

algorithm. The first stratum is mapped to the first column on the left, the second stratum

to the column on the right of the first one and so on. Nodes in one column are never

connected with nodes in the same column, except from the case of rule superiority.

Table 3. Classes, included in the example.

Base Class hard_rock

Derived Classes rock, likes

Table 4. Stratum assignments.

stratum #1 hard_rock

stratum #2 r1, r3, r4

stratum #3 rock, likes

stratum #4 r2

Figure 9 displays the resulting graph, produced by DR-VisMo, which is compliant

with the algorithm and the representation approach presented previously. The main

window of the program is composed of a left-hand-side panel, where the rule graph is

displayed and a right-hand-side panel, which shows the properties of the graph element

selected on the left. Notice the “dotted” arrow “leaving” rule r2. As explained earlier, this

E. Kontopoulos et al.

918

arrow type is applied in cases of rule conclusions appearing in earlier strata than the rule.

By clicking on the arrow, a pop-up window presents the user with details, regarding the

corresponding rule, displaying its premises and conclusion.

Fig. 9. Implementation of the visualization algorithm.

3.3. System architecture and functionality

The previous sections focused on the various elements of the rule graph, while the

following subsections describe in detail the five modules that comprise DR-VisMo. The

overall architecture of the system is displayed in Fig. 10.

Graphical User Interface ModuleGraphical User Interface ModuleGraphical User Interface ModuleGraphical User Interface Module

Visual Rule Visual Rule Visual Rule Visual Rule

Authoring ModuleAuthoring ModuleAuthoring ModuleAuthoring Module

Graph HandlingGraph HandlingGraph HandlingGraph Handling

ModuleModuleModuleModule
UserUserUserUser

User Guidance User Guidance User Guidance User Guidance

ModuleModuleModuleModule

Rule Base Rule Base Rule Base Rule Base

Extraction ModuleExtraction ModuleExtraction ModuleExtraction Module

Fig. 10. DR-VisMo architecture.

3.3.1. Visual rule base authoring module

This module is the backbone of the system, since its primary function deals with the

visual development and visualization of the rule base created. More specifically, the

module is responsible for the creation of the visual constructs (rule circles, class boxes,

class patterns, slot patterns) that represent rules and atomic formulas in the graph as well

as the connections among the various graph elements (see section 3.1). Furthermore, the

rule base authoring module is also responsible for rendering the rule graph, not only

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

919

throughout its development stages, but also during the points, when users browse certain

parts of the graph or when they move around the graph or its various subparts.

The module communicates closely with two other modules: the graph handling and

the user guidance module, described in the following two subsections. The graph

handling module is responsible for displaying the corresponding properties of the graph

elements. Therefore, since the two modules present different aspects of the same rule

base, there cannot be any inconsistencies in the information they show. As for the latter

module, it is triggered by the authoring module during the development of a rule base for

controlling the input data and preventing syntactic and semantic errors, by displaying

relevant error messages.

3.3.2. Graph handling module

This module is primarily responsible for handling the information, stored in the rule

graph. More specifically, it displays the properties, corresponding to the various graph

elements and is responsible for handling changes, performed by the user. The following

modifications are allowed:

• Changing the name of visual constructs.

• Appending class patterns into class boxes.

• Inserting slot patterns into or removing slot patterns from a class pattern.

• Handling the connections among the visual constructs (positive/negated atomic

formula, rule type, superiority relationships).

• Removing connections among visual constructs.

These modifications are automatically reflected to the graph visualization, since the

graph handling module closely cooperates with the rule base authoring module.

Furthermore, this module also cooperates with the user guidance module, for preventing

erroneous or inconsistent alterations to the properties of the graph elements.

3.3.3. User guidance module

The user guidance module accepts input from the previous two modules and is

responsible for detecting and correcting potential errors on behalf of the user. Its main

functionality deals with inspecting the created slot patterns for syntactic validity (see

section 3.1 and Fig. 7). In case of a syntactic error, the module has to detect the mistake,

point the user to it and propose ways of correcting it, by displaying relevant error

messages.

3.3.4. User interface module

The user interface module comprises the sole means of interaction with the user.

Therefore, its design rationale includes user-friendliness and efficiency. Furthermore,

besides containing the rule authoring and graph handling modules, the user interface is

also responsible for communicating with the RuleML extraction module that will encode

the defeasible logic rule base in the RuleML-compatible syntax of DR-VisMo.

E. Kontopoulos et al.

920

3.3.5. Rule base extraction module

This module is primarily concerned with encoding the developed rule graph into a

RuleML-compatible document. This, however, is a two-step process: firstly, the module

receives the graph information from the user interface and creates an intermediary file

that corresponds to the rule base. Then, an XSLT transformation is performed, which

transforms the latter file into a RuleML-compatible document. Depending on the desired

RuleML version of the exported file, a different XSLT transformation is applied.

Currently, the system supports RuleML versions 0.86 and 0.91, but can be easily

extended to support more recent (or older) versions as well.

4. Evaluation

DR-VisMo was evaluated by post-graduate students (25 in total) attending a Semantic

Web course at the Department of Informatics at our university. The students were given a

defeasible logic rule base in textual form and were asked to model it using the software.

They were also requested to answer an on-line questionnaire for assessing DR-VisMo.

The questionnaire was not aimed at the usability of the software facilities; instead, its

primary objective was to allow the users to evaluate the representation schema adopted

by the system. The survey was divided in two major parts: the first part contained

questions, related to the intuitiveness and user-friendliness of the proposed representation

of defeasible logic rule bases, while the second part asked the users to evaluate the degree

of assistance that this representation schema offers during the development of a rule base.

Regarding the former part of the survey, users generally seemed to understand and

appreciate the adopted representation methodology. More specifically, 72% of the

participants found the representation intuitive, 88% found it easy to understand, 80%

found it aesthetically satisfactory, all of them (100%) found it interesting, while only

12% found it incomprehensible and unacceptable.

The evaluation results, regarding the latter part were also encouraging: all of the

participants (100%) believed that DR-VisMo indeed assists in the development of a

defeasible logic rule base, 76% believed that the system considerably improves

productivity (i.e. minimizes development time), 72% considered that the representation

gives a better overview of the rule dependencies, while only 16% of the users would

rather use another tool.

Overall, the result of using the system was considered acceptable and impressive by

44% and 30% of the users, respectively. There were users, nevertheless, that would prefer

more features in the proposed representation (32%), while, on the other hand, DR-VisMo

made defeasible logic attractive to 76% of the participants. Some shortcomings that users

detected and will be dealt with in our future improvements of the system include handling

more than one variable in a class pattern, representing conflicting literals and including

negation-as-failure in the representation.

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

921

5. Related Work

d-GRAPHER
15

 is system that consists of a visual defeasible graph (d-graph) editor and a

prolog-based inference engine. The system includes error-checking routines that prevent

the construction of illegal graphs, displaying appropriate error messages. Although d-

GRAPHER was the first system that offered visual development of d-graphs, adopting a

representation that comprised the starting point for DR-VisMo, it presents, nevertheless,

a number of drawbacks: the rule bases produced are of an elementary level of

expressiveness, not allowing conjunction/disjunction of atoms or representation of slot

variables and value constraints. Furthermore, the system is not able to represent more

expressive rule bases and is, thus, an isolated solution.

To the best of our knowledge, no other visual defeasible reasoning rule editors exist.

There exist, however, several visual editors for other types of logic. The editor of

TIGER
16

 is such an example. TIGER is an environment for modeling domains, using a

visual language. One of its subsystems is its visual rule editor, which deals with graph

rules. In TIGER, graph rules are used to manipulate the graph representation of a

language element and define syntax-directed editor commands. Since TIGER and VDR-

DEVICE are two highly differentiated systems, it is pointless to compare the respective

visual rule editors. Nevertheless, according to its designers, TIGER has been successfully

applied in a variety of scenarios, including the design of activity and sequence diagrams,

Petri nets and automata.

On the other hand, several graphical rule editors exist. The Protégé SWRL Editor,
17

for instance, is such a case. As its name implies, the software operates within Protégé-

OWL
18

 and allows users to seamlessly switch between SWRL rule editing and editing of

OWL entities, also allowing for incorporation of OWL entities into rules. SWRL Editor

deals with Horn-like rules, expressed in terms of OWL concepts, offering, however, a

lower degree of expressiveness, since it does not support the development of defeasible

logic rules. Another difference with DR-VisMo is the fact that the former is graphical,

contrary to the latter, which is purely visual.

Another SWRL editor is RuleVisor,
19

 implemented as part of the SAWA (Situation

Awareness Assistant) framework. The editor assists in the construction and maintenance

of SWRL rules, also cooperating with ontologies that provide the content, upon which a

rule set is to be built. The tool offers a user-friendly, yet frame-based and elementary,

development environment, which, especially in the cases of rule bases of a considerable

size, proves to be rather impractical.

A further paradigm of a graphical rule editor is Oryx, the graphical front-end for

Mandarax,
20

 which is a pure object oriented rule base engine for deduction rules. Oryx

consists of two parts, namely, a standalone and a server application. Oryx supports

verbalization of knowledge and, thus, includes a formal natural-language-based rule

editor as well as a repository for managing the vocabulary and a graphical user interface

library. Nevertheless, similarly to other aforementioned systems, Oryx cannot model

defeasible logic rules and it also comprises a graphically-based rule editor paradigm.

E. Kontopoulos et al.

922

On the other hand, there exists a variety of systems that implement rule representation

and visualization, although we didn’t come across any system that can visually represent

defeasible logic rules yet. Such an example is VisiRule,
21

 a graphical tool (module of

LPA Win Prolog) for delivering business rule and decision support applications. The user

draws a flowchart that represents the decision logic and VisiRule produces Flex code and

compiles it. The system offers guidance during the construction process, constraining

errors, based on the semantic content of the emerging program. This reduces the

possibility of constructing invalid or meaningless links, improving productivity and

helping detect errors early within the design process.

Finally, a knowledge representation paradigm, “borrowed” from the domain of Law,

is eGanges,
22

 a legal expert system shell that provides negotiation support for domestic

conflict prevention applications. The system employs a plug-in, called Negaid that adopts

a knowledge representation scheme, which is a tree-like structure, called a “river”. The

nodes in the river are antecedents in the conditional propositions of the procedural or

conflict resolution rule system, while arrows represent inference and indicate the flow of

extended deduction. Although eGanges and DR-VisMo both display inference steps and

interrelations among rules and antecedents, the two systems are remotely associated and

deal with differentiated domains; thus a comparison here regarding their functionalities

would be rather misplaced.

6. Conclusions and Future Work

This paper argued that logic and rules are the primary means of realizing the Semantic

Web vision, by offering the ability of reasoning over the information scattered in

the Web. Defeasible reasoning was proposed as an approach that can assist towards

this affair. It represents a non-monotonic reasoning approach that features high

expressiveness and low computational overhead. Furthermore, it is highly suitable for the

Semantic Web, since it can handle inconsistent and conflicting information, a situation

that is often encountered in highly dynamic environments like the Web.

Defeasible reasoning is based on a solid mathematical notation, which sometimes

may seem confusing to the end user. A system, called DR-VisMo, for authoring and

visualizing defeasible logic rule bases was presented in this paper, aiming at alleviating

this problem. DR-VisMo adopts a representation schema, based on enhanced directed

graphs that feature distinct node types for rules and atomic formulas and distinct

connection types for each rule type in defeasible logic and for superiority relationships.

For the visualization of defeasible logic rule bases, DR-VisMo also implements a

stratification algorithm that deals with decisions, regarding the arrangement of the

various elements in the graph.

The motivation behind DR-VisMo is associated with the lack of tools for visual

modeling and representation of rule bases in general and defeasible logic rule bases in

particular. As seen in the “Related Work” section, no modern systems exist currently for

authoring defeasible reasoning rule bases, while there is also a deficiency of tools for rule

bases of other types of logics. And, as the user evaluation presented earlier (see section 4)

 Visual Modeling of Defeasible Logic Rules with DR-VisMo

923

demonstrates, the system indeed seems to assist users in the development of defeasible

logic rule bases, significantly reducing the time needed for the task. The assessment

results were overall encouraging.

As for our future research goals, a variety of tasks still remains to be addressed.

Potential improvements of DR-VisMo include enhancing visual representation with

negation-as-failure and variable unification, for simplifying the display of multiple

unifiable class patterns. The improvement of the syntax control module is also necessary,

for offering better guidance to the end user, during the addition of new slots and

conditions inside a class pattern. Other improvements were also proposed by the users,

who participated in the evaluation.

Expressive visualization of a defeasible logic rule base can lead to proof explanations.

By adding visual rule execution tracing, proof visualization and validation to DR-VisMo,

we will then be able to delve deeper into the Proof layer of the Semantic Web

architecture, implementing facilities that would increase the trust of users towards the

Semantic Web.

Acknowledgments

This work was partially supported by a NON-EUROPE project (GSRT - 05 NON EU

423), jointly funded by the European Union and the Greek Government (General

Secretariat of Research and Technology/GSRT).

References

1. T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web, Scientific American, 284(5),

2001, pp. 34-43.

2. D. Nute, Defeasible Reasoning, Proc. 20th Int. Conf. on Systems Science, IEEE Press, 1987,

pp. 470-477.

3. M. A. Covington, D. Nute and A. Vellino, Prolog Programming in Depth, Prentice-Hall, Inc.

1996.

4. M. J. Maher, Propositional Defeasible Logic has Linear Complexity, Theory and Practice of

Logic Programming, 1(6), 2001, pp. 691–711.

5. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994.

6. E. Kontopoulos, N. Bassiliades and G. Antoniou, Visualizing Defeasible Logic Rules for the

Semantic Web, Proc. 1st Asian Semantic Web Conf. (ASWC'06), Springer-Verlag, LNCS

4185, Beijing, China, 2006, pp. 278-292.

7. E. Kontopoulos, N. Bassiliades and G. Antoniou, Visual Stratification of Defeasible Logic

Rule Bases, Proc. 19th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI), IEEE,

Patras, Greece, 2007, pp. 238-245.

8. N. Bassiliades, E. Kontopoulos and G. Antoniou, A Visual Environment for Developing

Defeasible Rule Bases for the Semantic Web, Proc. RuleML-2005, Galway, Ireland, Springer-

Verlag, LNCS 3791, 2005, pp. 172-186.

9. D. Nute and K. Erk, Defeasible logic graphs: I. Theory, Decis. Support Syst., 22(3), 1998,

pp. 277-293.

10. Antoniou, G., Billington, D., Governatori, G., Maher, M. J. Representation results for

defeasible logic. ACM Trans. Comput. Log., 2(2), 2001, pp. 255-287.

E. Kontopoulos et al.

924

11. N. Bassiliades, G. Antoniou and I. Vlahavas, A Defeasible Logic Reasoner for the Semantic

Web, Int. Journal on Semantic Web and Information Systems, 2(1), 2006, pp. 1-41.

12. N. Bassiliades and I. Vlahavas, R-DEVICE: An Object-Oriented Knowledge Base System for

RDF Metadata, Int. Journal on Semantic Web and Information Systems, 2(2), 2006, pp. 24-90.

13. CLIPS Basic Programming Guide (v. 6.24), www.ghg.net/clips/CLIPS.html, last accessed:

January 3, 2008.

14. J.D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1, Computer Science

Press, 1988.

15. D. Nute, Z. Hunter and C. Henderson, Defeasible logic graphs: II. Implementation, Decis.

Support Syst., 22(3), 1998, pp. 295-306.

16. C. Ermel, K. Ehrig, G. Taentzer and E. Weiss, Object Oriented and Rule-based Design of

Visual Languages using TIGER, Proc. Third Int. Workshop on Graph-Based Tools

(GraBaTs'06), volume 1, Natal, Brazil, September 2006, Electronic Communications of the

EASST.

17. M. J. O'Connor, H. Knublauch, S. W. Tu, B. Grossof, M. Dean, W. E. Grosso and M. A.

Musen, Supporting Rule System Interoperability on the Semantic Web with SWRL, Proc. 4th

International Semantic Web Conference (ISWC2005), Galway, Ireland, 2005.

18. H. Knublauch, R. W. Fergerson, N. F. Noy and M. A. Musen, The Protégé OWL Plugin: An

Open Development Environment for Semantic Web Applications, Proc. of the 3rd Int'l

Semantic Web Conf. ISWC), Hiroshima, Japan, 2004, pp. 229-243.

19. C. Matheus, M. Kokar, K. Baclawski and J. Letkowski, An Application of Semantic Web

Technologies to Situation Awareness, Proc. 4th International Semantic Web Conference

(ISWC 2005), Galway, Ireland, 2005.

20. J. Dietrich, A. Kozlenkov, M. Schroeder and G. Wagner, Rule-based agents for the semantic

web, Electronic Commerce Research and Applications, 2(4), 2003, pp. 323–338.

21. R. Shalfield, VisiRule User Guide, http://www.lpa.co.uk/ftp/4600/vsr_ref.pdf, 2005.

22. P. N. Gray, X. Gray and J. Zeleznikow, Negotiating logic: for richer or poorer, Proc. 11th

international Conference on Artificial intelligence and Law (ICAIL), Stanford, California,

2007, ACM, New York, NY, 247-251, DOI= http://doi.acm.org/10.1145/1276318.1276366.

