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Abstract 

 

Defeasible logic is a non-monotonic formalism that deals with incomplete and conflicting information, while 

modal logic deals with the concepts of necessity and possibility. These types of logics can play a significant role 

in the emerging Semantic Web, which aims at enriching the available Web information with meaning, leading to 

better cooperation between end-users and applications. Defeasible and modal logics, in general, and, particularly, 

deontic logic can assist by providing means for modeling agent communities, where each agent is characterized 

by its own cognitive profile and normative system, as well as policies, which define privacy requirements, access 

permissions and individual rights. Towards this direction, this article reports on the extension of DR-DEVICE, a 

Semantic Web-aware defeasible reasoner, with a mechanism for expressing modal logic operators, while testing 

the implementation via deontic logic operators, concerned with obligations, permissions and related concepts. 

The motivation behind this work is to develop a practical defeasible reasoner for the Semantic Web that will take 

advantage of the expressive power offered by modal logics, accompanied by the flexibility to define diverse 

agent behaviours. A further incentive is to study the various motivational notions of deontic logic and to discuss 

the cognitive state of agents as well as the interactions among them. 



A MODAL DEFEASIBLE REASONER OF DEONTIC LOGIC FOR THE SEMANTIC WEB 

 

3 

Introduction 

Defeasible Logic, originally introduced by Nute (1994), is a non-monotonic formalism that deals with 

incomplete and conflicting information. Compared to other more mainstream non-monotonic approaches 

(Gottlob, 1992; Kautz & Selman, 1991; Soininen & Niemela, 1998), this approach offers enhanced 

representational capabilities and low computational complexity. Defeasible reasoning can represent facts, rules, 

priorities and conflicts among rules. Such conflicts usually emerge in the case of rules with exceptions, which 

are a natural representation for policies and business rules (e.g. work by Rissland & Skalak, 1991 and Schild & 

Herzog, 1993). In these cases priority information is often used in resolving conflicts among rules. 

Modal Logic (Blackburn, de Rijke & Venema, 2001), on the other hand, is a system of formal logic that 

deals with modalities, namely, expressions that are associated with the notions of possibility and necessity. 

However, modal logic is not restricted to these concepts, but can assume a variety of interpretations, depending 

on meaning, context and various other factors. Thus, according to the different interpretations, there exist diverse 

categories of modal logics, like epistemic logic that deals with the certainty of sentences (Meyer, 2001), deontic 

logic, which deals with the notions of obligation and permission (Hilpinen, 2001), temporal logic, which deals 

with temporal notions (Venema, 2001) and doxastic logic that deals with reasoning about beliefs (Meyer, 2003). 

Modal logics are usually deployed as extensions to classical propositional logic with intentional 

operators. However, classical propositional logic requires complete, consistent and reliable information, 

requirements that are rarely met in real-life scenarios, which are by default defeasible in nature. Additionally, 

reasoning about motivational notions like beliefs, intentions or obligations, displays a significant degree of 

defeasibility. Consequently, instead of extending propositional logic, it is more appropriate to extend defeasible 

logic with modal logic elements and recent work confirms this trend (Governatori & Rotolo, 2004; Governatori, 

Hulstijn, Riveret & Rotolo, A, 2007; Riveret, Rotolo & Governatori, 2007). 

The above types of logics are extremely suitable in the Semantic Web, which aims at enriching the 

available information on the Web with meaning, leading to better cooperation between end-users and 

applications (Berners-Lee, Hendler & Lassila, 2001). Defeasible and modal logics, in general, and deontic logic, 

in particular, can assist towards this direction, by providing means for modeling multi-agent systems (MAS), 

where each agent is characterized by its own cognitive profile and normative system, as well as policies, which 

define privacy requirements for a user, access permissions for a resource, individual rights etc. Already, 

defeasible logic is applied in a number of related fields, like semantic brokering (Antoniou, Skylogiannis, 
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Bikakis & Bassiliades, 2007), security policies (Ashri, Payne, Marvin, Surridge & Taylor, 2004), e-contracting 

(Governatori, 2005) and agent negotiations (Skylogiannis, Antoniou, Bassiliades, Governatori & Bikakis, 2007) 

and, as the article argues, extending defeasible logic with deontic logic operators significantly improves our 

ability to model applications, naturally using concepts and notions similar to those we find in applications. 

This article is based on previous work by the authors (Kontopoulos, Bassiliades, Governatori & 

Antoniou, 2008) and reports on extending the DR-DEVICE first-order defeasible logic reasoner (Bassiliades, 

Antoniou & Vlahavas, 2006) with reasoning capabilities on modal defeasible logic rule bases. Notice that in this 

work we focus mainly on deontic logic operators, without loss of generality, even if the techniques proposed can 

be applied to any modal logic. More specifically, the system has been extended to introduce rule modes that 

determine the modalities of the derived conclusions, as well as modalized literals that can serve as facts or 

premises of rule bodies. The aim is to develop a practical defeasible logic reasoner that will take advantage of 

the expressive power of modal logics, accompanied by the flexibility to define various agent types and 

behaviors. The motivation behind this work is two-fold, since we wish to: (a) study the various motivational 

notions, especially those of deontic logic, and (b) discuss the cognitive state of agents as well as the interactions 

among them, focusing mainly on deontic logic. 

The rest of the article is organized as follows: The following section outlines the basics of defeasible 

logic, focusing mainly on its knowledge representation and inference mechanism, followed by a description of 

the fundamental notions of modal and deontic logics. The next section summarizes the core notions of extending 

defeasible logics with modal and deontic logic operators and focuses on two important aspects of modal 

interactions, namely conflict resolution and rule conversions. The section that follows comprises the backbone of 

the article and addresses the theoretical and practical issues of extending the DR-DEVICE defeasible logic 

reasoner with modal and deontic operators, accompanied by a complete use case scenario in the Semantic Web. 

In our discussion of the implementation we include a proof of the correctness and completeness of the 

transformation algorithm from a modalized defeasible rule base to an non-modalized equivalent one, along with 

a discussion on the efficiency of the implementation, which is proved to be in the same order of magnitude in 

complexity with that of the underlying first-order defeasible reasoning system. Finally, an outline of related 

ongoing work in the area is presented, as well as concluding remarks and directions for future improvements. 
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Defeasible Logic 

A defeasible theory D (i.e. a knowledge base or a program in defeasible logic) consists of three basic 

elements: a set of facts (F), a set of rules (R) and a superiority relationship (>). Therefore, D can be represented 

by the triple (F, R, >). We assume a function-free first-order language. 

In defeasible logic, there are three distinct types of rules: strict rules, defeasible rules and defeaters. 

Strict rules are interpreted in the typical sense: whenever the premises are indisputable, then so is the conclusion. 

Strict rules are denoted by A → p, where A is a set of literals and p is a (positive or negative) literal. An example 

of a strict rule is: “E-books are books”, which can be formalised as: rs: ebook(X) → book(X). 

Contrary to strict rules, defeasible rules can be defeated by contrary evidence and are denoted by 

A ⇒ p. Two examples are: rd1: book(X) ⇒ printed(X) (“Books are typically printed”) and 

rd2: ebook(X) ⇒ ¬printed(X) (“Ebooks are not printed”). 

Defeaters, denoted by A  p, are rules that do not actively support conclusions, but can only defeat 

conflicting defeasible conclusions, by producing evidence to the contrary. An example of a defeater is: 

rf: cheap(X)  ¬printed(X), which reads as: “Cheap books might not be printed”. This defeater can 

defeat, for example, rule rd1 mentioned above, eventually preventing the derivation of its conclusion. 

Finally, the superiority relationship among the rule set R is an acyclic relation > on R, used to resolve 

conflicts among rules. For example, given defeasible rules rd1 and rd2, no conclusive decision can be made 

about whether an e-book is eventually printed or not, because rules rd1 and rd2 contradict each other. But, if the 

superiority relationship rd2 > rd1 is introduced, then rd2 overrides rd1 and we can indeed conclude that e-books 

are not printed. In this case rule rd2 is called superior to rd1 and rd1 inferior to rd2. 

A conclusion of D is a tagged literal and can have one of the following forms: 

• +Δq, i.e. q is definitely provable in D (i.e. using only facts and strict rules). 

• -Δq, i.e. we have proved that q is not definitely provable in D. 

• +¶q, i.e. q is defeasibly provable in D. 

• -¶q, i.e. we have proved that q is not defeasibly provable in D. 

If q can be proved definitely, then q is also defeasibly provable. 
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Modal and Deontic Logic 

Modal logic deals with the notions of possibility (“it is possible that”) and necessity (“it is necessary 

that”). In other words, it not only considers truth and falsity, as normal logic does, but also considers what it 

would be like, if things were different in a possible alternative world. In this sense, something is necessary in a 

world, if it can be proved in all alternative worlds, and it is possible in a world, if it can be proved in at least one 

of all alternative worlds. 

Modal logic extends classical logic (either propositional or predicate calculus) by adding two monadic 

operators that introduce the corresponding modal notions: 

• The necessity operator, written as □: □p (“necessarily p”) 

• The possibility operator, written as à: àp (“possibly p”) 

The interpretation of these operators often covers a wider range of concepts with similar rules and a 

variety of different symbols that can handle an array of other ideas. Thus, modal logic has been applied as the 

means for establishing the foundations of analyzing epistemic and doxastic notions, like knowledge and belief, 

paving the way for agents and MAS; modal operators are very useful in expressing the internal cognitive states 

of agents, as well as interactions among different agents.  

A member of the family of logics that stem from modal logic is deontic logic that is concerned with 

permissions, obligations and related concepts. The term “deontic” stems from the Greek corresponding term for 

“duty”. Deontic logic introduces three operators: O for “it is obligatory that”, P for “it is permitted that” and F 

for “it is forbidden that”. P and F are defined in terms of O: 

Pq ≡ ~O~q Fq ≡ O~q 

Deontic logics can also be built upon propositional logic and can assume an elegant Kripke-style 

semantics, similarly to standard modal logics. The result is known as Standard Deontic Logic (often referred to 

as SDL) and can be axiomatized by adding the following axioms to a standard axiomatization of classical 

propositional logic: 

O(p→q) → (Op→Oq) (if it is obligatory to be that p implies q, then, if p is obligatory, then q is obligatory) 

Oq → Pq (if q is obligatory, then q is permissible) 

Deontic logic is heavily used in expressing policies (Bieber & Cuppens, 1993; Kolaczek, 2002), which 

are rule sets used in defining access permissions, security and privacy requirements, individual rights etc. for 

government, private sector organizations and groups, and individuals. Especially for the Semantic Web domain, 
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policies and automated trust negotiation are two highly appealing applications (Bonatti, Duma, Fuchs, Nejdl, 

Olmedilla, Peer & Shahmehri, 2006; Kagal, Berners-Lee, Connolly & Weitzner, 2006). 

Modal Defeasible Logic 

First-order logic has also been used to represent deontic notions (Lokhorst, 1996) leading to formal 

theories that can be implemented in logic programming systems. Our implementation is one of them, 

incorporating deontic logic theories in a first-order defeasible logic programming system, called DR-DEVICE. 

The idea behind this combination is to have a modal framework expressive enough to model certain kinds of 

deontic defeasibility, in particular by taking into account preferences on norms (Artosi et al., 1996). 

In the rest of this article the following modal operators are considered:  

• Belief (K): represents the agent’s theory of the world. 

• Intention (I): corresponds to the agent’s intentions (policies). 

• Obligation (O): captures the agent’s obligations. 

• Agency (Z): represents the agent’s intentional actions. 

• Permission (P): corresponds to what the agent is permitted to do. 

The permission operator was adopted from Antoniou, Dimaresis and Governatori (2009), allowing the 

representation of (and reasoning with) business rules and policies. Permissions and obligations form the agent’s 

normative system and allow studying the interaction between internal and external factors.  

As Governatori and Rotolo (2008a) suggest, there are two potential ways of extending defeasible logics 

with modal logic operators: (1) adopt explicit predicates that represent the effect of modal operators, or (2) 

introduce new rule types for modal operators. Thus, the rule “We intend to go to Rome for the summer” can be 

represented in the following two forms respectively: 

r1: summer ⇒ I_weGoToRome (1) 

r2: summer ⇒I weGoToRome (2) 

Option 1 might seem preferable, since it imposes no need for introducing new rule types. Nevertheless, 

explicit predicates need to be accompanied each time by formal semantics. On the other hand, option 2 enriches 

the expressiveness of the language and permits interactions among modal operators. The main idea behind this 

option is to have one defeasible consequence relation for each modal operator. Defeasible logic is able to handle 

different, and somehow incompatible, intuitions of non-monotonic reasoning. Thus this choice allows us (a) to 
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have modal operators with different properties, and (b) to have a more fine grained control on how a proposition 

can be derived and can be used to derive other conclusions. This is not possible if one adopts Option 1.  

The second difference between the two options is about the interactions among the various modal 

operators. To illustrate this difference, suppose, for example, that we have two modal operators □1 and □2, and 

the interaction between these two is {a :  □1a} Í {a :  □2a}, or in other terms that the two modal operators 

are related by the axiom □1a ® □2a. To capture this, according to the first option, for each proposition/predicate 

a we need to introduce the propositions/predicates □1_a and □2_a and the rule □1_a Þ □2_a. For the second 

option, as we shall see in details in the rest of the paper, we can capture the relationship at the logic level. This 

means that we can define appropriate derivability conditions. In addition, if we do not want the property to hold 

for all predicates but only for a few instances, we can capture this at the theory level by introducing rules like 

□1a Þ□2 a for the specific predicates. The above discussion illustrates the advantages of the second option over 

the first, and shows also that the second option is more general and conceptually better, therefore, it is seemingly 

more appropriate to adopt Option 2 to extend defeasible logics with modal logic operators. 

A modalized literal is represented by a literal accompanied by a modal operator prefix. For example, 

the application of rule r2 above would produce the conclusion I(weGoToRome). A K-modalized literal belongs 

to the knowledge of the environment and is equivalent to the same literal without any prefix. Thus, K(summer) 

and summer are equivalent. Consequently, rules with K as their mode produce un-prefixed conclusions, if their 

antecedents are derived. Finally, since rules are meant to introduce modalities, modalized literals appear only in 

the rule body and not in the head. 

With the exception of the belief operator K, the rest of the modal operators treated by the system are 

modeled as non-reflexive, meaning that, if X is a modal operator, a does not follow from X(a): X(a)a. Also, 

iterated modalities, like I(O(a)) or O(I(a)), that feature iterations of modalities, are not considered in this paper, 

in order to keep the system manageable (in first-order logic) and because their semantics would be too 

complicated for the casual Semantic Web end-user. The interested reader can refer to the work by Governatori 

and Rotolo (2008b) for a better insight into how iterated modalities can be handled. Also modal interaction 

axioms, like Z(O(a)) → I(a) and I(O(a)) → I(a) are not treated in this paper because there is no general 

consensus among the researchers on how many and which such axioms should be included in a normative 
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system. However, any modal interaction axiom can be easily handled through the rule conversion technique used 

in our system that is presented later in the article. 

A conclusion in modal defeasible logic is represented with a tagged literal, similarly to the proof theory 

of defeasible logics (see previous section), but augmented with information regarding the modality, in which 

each conclusion is (or is not) proved. Thus, such a conclusion can have one of four forms: 

• +ΔXq: q is definitely provable in modality X in the defeasible theory D. 

• -ΔXq: q is not definitely provable in modality X in the defeasible theory D. 

• +¶Xq: q is defeasibly provable in modality X in the defeasible theory D. 

• -¶Xq: q is not defeasibly provable in modality X in the defeasible theory D. 

An example that illustrates all of the above is the well-known “prisoner’s dilemma” borrowed from 

game theory (Hofstadter, 1983): “Two suspects are arrested by the police. The police have insufficient evidence 

for a conviction, and, having separated both prisoners, visit each of them to offer the same deal: if one testifies 

against the other and the other remains silent, the betrayer goes free and the silent accomplice receives the full 

10-year sentence. If both remain silent, both prisoners are sentenced to only six months in jail for a minor 

charge. If each betrays the other, they receive a 5-year sentence. However, the “criminal code of honour” 

designates not to betray fellow criminals. Each prisoner must make the choice of whether betraying the other or 

remaining silent. The best individual outcome for each prisoner is to confess the crime, while the best mutual 

outcome is to stay silent.”  

The above can be formalized in defeasible deontic logic as follows (Governatori & Rotolo, 2004): 

f1: committedCrime 

f2: arrested 

p1: committedCrime ∧ arrested ⇒Z confess 

p2: committedCrime ∧ arrested ⇒O ¬confess 

The dilemma represents a typical conflict between an agent’s intentions and normative system 

(obligations and permissions). According to the agent type, various conclusions can be drawn; for example one 

can conclude +¶Zconfess and -¶O~confess if the agent is deviant (intentions and intentional actions override 

obligations). More details regarding the language and inference of modal defeasible logic can be found in work 

by Governatori and Rotolo (2004; 2008a).  
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Conflict Resolution 

In the modal extension of defeasible logics a rule is attacked by another rule when the two conclusions 

are complementary and the two rule modes are different. This conflict resolution scheme is more flexible than 

the superiority relationship encountered in classical defeasible logics; depending on the modes of the attacking 

and attacked rules, a set of criteria is designated that determines whether a rule (and which one) eventually 

prevails. Interestingly, there exist basic attacks, which always apply, as well as attacks that depend on the agent 

type.  

 
Table 1. Basic attacks and corresponding results 

⇒K p / ⇒O ~p +¶K p / -¶O ~p ⇒I p / ⇒P ~p +¶I p / +¶P ~p 

⇒K p / ⇒I ~p +¶K p / -¶I ~p ⇒P p / ⇒Z ~p +¶P p / +¶Z ~p 

⇒K p / ⇒Z ~p -¶K p / -¶Z ~p ⇒P p / ⇒O ~p -¶P p / -¶O ~p 

⇒K p / ⇒P ~p +¶K p / -¶P~ p ⇒O p / ⇒I ~p type of agent 

⇒I p / ⇒Z ~p -¶I p / -¶Z ~p ⇒O p / ⇒Z ~p type of agent 

 

In general, beliefs override all other modes, with the exception of agency (i.e. intentional actions). Since 

beliefs represent an agent’s knowledge of the world, they are considered rationally superior to its policies and 

normative system. Actions, on the other hand, can attack beliefs; because they can have a contradicting effect on 

the agent’s knowledge of the world (i.e. actions can alter the status of the world). As Table 1 shows, no 

conclusion can be made on the truth of either the belief or the intentional action. This means that knowledge is 

lost when the agent wants to act in order to change something in the world it believes in. In an actual agent 

implementation after this conclusion was drawn, the agent would have re-observed the world in order to recover 

its knowledge. 

Intention and agency are mutually attacked; this means that they block each other’s proof, since agency 

(action) is intentional by definition. Mutual attacks also exist among obligation and permission. Agents that 

encompass this “basic attacks” conflict resolution scheme are often called realistic (Broersen, Dastani, Hulstijn, 

Huang & van der Torre, 2001; Governatori & Rotolo, 2004). Table 1 displays the basic attacks and the 

corresponding results. For each pair of cells, the first one describes the attack; e.g. the top-left cell features a rule 

in mode “K” that is attacked by a rule in mode “O”. The second cell displays the resulting conclusions; e.g. in 
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the second top-left cell, the results of the previous attack are +¶K p and -¶O ~p, meaning that conclusion p is 

proved defeasibly, while its complement is not defeasibly provable.  

Nevertheless, as the table exhibits, the conflicts among intentions, obligations and actions are resolved, 

depending on the agent type. Thus, agent types are used in establishing conflict resolution schemes, by 

determining the way that rules of various modes interact with each other. Table 2 displays the way agent types 

assist in resolving these conflicts.  

The table features six common agent types. The two most “extreme” types are the independent agent 

that can freely adopt intentions and actions that disagree with its normative system and the pragmatic agent, 

which does not allow for any derivation at all. The selfish saint has conflicting intentions and obligations, but no 

intentional action can be derived, while the social sinner does not proceed to any action contrary to its 

obligations, but remains with the intentions to the contrary. Finally, for a social agent, obligations override all 

intentions and actions to the contrary, while deviant agents represent the opposite, where obligations are 

overridden by opposing intentions and intentional actions. Note that our implementation currently includes only 

the latter two agent types, accompanied by the realistic type, but the variety can easily be extended, as explained 

later. 

 

Table 2. Resolving conflicts among obligations/intentions/actions, depending on agent type 

⇒O p / ⇒I ~p ⇒O p / ⇒Z ~p agent type 

+¶O p +¶I ~p +¶O p +¶Z ~p independent 

+¶O p +¶I ~p +¶O p -¶Z ~p selfish saint 

+¶O p -¶I ~p +¶O p -¶Z ~p social 

-¶O p +¶I ~p -¶O p +¶Z ~p deviant 

-¶O p +¶I ~p -¶O p -¶Z ~p social sinner 

-¶O p -¶I ~p -¶O p -¶Z ~p pragmatic 

 

Rule Conversion 

There are certain cases where the conclusion does not “inherit” the rule mode, but it adopts a different 

modality. This feature, called rule conversion, allows for various rational side effects to be derived and is 

required in capturing certain aspects of the rationality of agents. Rule conversions offer the possibility to convert 

the rule mode, depending on the modalities, in which the corresponding rule premises have been proved. For 
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example, if we have rule weGoToRome ⇒K weGoToItaly, and we intend to go to Rome, then should we 

conclude +¶KweGoToItaly or +¶IweGoToItaly? The latter seems more intuitive; thus, the rule can be converted 

into a rule for intentions. Generally speaking, conversions are a means for deriving rational side effects. 

In some cases rule conversion is a debatable principle, and for some combination of modalities and 

applications it might not be appropriate. Governatori and Rotolo (2004; 2008a) and Governatori, Padmanabhan, 

Rotolo & Sattar (2009) argue that conversion from beliefs to intention allows us to model the notion of 

intentionality and that this is essential if one wants to model normative reasoning. In some jurisdiction, the 

concept of (legal) responsibility depends on that on intentionality, that is if one is aware of the consequences of 

an intended action (and carries it out), then one intends the consequences as well, unless there are some reasons 

not to do so. This should be contrasted by the infamous dentist example of Cohen and Levesque (Cohen & 

Levesque, 1990). The example runs as follows: “If I intend to the dentist's and I know that if I go to the dentist, I 

will have pain, it should not follow that I intend to have pain.” Thus, it seems that subscribing to the conversion 

principle for belief and intentions leads to counterintuitive conclusions. Let us go back to the example, and let us 

suppose that I go to the dentist to have a (painful) root canal procedure. Now, let us ask, what are the reasons for 

going to the dentist to have the procedure? If no further information is given, then, it is reasonable to conclude 

that I go the dentist to suffer some pain, but if the reasons is that I had a bad cavities that causes some very 

painful abscess, then the reason is to cure my tooth and this implies that I have the intention not to have pain 

(Governatori & Rotolo, 2008a). 

 

Table 3. Supported rule conversions 

X ⇒ Y agent type X ⇒ Y agent type 
O K O all types O Z O all types 
I K I all types I O I social 
Z K Z all types Z O Z social 
P K P all types O I O deviant 
I Z I all types O Z O deviant 

 

Conflicts and conversions are not directly related to each other, but they both help portray the cognitive 

profile of an agent. Nevertheless, similarly to conflicts, there exist rule conversions that apply to all agent types, 

but there also exist type-dependant conversions.  
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Table 3 displays the rule conversions supported by the extended DR-DEVICE. The first column 

indicates the permitted modality of the rule premises. Note that a rule can of course have more than one 

antecedent; all of them, however, have to share the same modality. Currently, rule conversions for rules with 

more than one modality in their body are not supported, since they can potentially lead to a combinatorial 

explosion of cases and also increase the computational complexity of reasoning. The second column indicates 

the rule mode, while the third one displays the resulting modality of the conclusion. The final column indicates 

the agent types, for which the specific conversion holds. The selection of agent types can, nevertheless, be 

extended, as described later. 

As a final remark, notice that the contents of the tables above (attacks/corresponding results as well as 

agent types and rule conversions) merely comprise axioms, which are (philosophically) debatable and with 

subjective applicability. Of course, each user (developer/knowledge engineer etc) can designate different conflict 

resolution and conversion schemes that better reflect his/her view of the notions at hand. 

Implementation 

This section describes the extension of DR-DEVICE, which is called DR-DEVICEM and handles modal 

and deontic logic operators, rule conversions and conflict resolution schemes. 

The DR-DEVICE Defeasible Logic Reasoner 

DR-DEVICE (Bassiliades et al., 2006) is a defeasible logic reasoner that employs an object-oriented 

RDF data model, which is different from the established triple-based data model for RDF. The main difference is 

that the system treats properties as normal encapsulated attributes of resource objects. This way, properties of 

resources are not scattered across several triples, as in most other RDF inference systems, resulting in increased 

query performance due to less joins. The most important features of DR-DEVICE are the following: 

• It supports multiple rule types of defeasible logic, such as strict rules, defeasible rules, and defeaters. 

• It supports two types of negation (strong, negation-as-failure) and conflicting (mutually exclusive) literals. 

• It supports RuleML (Boley, 2006), a mainstream standardization effort for rules in the Semantic Web. 

• It supports direct import from the Web and processing of RDF data and RDF Schema ontologies. 

• It supports direct export to the Web of the results (conclusions) of the logic program as an RDF document. 
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• It is built on-top of a CLIPS-based implementation of deductive rules (Bassiliades & Vlahavas, 2006). The 

core of the system consists of a translation of defeasible knowledge into a set of deductive rules, including 

derived and aggregate attributes.  

As a result of the above, DR-DEVICE is a powerful declarative system supporting: rules, facts and 

ontologies; major Semantic Web standards: RDF, RDFS, RuleML; monotonic and non-monotonic rules and 

reasoning with inconsistencies. More details can be found in (Bassiliades et al., 2006) and (Bassiliades & 

Vlahavas, 2006). 

DR-DEVICE supports two types of syntax for defeasible logic rules: a native CLIPS-like syntax and a 

RuleML-compatible one, called DR-RuleML. While DR-RuleML utilizes as many features of the official 

RuleML as possible, several of the features of defeasible logic cannot be expressed by the existing RuleML 

specifications. For this reason the modularization scheme of RuleML was applied and new XML Schema 

documents (up to v.0.91-compatible) were developed. The performed extensions deal with rule types, superiority 

relations among rules and conflicting literals, as well as with constraints on predicate arguments and functions. 

 

 <Implies ruletype="defeasiblerule" superior="rd1"> 
<oid> <Ind uri="rd2">rd2</Ind> </oid> 

 <head> 
  <Neg> 
   <Atom> 

<op> <Rel>hardcover</Rel> </op> 
   <slot> <Ind>name</Ind> <Var>x</Var> </slot> 
  </Atom> 

  </Neg> 
 </head> 
 <body>     
  <Atom> 

<op> <Rel uri="books:novel"/> </op> 
<slot> <Ind uri="books:name"/> <Var>x</Var> </slot> 

  </Atom>    
 </body> 
</Implies>  

Fig. 1. Representing rule rd2 in the DR-DEVICE RuleML-compatible syntax 

 

Fig. 1 displays the following rule in DR-RuleML (v. 0.91): 

rd2: novel(X) ⇒ ¬hardcover(X) (“Novels are typically not hard-covered”) 

The names (Rel elements) of the operator (op) elements of atoms are class names, since atoms actually 

represent CLIPS objects (Bassiliades et al., 2006). RDF class names used as base classes in the rule condition are 

referred to through the uri attribute of the Rel element (e.g. novel in the figure), while derived class names are 

text values of the Rel element. Atoms have named arguments (slots), which correspond to object/RDF 

properties. Since RDF resources are represented as CLIPS objects, atoms in the rule body correspond to queries 
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over RDF resources of a certain class with certain property values, while atoms in the rule head correspond to 

templates of materialized derived objects, which are exported as RDF resources at the end of the inference 

process (Bassiliades et al., 2006; Bassiliades & Vlahavas, 2006). 

Rule Language Extensions for Modal Logic  

The DR-DEVICE RuleML-like syntax (DR-RuleML) described previously was further extended, in 

order to embrace essential modal logic elements. The language has to describe rule modes as well as a 

“modalization” mechanism for expressing the modal operator of each literal.  

To support these features, two attributes are introduced: ruleMode that is appended to the attribute list 

of the Implies element and modality that is attached to the Atom element. Both attributes can assume only 

one of five values: bel (belief – K), int (intention – I), obl (obligation – O), age (agency – Z) and per 

(permission – P). The use of the two attributes is optional; thus, when the attribute is absent, the corresponding 

rule or atom is assigned bel (belief) as its mode or modality, respectively. 

 

 <RuleML ... agentType="social"> 
 <Assert>  
  <Implies ruletype="defeasiblerule" ruleMode="age"> 
   <oid> <Ind uri="r1">r1</Ind> </oid> 
   <head> 
    <Atom modality="bel"> 
     <op> <Rel>confess</Rel> </op> 

</Atom> 
   </head> 
   <body> 
    <And> 
     <Atom modality="bel"> 
      <op> <Rel>committedCrime</Rel> </op> 

</Atom> 
     <Atom modality="bel"> 
      <op> <Rel>arrested</Rel> </op> 

</Atom> 
    </And> 
   </body> 
  </Implies>  
  ...   
 </Assert>  
</RuleML>  

Fig. 2. Extending DR-RuleML with modal capabilities 

 

Finally, the notion of agent type is represented by an agentType attribute, attached to the rule base 

element (element RuleML). As already mentioned, the currently permitted agent types are realistic, social and 

deviant, but the selection can be extended by adding more agent types to the schema. Fig. 2 displays a fragment 

of a “social prisoner’s” rule base, detailing on rule p1 below, which states that the intention of an arrested 

prisoner is to confess the crime to achieve the best individual outcome for him: 

p1: committedCrime ∧ arrested ⇒Z confess 
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A similar approach to the rule language presented here was proposed by Pham, Governatori, Raboczi, 

Newman and Thakur (2008), which is also an extension to the DR-DEVICE RuleML-like syntax. In essence, the 

two approaches attack the problem similarly, with the difference being that the approach by Pham et al. gives a 

way to define the agent types in the rule language, whereas in DR-DEVICE we use “preconfigured” types. 

DR-DEVICEM – Overview 

Before proceeding to more specific implementation details regarding DR-DEVICEM, this subsection 

gives an overview of the system functionality. As displayed in Fig. 3, the system accepts as input the address of 

a modal defeasible logic rule base (step 1 in the figure), written in DR-RuleML. The rule base is submitted to 

DR-DEVICEM (step 2) and the theory transformation (described subsequently) commences. During the process, 

the system deploys an external parameterized modality interaction schema (step 3) and an equivalent non-modal 

defeasible logic theory is produced (step 4). The latter is then fed to the core reasoner (step 5). 

 

 

Fig. 3. Modal DR-DEVICE overall functionality. 

 

DR-DEVICE downloads the input RDF documents, including their schemas (step 6) and translates RDF 

descriptions into CLIPS objects. Rule conclusions are also materialized as objects (step 7) and the instances of 

designated derived classes are exported as an RDF document (step 8), which includes the RDF Schema 

definitions for the exported derived classes and those instances of the exported derived classes, which have been 

proved, either positively or negatively, either defeasibly or definitely. Finally, the user can access the results 

through a web browser or through specialized software that can customize the visualization (step 9). Notice, that 

DR-DEVICE can also provide explanations about non-proved objects. More details regarding the functionality 

and architecture of the system can be found in (Bassiliades et al., 2006). 
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Theory Transformation 

DR-DEVICEM applies a rule-rewriting transformation to the input modal defeasible logic theory (like 

the one in Fig. 2) that moves modalities from rules to conclusions and takes care of modal interactions. The 

transformation is based on the following two binary anti-symmetric relations, introduced subsequently, that 

define how pairs of modalities interact in rule conflicts ( ) and rule conversions (). 

 Definitions. In both the following definitions, as well as the subsequent sections, [ ( )]X
YR E q  will denote 

the set of rules with mode X, with antecedents that all share the same modality Y and with q as the rule 

consequent that is modalized under modality E. Note, however, that the above notation is generic and is 

presented here for representation reasons; it is not possible to concurrently have a rule mode and a modalized 

conclusion. More specifically, the following distinctions exist: 

• When consequent modality E is absent (e.g. [ ]X
YR q ), then the modality of the consequent is not yet designated. 

• When the notation lacks q (e.g. X
YR ), then the consequent is irrelevant to the expression at hand. 

• When index X is absent (e.g. RY[E(q)]), the rule set consists of modeless rules. 

• When index Y is absent (e.g. RX[q]), then the modality of antecedents is irrelevant. 

DEFINITION 1 (rule conflicts): The relation   between two modalities defines how conflicts among conclusions 

with different modalities are resolved. 

ÍMxM, X∈M, Y∈M :  

Y X ⇒ ("q "r "r', r Î RX[q] ∧ r' Î RY[~q] ∧ X ≠ Y → r > r') 

In the above definition, M is the set of all modality types (in our current implementation M ≡ {K, I, O, Z, P}) and 

RY[q]⊆R denotes the set of rules with mode Y∈M and literal q as their consequent (R is the set of all rules). The 

definition implies that, for every pair Y X, where X∈M and Y∈M, if there is an attack ⇒X q / ⇒Y ~q, for any 

literal q in the rule base, the rule with mode X is defined as superior and its conclusion will indeed be derived 

(+¶Xq). The inferior rule conclusion will not be provable (-¶Y~q), thus, mode X prevails over Y.  

The above definition can be extended to consider agent types, as well, meaning that certain conflicts 

between modalities occur only for specific agent types only and not for others. The relation is augmented with 

the agent type α: 
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DEFINITION 1a (rule conflicts with agent types):  

a ÍMxMxG, X∈M, Y∈M, a∈G :  

Y a X ⇒ ("r "r' "q, r Î RX[q] ∧ r' Î RY[~q] ∧ X ≠ Y → r > r') 

In the above expression, G is the set of all implemented agent types (currently, G≡{realistic, deviant, 

social}). 

Each instantiation of the conflict relation A a B, where A∈M and B∈M, is represented by a tuple <a, A, 

B>. Note that the absence of index a referring to the agent type (e.g. ) indicates that the specified conflict 

belongs to the basic conflicts set and is present in all agent schemes; actually, agents that adopt the basic 

conflicts scheme are called realistic (the realistic type is the most generic agent type). 

DEFINITION 2 (rule conversions): The relation  between two modalities defines how a rule mode is converted 

into a different conclusion modality when the modality of the condition is different than the modality expected in 

the original rules. 

ÍMxM, U∈M, Y∈M :  

   UY ⇒ ("r, r Î U
YR  → $r', r' Î Y

YR ) 

In the above definition, U
YR ⊆R denotes the set of all rules with mode U∈M and with Y∈M as the modality of all 

rule antecedents.  

Definition 2 implies that, for every pair YX, where X∈M and Y∈M, if a rule r exists with mode U and 

Y as the modality of all antecedents, then a new rule r' is added to the rule base with the same mode as the 

antecedents of rule r. Notice that relation  is reflexive, i.e. ∀X∈M it is true that XX.  

The above definition can be extended to consider agent types, as well, meaning that certain modality 

conversions occur only for specific agent types only and not for others. The relation is augmented with the agent 

type α: 

DEFINITION 2a (rule conversions with agent types):  

aÍMxMxG, U∈M, Y∈M, a∈G :  
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   Ua Y ⇒ ("r, r Î U
YR  → $r', r' Î Y

YR ) 

In the above expression, G is the set of all implemented agent types (currently, G≡{realistic, deviant, 

social}). 

Each instantiation of the conversion relation Aa B, where A∈M and B∈M, is represented by a tuple 

<a, A, B>. Similarly to definition 1a, the absence of index a (e.g. ) indicates that the specified conversion 

belongs to the basic conversions set and is present in all agent schemes (i.e. realistic agents). 

 
 Transformation steps. The transformation from a modal defeasible theory Dm to a non-modal defeasible 

theory Df is influenced by the object-oriented philosophy, on which the system is built (see previous sections). 

The process consists of three distinct steps that augment theory Dm, so that the resulting defeasible theory Df is 

semantically equivalent. Each step takes as input the theory produced by the previous step and produces as 

output a modified theory to be fed to the next step. The input of the first step is Dm and the output of the last step 

is Df. 

 Before executing the transformation, an initial step that handles a necessary syntactical transformation 

is performed: for every rule r that belongs to the rule set Rm of Dm, a rule ro is generated in the rule set Ro of Do 

that has the modality of every rule body atom of r transformed from an XML attribute into an argument of the 

element atom of rule ro. Since atoms in DR-DEVICE are treated as objects, the modality becomes an object slot 

(or property) with the same name, which is added to the corresponding object definition. This initial step is 

defined formally as follows: 

Ro = { ro(r) | r Î Rm ∧ ai Î r.body.atom ∧ ro.ID = r.ID ∧ ro.head = r.head ∧  

ro.body.atom = r.body.atom ∪ slot(name("modality"), value(ai.modality)) } 

Here, we assume a dot-notation, where the expression e1.e2 delivers the child element or attribute value 

e2 of (parent) element e1. Functions name and value are predefined properties of a slot element and refer to the 

slot name and slot value, respectively.  

Fig. 4 displays an example of the above process: the left-hand-side excerpt, expressed in the DR-

RuleML modal extension described earlier, is the original rule body (rule p1 from the prisoner’s dilemma 

example seen previously), while the right-hand-side excerpt shows the output body, where modalities have been 

transformed from atom attributes into object slots (i.e. core DR-RuleML syntax). 
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To better understand this transformation, rule p1 is the following: 

p1: committedCrime ∧ arrested ⇒Z confess 

The literals of body of the rule are all under the knowledge or belief modality K (committedCrimeK ∧ 

arrestedK) and during this initial syntactical transformation the modality is transformed into an extra argument 

of each atom: committedCrime(K) ∧ arrested(K). 

 

 

 <body> 
<And> 

<Atom> 
<op><Rel>committedCrime</Rel></op> 
<slot><Ind>modality</Ind> 

<Ind>bel</Ind></slot> 
</Atom> 
<Atom> 

<op><Rel>arrested</Rel></op> 
<slot><Ind>modality</Ind> 

<Ind>bel</Ind></slot> 
</Atom> 

</And> 
</body> 

<body> 
<And> 

<Atom modality="bel"> 
<op> 

<Rel>committedCrime</Rel> 
</op> 

</Atom> 
<Atom modality="bel"> 

<op> 
<Rel>arrested</Rel> 

</op> 
</Atom> 

</And> 
</body>  

Fig. 4. Example of the initial syntactical transformation. 

 

Then, the actual transformation commences. More specifically, the theory transformation process 

involves the following steps: 

Step 1 

This step takes as input the transformed defeasible theory Do and the corresponding rule set Ro and 

produces as output the defeasible theory D1 that contains the rule set R1. During this step, the mode of each rule 

(which is an attribute) becomes a slot of the head atom: 

R1 = { r1(ro) | ro Î Ro ∧ r1.ID= ro.ID ∧ r1.body.atom = ro.body.atom ∧  

r1.head.atom = ro.head.atom ∪ slot(name("modality"), value(ro.mode))} 

 

 <Implies 
ruletype="defeasiblerule"> 

............       
<head> 

<Atom> 
<op><Rel>confess</Rel></op> 
<slot><Ind>modality</Ind> 

<Ind>int</Ind></slot> 
</Atom> 

</head> 
............       
</Implies> 

<Implies ruleMode="int"  
ruletype="defeasiblerule"> 

............ 
<head> 

<Atom modality="bel"> 
<op> 

<Rel>confess</Rel> 
</op> 

</Atom> 
</head> 

............       
</Implies>  

Fig. 5. Example of transformation step 1. 
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Fig. 5 displays an example of the above process: the left-hand-side excerpt is the original rule head 

(again, rule p1 from the prisoner’s dilemma example), while the right-hand-side excerpt shows the output head, 

where rule modes have been transferred to head atoms as object slots. 

To better understand this transformation step, rule p1 is the following (after the initial syntactical 

transformation): 

p1: committedCrime(K) ∧ arrested(K) ⇒Z confess 

After the transformation step 1, the rule looks as follows: 

p1: committedCrime(K) ∧ arrested(K) ⇒ confess(Z) 

 

Step 2 

This step takes as input the transformed defeasible theory D1 and the corresponding rule set R1 and 

produces as output the defeasible theory D2 that contains the rule set R2. During this step, rule conversions are 

considered and as a result additional rules are added to the rule base. According to rule conversions, the modality 

of a rule conclusion depends both on the rule mode and on the modalities of the body atoms. So, the rule set R2 

contains all rules of R1 and the additional rules that take care of rule conversion. 

R2 = R1 ∪ ( )
1r R

C r
∀ ∈
  

The set C(r) contains all additional rules needed for each original rule r. Indeed, many such additional 

rules could be required (for each rule r), because there can be many qualifying modalities E for conversion. 

C(r) = [ ] ( ){ }| X
E

E M

r r R q X E r R E q
∀ ∈

′ ′∈ ∧ ∧ ∈     

The additional rules r’ Î RE[E(q)] assess whether a rule satisfies the necessary qualifications for rule 

conversion and are “transparent” to the user, since they are appended during the transformation of the initially 

submitted theory Dm. Since relation ΧΕ may hold for several Εs for each X, one rule for each E is appended to 

the theory. 

Actually, in order not to clutter the rule base with many rules, instead of appending multiple such 

conversion rules for each qualifying E, in our implementation we just add one rule whose condition is satisfied 

for every qualified E. So the previous expression for C(r) is modified as follows: 

C(r) = [ ] ( ){ }| X
Er X E r R q r R E q′ ′+ + ∈ ∧ ∈     
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In the above expression, r’++ΧΕ defines a rule r’ as previously and concatenates the condition ΧΕ to the 

rule condition (E is a new universally quantified variable). So, now set C(r) contains just one rule for each r. 

Fig. 6 displays an example of a rule added to theory Df during step 2. The rule (labelled p1-conv) is 

based on rule p1, but has variable modalities for its body and head atoms in the form of random 4-character 

strings, like mt98 and sw64. These modalities are checked for their compatibility with the rule mode (function 

compatible-modality) and, if the check is passed, the convert-modality function proceeds with the rule 

conversion (the head modality is converted accordingly). 

 <Implies ruleMode="int" ruletype="defeasiblerule"> 
<oid><Ind uri="p1-conv">p1-conv</Ind></oid> 
<head> 

<Atom> 
<op><Rel>confess</Rel></op> 
<slot><Ind>modality</Ind> 
<Var>sw64</Var></slot> 

</Atom> 
<Equal> 

<Var>sw64</Var> 
<Expr> 

<Fun in="yes">convert-modality</Fun> 
<Ind>social</Ind> <Ind>int</Ind> 
<Var>mt98</Var> <Var>yl14</Var> 

</Expr> 
</Equal> 

</head> 
<body> 

<And> 
<Atom> 

<op><Rel>committedCrime</Rel></op> 
<slot><Ind>modality</Ind> 
<Var>mt98</Var></slot> 

</Atom> 
<Atom> 

<op><Rel>arrested</Rel></op> 
<slot><Ind>modality</Ind> 
<Var>yl14</Var></slot> 

</Atom> 
<Equal> 

<Expr> 
<Fun in="yes">compatible-modality</Fun> 
<Ind>social</Ind> <Ind>int</Ind> 
<Var>mt98</Var> <Var>yl14</Var> 

</Expr> 
<Ind>true</Ind> 

</Equal> 
</And> 

</body> 
</Implies>  

Fig. 6. Example of step 2 addition. 

 

To better understand this transformation step, rule p1 is the following (after transformation step 1): 

p1: committedCrime(K) ∧ arrested(K) ⇒ confess(Z) 

After the transformation step 2, the following rule is added to the rule base: 

p1-conv: committedCrime(X) ∧ arrested(Y) ∧ compatible-modality(X,Y,Z) ⇒ 

confess(convert-modality(X,Y,Z)) 
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that checks in the condition if X, Y modalities are compatible with Z and if this is true, then they are converted to 

a compatible with Z modality in the rule head using the convert-modality function. 

 

Step 3 

This step takes as input the transformed defeasible theory D2 and the corresponding rule set R2 and 

produces as output the final defeasible theory Df that contains the rule set Rf. During this step, the issue of rule 

attacks (conflicts) has to be tackled with. Typically in DR-DEVICE, two modalized literals (actually objects), 

such as I(p) and O(~p), are not conflicting, since they are treated by the system as different literals/objects 

(because of the different values in the modality slot). In order to allow the reasoner to indeed consider the 

literals/objects as conflicting, extra rules are added to the rule base, which are also “transparent” to the user. 

These additional rules realize the so-called modality inclusion that deals with the associations among modalities. 

The results of the attacks are determined by the “basic attacks” scheme (Table 1) as well as the agent type (Table 

2), represented by the rule conflicts relation . A modality inclusion is denoted by [ ]A
BT q ∈T, where B A 

(independently of agent type; i.e. the agent type is irrelevant for handling modality inclusions) and T is the 

modality inclusion set of theory Df. Each modality inclusion [ ]A
BT q  results in two defeater rules being added into 

the rule set Rf: A(q)  B(q) and A(¬q)  B(¬q). Modality inclusions are formulated as defeaters, since they do 

not aim at deriving new knowledge, but are only used for defeating rules with contrary conclusions. More 

specifically, for every conclusion q in the rule base, the following modality inclusions have to be incorporated: 

 [ ]Y
XT q  = { Y(q)  X(q), Y(¬q)  X(¬q) } 

 Rf = R2 ∪ 
,

[ ]Y
X

q X Y X Y

T q
∀ ∀ ∀ 

   

Notice that the above definition handles all cases of modality conflicts: 

• If Y X, i.e. when +¶X q / -¶Y ~q, then [ ]X
YT q  is included in Rf.  

• If both Y X and X Y hold, i.e. when -¶X q / -¶Y ~q, then both [ ]X
YT q  and [ ]Y

XT q  are included in Rf. 

As for the remaining two cases of conflicts (X Y and Y / X∧X / Y), the former is the inverse of the 

first case and is treated similarly, while the latter does not result in the addition of extra rules to the rule base, 

since both conclusions (+¶Xq, +¶Y~q) are derived. 
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 <Implies ruleMode="bel" ruletype="defeater"> 
<oid> 

<Ind uri="confess-bel-obl-neg">confess-
bel-obl-neg</Ind> 

</oid> 
<head> 

<Neg> 
<Atom> 

<op><Rel>confess</Rel></op> 
<slot><Ind>modality</Ind> 

<Ind>obl</Ind></slot> 
</Atom> 

</Neg> 
</head> 
<body> 

<Neg> 
<Atom> 

<op><Rel>confess</Rel></op> 
<slot><Ind>modality</Ind> 

<Ind>bel</Ind></slot> 
</Atom> 

</Neg> 
</body> 

</Implies> 

<Implies ruleMode="bel" ruletype="defeater"> 
<oid> 

<Ind uri="confess-bel-obl-pos">confess-
bel-obl-pos</Ind> 

</oid> 
<head> 

<Atom> 
<op><Rel>confess</Rel></op> 
<slot> 

<Ind>modality</Ind> 
<Ind>obl</Ind> 

</slot> 
</Atom> 

</head> 
<body> 

<Atom> 
<op><Rel>confess</Rel></op> 
<slot> 

<Ind>modality</Ind> 
<Ind>bel</Ind> 

</slot> 
</Atom> 

</body> 
</Implies>  

Fig. 7. Example of modality inclusion addition during step 3. 

 

Fig. 7 displays an example of the modality inclusion addition: for conclusion confess and for modes K 

and O, where O K, the two following defeaters will be appended to the rule base: 

confess-bel-obl-pos: confess(K)  confess(O) 

confess-bel-obl-neg: ¬confess(K)  ¬confess(O) 

 
 Transformation correctness/completeness. Proving the correctness and completeness of the theory 

transformation will ensure that the latter always achieves the intended result, i.e. every transformed non-modal 

defeasible theory is semantically equivalent to the original modal theory, namely, the inferred conclusions are 

the same. In essence, the aim is to have a transformation from a domain-independent rule base into a domain-

dependent theory. 

The transformation process comprises an algorithm consisting of three distinct steps plus an 

initialization step (see previous section). At each step an input rule set is transformed into an output rule set. The 

input of the initial step is the original, modal rule set Rm, while the output of the last step is an equivalent non-

modal rule set Rf. In order to prove that Rf is equivalent to Rm it suffices to prove that each step produces at its 

output a rule set that is equivalent to its input rule set. 

STEP 0:  

Input: Rm 

Output: Ro 
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Description: Transforms the original rule set Rm into rule set Ro that has the modality of every rule body atom 

transformed from an XML attribute into an argument of the atom (XML element). 

Proof: This step is a trivial syntactical transformation. Thus |Ro|=|Rm| and there is “1-1” correspondence between 

rules in the two sets. Furthermore, rules are interpreted similarly. Thus, the two sets are semantically equivalent. 

STEP 1: 

Input: Ro 

Output: R1 

Description: Transforms the rule set Ro into rule set R1 assigning rule modes of rules in Ro to rule head atom 

modalities in R1. 

Proof: Rule set Ro contains rules ro of type Y(a1) ∧ Y(a2) ∧ … ∧ Y(an) ⇒X q that all have a mode. Even modeless 

rules have by default mode K (belief). During this step for each rule ro in Ro one rule rule r1: Y(a1) ∧ Y(a2) ∧ … ∧ 

Y(an) ⇒ X(q) is generated in R1. There exists a "1-1" association among the rule sets of the two theories 

(|R1|=|Ro|=|Rm|), and, since the corresponding conclusions from the two rules (+¶X q and +¶X(q)) are semantically 

equivalent, step 1 is proved to be correct and complete. 

STEP 2: 

Input: R1 

Output: R2 

Description: Transforms the rule set R1 into rule set R2 by adding new rules that assess, whether a rule qualifies 

for rule conversion. 

Proof: For each rule r1: Y(a1) ∧ Y(a2) ∧ … ∧ Y(an) ⇒ X(q) in R1, and for each E, such that XE, a new rule 

E(a1) ∧ E(a2) ∧ … ∧ E(an) ⇒ E(q) should be appended to the theory. However, in order not to clutter the rule 

base with many rules, instead of appending multiple such conversion rules for each qualifying E, we add just one 

such rule that its condition is satisfied for every qualified E, namely the following rule is added to the rule base 

for each rule r1: E(a1) ∧ E(a2) ∧ … ∧ E(an) ∧ XE ⇒ E(q). Thus, |R2|=2⋅|R1|=2⋅|Rm|. Furthermore, according to 

formal modal defeasible logics, applying rule conversion on a rule such as E(a1) ∧ E(a2) ∧ … ∧ E(an) ⇒X q 

would result in concluding +¶E q. Following our approach, the appended rule E(a1) ∧ E(a2) ∧ … ∧ E(an) ∧ XE 
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⇒ E(q) results in +¶E(q), which is semantically equivalent to +¶E q, therefore, correctness and completeness of 

step 2 are proven. 

STEP 3: 

Input: R2 

Output: Rf 

Description: Transforms the rule set R2 into the final rule set Rf by adding new rules that tackle modality 

inclusion, namely rule attacks (conflicts). 

Proof: During this step a number of defeater rules are added to rule set R2. For every pair of conflicting heads 

X(q) and Y(¬q), where Y X, two new defeater rules are appended to the rule set R2. Thus, if αÎ is the number 

of   relation instances (actually, the number of modality attacks) occurring in Dm and c is the number of distinct 

(non-modalized) literals occurring at rule heads in Rm, then |Rf|=|R2|+2⋅α⋅c =2⋅|Rm|+2⋅α⋅c. In the worst case 

c=|Rm|/2, i.e. each conflicting rule pair has a distinct conclusion; therefore |Rf| = 2⋅|Rm|+α⋅|Rm| = |Rm|⋅(α+2), 

which is always finite. Also, according to formal modal defeasible logics, if there exists a pair of rule 

consequents ⇒X p / ⇒Y ~p with Y X, then we conclude +¶X p and -¶Y ~p. Similarly, according to our approach, 

the addition of modality inclusion [ ]X
YT p  will result in defeaters X(p)  Y(p) and X(¬p)  Y(¬p) being added 

to theory Df. Consequently, these defeaters result in concluding -¶Y ~p and allowing the eventual inference of 

+¶X p. Thus, step 3 is also correct and complete. 

Implementing Modality Interactions 

As studied previously in the article, each type of agent is accompanied by its own modality interaction 

schema, namely, a distinct set of conflicts and conversions. In order to represent modality interactions in DR-

DEVICEM, in a simple yet expressive way that could facilitate re-use and evolution, a generic XML-Schema-

based representation is adopted. The representation allows defining agent types along with the respective sets of 

conflicts and conversions, with the help of the relations   and , described earlier.  

More specifically, for the case of attacks we define the set L of all attacks as: 
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B a
a

L T T
∀

= ∪  

where TB is the set of basic attacks (see Table 1), which is common for all agent types and Ta is the set of attacks 

that are specific for agent type a∈A. Similarly, the set V of conversions is defined as: 

B a
a

V N N
∀

= ∪  

where NB is the set of basic rule conversions (see Table 3), which is common for all agent types, and Na is the set 

of rule conversions that are specific for agent type a. Therefore, for each agent type a∈A, its conflict and 

conversion sets (La and Va respectively) are defined as follows: 

La = TB È Ta, Ta≡  {<a, X, Y> | Y 
a

  X} 

Va = NB È Na, Na≡  {<a, Y, U> | U a Y} 

 

 <!-- root element --> 
<!ELEMENT agents (agent*)> 
 
<!--  
Each agent is characterized by a conflict  
and a conversion set  
--> 
<!ELEMENT agent (conflicts?, conversions?)> 
<!ATTLIST agent type ID #REQUIRED> 
 
<!-- agent conflict set --> 
<!ELEMENT conflicts (conflict*)> 
 
<!--  
The 1st mode is the superior rule mode 
The 2nd mode is the inferior rule mode  
The superior rule always prevails 
--> 
<!ELEMENT conflict (mode, mode)> 
 
<!-- agent conversion set --> 
<!ELEMENT conversions (conversion*)> 
 
<!--  
The 1st mode occurs in the body 
The 2nd mode is the rule mode 
--> 
<!ELEMENT conversion (mode, mode)> 
 
<!-- element representing mode/modality --> 
<!ELEMENT mode (#PCDATA)> 

<agent type="social"> 
 <conflicts> 
  <conflict> 
   <mode>BEL</mode> 

<mode>OBL</mode> 
  </conflict> 
  <conflict> 
   <mode>BEL</mode> 

<mode>INT</mode> 
  </conflict> 
  <conflict> 
   <mode>OBL</mode> 

<mode>INT</mode> 
  </conflict>    
 </conflicts> 
 <conversions> 
  <conversion> 
   <mode>OBL</mode> 

<mode>BEL</mode> 
  </conversion> 
  <conversion> 
   <mode>INT</mode> 

<mode>BEL</mode> 
  </conversion>   
  <conversion> 
   <mode>OBL</mode> 

<mode>INT</mode> 
  </conversion> 
 </conversions> 
</agent> 

 

Fig. 8. Modality interaction schema and excerpt defining the social agent type. 

 

The schema is illustrated as a DTD (for simplicity) in Fig. 8. The figure also depicts a sample XML 

excerpt that defines the social agent type. 
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Implementation Efficiency 

In this subsection we briefly discuss the efficiency of our implementation in reference to the computational 

complexity of the underlying logic and that of the transformed rule base. We claim that the reasoning 

computational complexity of the transformed rule base is O(n2), where n is the number of rules in the original 

rule base. In order to prove this, we need to have as input: 

• The computational complexity of the underlying logic, which is a first-order defeasible reasoning 

system. 

• The computational complexity of the transformed rule base. 

Our underlying defeasible reasoning system is DR-DEVICE (Bassiliades et al., 2006). DR-DEVICE has 

undergone extensive testing with scalable knowledge bases which showed that the system can handle inferences 

with thousands of rules within few seconds. Its performance scalability is O(n2), where n is the size of the theory, 

i.e. the total number of defeasible rules.  

As shown in the previous subsection, the transformed rule base (the one with non-modalized literals) 

contains m⋅(α+2) rules, where m is the number of rules in the modalized rule base and α is the number of 

modality attacks (namely |La|, the cardinality of the La set, for each agent type a). Upon scaling, the number of 

rules tends to grow quite larger than α. For example in (Bassiliades et al., 2006) m scaled up to 103, whereas α is 

usually less than 10 (for example, in our implementation the “social” agent type has 3 modality attacks, see Fig. 

8). If we replace this in the complexity of the DR-Device system we can conclude that the complexity of our 

implementation is O(m2⋅a2), therefore assuming that m>>α the complexity is O(m2), i.e. it is quadratic to the 

number of rules of the original modalized rule base, as our initial claim was. 

 

Example: Prisoner’s Dilemma 

To illustrate all of the above, we use an example that features the prisoner’s dilemma rule base. Notice 

that, although DR-DEVICEM is a first-order system, this example is in propositional logic for the sake of 

simplicity for the demonstration. In the next subsection we include a predicate logic example.  

Initially, the rule base contains two facts (f1 and f2) and two rules (p1 and p2): 

f1: committedCrime 

f2: arrested 

p1: committedCrime ∧ arrested ⇒Z confess 
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p2: committedCrime ∧ arrested ⇒O ¬confess 

Let’s suppose that we deal with a social agent. The initial rule base undergoes the transformation 

described previously, before being submitted to the defeasible logic reasoner of the system. As already outlined, 

the transformation includes turning predicate modalities into atom slots and assigning modalities to rule heads, 

depending on the corresponding rule modes (step 1). Predicates with no modality assume modality K 

(knowledge). As a result, at this stage the transformed rule base will be as follows: 

f1-CONV: K(committedCrime) 

f2-CONV: K(arrested) 

p1-CONV: K(committedCrime) ∧ K(arrested) ⇒ Z(confess) 

p2-CONV: K(committedCrime) ∧ K(arrested) ⇒ ¬O(confess) 

Then, the issue of rule conversion, i.e. the conversion of rule conclusion modality according to the 

condition modality, is handled by the addition of two rules at step 2: 

p1-CONV-VAR: M(committedCrime) ∧ M(arrested) ∧ Z  M ⇒ M(confess) 

p2-CONV-VAR: M(committedCrime) ∧ M(arrested) ∧ O  M ⇒ ¬M(confess) 

The above rules (e.g. p1-CONV-VAR) indicate that if the modality of all condition literals is M and M is a 

modality that is compatible with the original rule mode Z, then it is indeed possible to derive the conclusion of 

the rule with modality M. 

Finally, the issue of rule attacks has to be dealt with. In the rule base there is only a single conclusion 

(confess) and a single attack (⇒Z confess / ⇒O ~confess). Therefore, two defeaters are added in step 3 for the 

specific agent type (any obligation is also the agent’s intentional action), as seen below: 

pO-Z-POS: O(confess)  Z(confess) 

pO-Z-NEG: ¬O(confess)  ¬Z(confess) 

Rule p1-CONV is defeated by pO-Z-NEG and it is eventually concluded that +¶O~confess and -¶Zconfess, 

which implies that the social agent’s obligation to confess overpowers its intention not to confess.  

A slight variation of the example that demonstrates rule conversion would include facts f1’ and f2’ 

instead of f1 and f2: 

f1’: Z(committedCrime) 

f2’: Z(arrested) 
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In this case no conclusion is derived, because rule p2-CONV-VAR tries to conclude ¬Z(confess), since the 

agent is social and OZ, while rule p1-CONV-VAR tries to conclude Z(confess), because ZZ. Thus, no 

conclusion on the confession can be derived, even though the agent is social and this would incline to its 

cooperativeness. Although the rationality of this last example is dubious, cases like this are useful in studying the 

“side-effects problem” (Governatori & Rotolo, 2008a; Governatori et al., 2009) (i.e. results from agent’s actions 

that are not among its intentions, at least not all of them), which is one of the most interesting topics of 

discussion regarding the rationality and awareness of agents.  

A Semantic Web Example: Apartment Renting 

This subsection describes a more sophisticated example, in predicate (first-order) logic, that is oriented 

towards the Semantic Web paradigm. The example is adopted from Antoniou & van Harmelen (2004) and is 

applied as a use case scenario for the DR-DEVICE defeasible reasoner (Bassiliades et al., 2006). In its original 

form the scenario involves two parties: (a) A potential renter, who assigns his/her personal agent to discover an 

apartment to rent that suits his/her specifications (e.g. location, floor) and personal preferences (e.g. price, size), 

and (b) a broker, who possesses a list of available apartments and has to match the client’s requirements with the 

features of the available apartments and eventually propose suitable flats.  

In the Semantic Web environment, the broker’s list of available apartments along with their 

specifications is materialized as an RDF document (see Fig. 9) that complies with a corresponding RDF Schema 

ontology1. Actually, this piece of data (also known as “fact” in logic programming terminology), is equivalent to 

the following in POSL notation: 

apartment(name->a1, bedrooms->1, central->yes, floor->1, gardenSize->0, lift->no, 

pets->yes, price->300, size->50). 

POSL (positional-slotted language) notation (Boley, 2004) is an ASCII language that integrates Prolog's 

positional and F-logic's slotted syntaxes for representing knowledge (facts and rules) in the Semantic Web. For 

representing defeasible rule bases in a concise syntax, we proposed the d-POSL notation in (Kontopoulos, 

Bassiliades, Governatori, & Antoniou, 2010) and we use this notation to concisely present rules of this example 

in this paper. When compared to RuleML-based types of syntax (like e.g. DR-RuleML – see Fig. 2), d-POSL is 

considered more compact and human-readable, since it is faster to write and easier to read. Variables in d-POSL 

                                                           
1 http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo.rdf 
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are denoted with a preceding "?", rule types (“strict”, “defeasible”, “defeater”) are expressed via binary infix 

functors (“:-”, “:=”,“:~”), while the extension also deals with other essential features in defeasible logic, like rule 

labels, rule superiorities and conflicting literals. More details regarding the application of d-POSL in an agent-

based brokering scenario can be found in (Kravari, Kontopoulos & Bassiliades, 2010b).  

 

<ex:apartment rdf:about="&ap;a1"> 
<ex:name>a1</ex:name> 
<ex:bedrooms rdf:datatype="&xsd;integer">1</ex:bedrooms> 
<ex:central>yes</ex:central> 
<ex:floor rdf:datatype="&xsd;integer">1</ex:floor> 
<ex:gardenSize rdf:datatype="&xsd;integer">0</ex:gardenSize> 
<ex:lift>no</ex:lift> 
<ex:pets>yes</ex:pets> 
<ex:price rdf:datatype="&xsd;integer">300</ex:price> 
<ex:size rdf:datatype="&xsd;integer">50</ex:size> 

</ex:apartment> 
... 

Fig. 9. RDF fragment representing available apartments. 

 

  

Fig. 10. DR-RuleML fragment of the renter’s requirements (left) and DR-DEVICE derived conclusions (right). 

 

Assuming that the schema is publicly available, the renter’s requirements and preferences are based on 

it as well and are expressed in defeasible logic, in the DR-RuleML syntax (see Fig. 10 – left). The rule r1 is 

expressed as follows in d-POSL notation: 

r1: acceptable(apartment->?x) := apartment(name->?x). 

The final conclusion regarding the most appropriate apartment for rental is derived via inference by the 

DR-DEVICE reasoner over the rule set and the RDF list of available apartments (see Fig. 10 – right). Suppose 

that the final conclusion is rent(apartment->a5) (in d-POSL), where a5 is the id of the most appropriate 
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apartment. Notice that in the OO-RDF model of DR-DEVICE properties, like apartment, are encapsulated 

inside their domains, such as rent class. 

The above example can be extended with deontic defeasible logic elements, in order to illustrate the 

applicability of this type of logic in pragmatic Semantic Web scenarios. According to a “deontic” point of view, 

since the renter has used a specific broker’s services, he/she is “morally obliged” to make an offer for one of the 

broker’s apartments (specifically for apartment a5, which is the most appropriate one for him). This obligation is 

expressed via rule: 

rM1: make_offer(apartment->?x) :=O rent(apartment->?x). 

Continuing the “deontic” version of the apartment renting scenario, let’s suppose that the renter has 

conducted on the Web another market research by himself/herself and has formed a list of advertised apartments, 

expressed via predicate advertised_apartment(name->?x,price->?y). Let’s also suppose that he/she has 

performed the selection process himself/herself on the latter list (and not on the broker’s apartment list), 

retrieving his/her favorite apartment expressed e.g. as my_rent(apartment->b2). If the renter’s agent 

discovers a cheaper favorite apartment than the one proposed by the broker (apartment a5), his/her intention is to 

not make an offer for the broker’s apartment (and maybe later make an offer to the apartment he/she found on 

the web): 

rM2: ¬make_offer(apartment->?x) :=I  

rent(apartment->?x), apartment(name->?x, price->?y),  

my_rent(apartment->?z), advertised_apartment(name->?z, price->?w),  

?x ≠ ?z, ?w < ?y. 

Considering rules rM1 and rM2 above, a deviant agent’s intentions prevail over its obligations to the 

contrary and the agent will eventually avoid making an offer for apartment a5. Contrasted, a social agent would 

prefer to obey to the moral obligation of preferring the broker’s suggestion and would eventually make an offer 

for apartment a5.  

To demonstrate the effect of rule conversions, an initial precondition of I(rent(apartment->a5)) 

would produce via rule rM1 (supposing that the renter’s agent is social) the corresponding rule conversion 

+¶I make_offer(apartment->a5). Supposing also that the rule’s rM2 prerequisites hold as well, the second 
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conclusion would be +¶I ¬make_offer(apartment->a5). The two conclusions are conflicting and none of them 

prevails, if no superiority relationship is explicitly expressed in the rule base. 

Related Work 

The work presented here relies heavily on work by Governatori and Rotolo (2004; 2008a), where a 

detailed account on extending defeasible logics with modal logic operators is given. The main differentiation 

among the two lines of research lies in the fact that the work by Governatori and Rotolo is based on the meta-

program formalization presented by Maher and Governatori (1999), while our approach adopts a theory 

transformation for turning a modal defeasible theory into a non-modal one. Other secondary differences involve 

the permission operator (which, however, is included in the ideas for future work by the other authors) and the 

definition of the agent type. 

An implementation approach with similar functionality to ours is proposed by Antoniou, Dimaresis and 

Governatori (2009). The proposed system is based on DR-Prolog (Antoniou & Bikakis, 2007), a Prolog-based 

defeasible reasoner for the Semantic Web. The approach extends the meta-program for simulating modal 

defeasible logic (Antoniou, Billington, Governatori & Maher, 2006) and the corresponding inference 

mechanism. Similarly to DR-DEVICEM, the proposed system also deals with rule conflicts and rule conversions 

and can also describe various agent types. The main difference among the two implementations lies in the 

superior centralization and modularization offered by our system. The type of the agent can be declared centrally 

in each rule base, while modality interactions (attacks and conversions) are dealt with parametrically (i.e. via 

easily-parameterized external agent-type definition files), as described in this work. Also, the RuleML-like 

language for describing a modal defeasible logic rule base is quite easy to grasp, since the extensions to the 

language are limited. 

Another similar paradigm is SPINdle (Lam & Governatori, 2009), a propositional defeasible logic 

reasoner that covers both the standard and modal extensions to defeasible logics. Regarding efficiency, when 

compared to DR-DEVICEM, the system demonstrates low computational complexity during reasoning coupled 

with low memory consumption. In SPINdle, agent types can be defined by specifying the conversion and conflict 

relationships using the rule language, while in DR-DEVICEM there are predefined agent types in a separate 

configuration file. This may be more user-friendly and less error-prone than the approach of SPINdle, but could 

be less flexible. Finally, DR-DEVICEM and the modal extension of DR-Prolog are more RuleML-compatible 
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and they are more expressible than SPINdle, since they are first-order. On the other hand, the modal extension of 

DR-Prolog is query based while DR-DEVICEM and SPINdle are extension based. 

Taking into consideration more traditional approaches, the approach presented in this article has a lot of 

common points with the BOID architecture (Broersen et al., 2001), where the conflicts among agents’ 

informational and motivational attitudes are explored. The BOID calculation scheme is similar to the one 

proposed here; e.g. it is possible to state general orders of overruling but also local preferences involving single 

rules. However, our system also deals with agency and permission, a factor that largely differentiates our 

approach from the BOID architecture, and is also designed to take care of modalized literals and modal 

conversions. This is due to the rule-based approach of introducing modalities. 

Also, Nute (1998) proposed a Deontic Defeasible Logic which, in some respect, is similar to the 

framework presented here. Besides some minor differences in the way rules are handled at the propositional 

level, the main difference is that he uses only one type of rule. In proof theory operators are traditionally 

introduced for giving meaning to rules. Thus, using only one type of rule both for obligation and factual 

conclusion does not reveal the real meaning of the operators involved. Moreover, it is not clear whether and how 

complex conversions and reductions can be dealt with in a system with only a single type of rule. 

Conclusions and Future Work 

This article discusses the extension of defeasible logics with modal logic operators and reports on the 

implementation of a modal defeasible logic reasoner, focusing mainly on deontic logic operators. The 

implementation is based on DR-DEVICE, a defeasible logic reasoner over RDF metadata in the Semantic Web. 

The system was extended, so that it can handle modal logic operators, while testing the implementation with 

deontic logic operators. More specifically, five operators are included: knowledge, intention, obligation, agency 

and permission. The article also demonstrated how the RuleML-like language of DR-DEVICE, called DR-

RuleML, was extended to incorporate the necessary modal logic aspects. Besides modal operators and 

modalization of literals, the system also deals with modal interactions, like conflict resolution and rule 

conversion. The submitted defeasible theory undergoes a transformation, imposed by the object-oriented 

philosophy, on which the system is built, so that the modal defeasible reasoning can be successfully performed.  

Nevertheless, there is still plenty of room for improvement. More specifically, the system currently 

handles only three types of agents, realistic, social and deviant, but the selection can easily be extended to 
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include other agent types as well, starting with the ones in Table 2. Defining new agent types will consequently 

allow the enrichment of the available rule conversions, which will lead to a more expressive rule language but 

also to a more thorough study of the “side-effects problem”. Furthermore, we would like to test our 

implementation by introducing more operators from other modal logics, such as temporal, epistemic, doxastic, 

etc. Finally, more complicated features of modal logics, such as iterated modalities and modal interaction 

axioms, will be incorporated in our implementation by extending the existing transformation mechanisms. 

Overall, the aim of this line of work is to observe and explore the interactions among agents of various cognitive 

profiles. 

A more ambitious goal, though, is to utilize a multi-agent system, such as EMERALD (Kravari, 

Kontopoulos & Bassiliades, 2010a), for deploying argumentation scenarios among agents, each one of which 

will possess its own agenda and normative system. EMERALD is a knowledge-based framework for 

interoperating intelligent agents in the Semantic Web. It is built on top of the JADE2 multi-agent development 

framework and features trusted, third party reasoning services, a reusable agent prototype for knowledge-

customizable agent behavior, as well as a reputation mechanism for ensuring trust in the framework.  

                                                           
2 http://jade.tilab.com/ 

http://jade.tilab.com/
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	Definitions. In both the following definitions, as well as the subsequent sections,  will denote the set of rules with mode X, with antecedents that all share the same modality Y and with q as the rule consequent that is modalized under modality E. Note, however, that the above notation is generic and is presented here for representation reasons; it is not possible to concurrently have a rule mode and a modalized conclusion. More specifically, the following distinctions exist:
	Transformation steps. The transformation from a modal defeasible theory Dm to a non-modal defeasible theory Df is influenced by the object-oriented philosophy, on which the system is built (see previous sections). The process consists of three distinct steps that augment theory Dm, so that the resulting defeasible theory Df is semantically equivalent. Each step takes as input the theory produced by the previous step and produces as output a modified theory to be fed to the next step. The input of the first step is Dm and the output of the last step is Df.
	Before executing the transformation, an initial step that handles a necessary syntactical transformation is performed: for every rule r that belongs to the rule set Rm of Dm, a rule ro is generated in the rule set Ro of Do that has the modality of every rule body atom of r transformed from an XML attribute into an argument of the element atom of rule ro. Since atoms in DR-DEVICE are treated as objects, the modality becomes an object slot (or property) with the same name, which is added to the corresponding object definition. This initial step is defined formally as follows:
	Transformation correctness/completeness. Proving the correctness and completeness of the theory transformation will ensure that the latter always achieves the intended result, i.e. every transformed non-modal defeasible theory is semantically equivalent to the original modal theory, namely, the inferred conclusions are the same. In essence, the aim is to have a transformation from a domain-independent rule base into a domain-dependent theory.

