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Abstract—Along with the development of Smart Grids, the
wide adoption of Electric Vehicles (EVs) is seen as a catalyst to the
reduction of CO2 emissions and more intelligent transportation
systems. In particular, EVs augment the grid with the ability
to store energy at some points in the network and give it back
at others and therefore help optimise the use of energy from
intermittent renewable energy sources and let users refill their
cars in a variety of locations. However, a number of challenges
need to be addressed if such benefits are to be achieved. On
the one hand, given their limited range and costs involved in
charging EV batteries, it is important to design algorithms that
will minimise costs while avoid users being stranded. On the
other hand, collectives of EVs need to be organized in such
a way as to avoid peaks on the grid that may result in high
electricity prices and overload local distribution grids. In order
to meet such challenges, a number of technological solutions
have been proposed. In this paper, we focus on those that utilise
artificial intelligence techniques to render EVs and the systems
that manage collectives of EVs smarter. In particular, we provide
a survey of the literature and identify the commonalities and
key differences in the approaches. This allows us to develop a
classification of key techniques and benchmarks that can be used
to advance the state-of-the art in this space.

Index Terms—AI, electric vehicles, smart grid

I. INTRODUCTION

FACED with dwindling fossil fuels, and the increasingly
negative impact of climate change on society, several

countries have instigated national plans to reduce carbon
emissions [1]. In particular, the electrification of transport
is seen as one of the main pathways to achieve significant
reductions in CO2 emissions. In the last few years EVs
have gained ground, and, to date, more than 180 thousand
of them have been deployed worldwide. Despite this number
corresponding to only 0.02% of all vehicles on the roads, an
ambitious target of having over 20 million EVs on the roads
by 2020 has been set by the International Energy Agency [2].1

In order to ensure that the large-scale deployment of EVs
results in a significant reduction of CO2 emissions, it is
important that they are charged using energy from renewable
sources (e.g., wind, solar). Crucially, given the intermittency
of these sources, mechanisms (e.g., [3], [4]), as part of a Smart
Grid [5], need to be developed to ensure the smooth integration
of such sources in our energy systems. EVs could potentially
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help by storing energy when there is a surplus, and feed this
energy back to the grid when there is demand for it. [6], [7].

Indeed, the ability of EVs to store energy while being used
for transportation [8] represents an enormous potential to make
energy systems more efficient. On the one hand, given that
vehicles drive only for a small percentage of the day (4− 5%
in the US), and a large percentage of the vehicles stay unused
in parking lots (90% in the US) [9], and considering the fact
that EVs are equipped with large batteries, they could be used
as storage devices when parked (i.e., as part of Vehicle-to-
Grid (V2G) schemes [6], [10]), and thus dramatically increase
the storage capacity of the network. Indeed, studies [10] have
shown that if one fourth of vehicles in the US were electric,
this would double the current storage capacity of the network.
On the other hand, given that large numbers of EVs need
to charge on a daily basis, (40% of EV owners in California
travel daily further than the range of their fully charged battery
[11]) if EVs charge as and when needed, they may overload
the network. For this reason, new mechanisms are required
to be able to manage the charging of EVs –Grid-to-Vehicle
(G2V)– in real time while considering the constraints of
the distribution networks within which EVs need to charge.
Moreover, EV routing systems should consider the ability of
EVs to recuperate energy while braking and/or when driving
downhill, and choose routes that fully utilise this ability. By
so doing, it may be possible for EVs to charge less often, thus
maximising their range, reducing the costs for their owners,
and minimising the peaks they cause on energy grids.

Against this background, a number of techniques and
mechanisms to manage EVs, either individually or collec-
tively, have been developed [12], [13], [14]. For example,
a number of web and mobile-based applications have been
developed to provide information to EV drivers about the
locations of charging points2 where available charging slots
exist. Moreover, prototype systems for energy efficient routing
have been developed,3,4 while new types of chargers that
can fully charge an EV battery in less than an hour are
becoming commonplace. Thus, while a number of advances
have been made in terms of the physical infrastructure and
technologies for EVs, these may not be sufficient to manage
the dynamism and uncertainty underlying the behaviour of
individual and collectives of EVs. Controlling the activities
of EVs will demand algorithms that can solve problems that
involve a large number of heterogeneous entities (e.g., EV

2http://ev-charging.com.
3http://www.greenav.org.
4http://evtripplanner.com.
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owners, charging point owners, grid operators), each one
having its own goals, needs and incentives (e.g., amount of
energy to charge, profit maximisation), while they will operate
in highly dynamic environments (e.g., variable number of EVs,
variable intentions of the drivers) and having to deal with a
number of uncertainties (e.g., future arrival of EVs, future
energy demand, energy production from renewable sources).
Some of these challenges have recently been tackled by the
Artificial Intelligence community, and in this paper we survey
the state of the art of such AI approaches in the following EV
application issues:

Energy efficient EV routing and range maximisation: algo-
rithms and mechanisms have been developed to route EVs in
order to minimise energy loss and maximise energy harvested
during a trip. In particular, building upon existing search
algorithms, solutions have been developed to adapt to the
needs and the characteristics of EVs, so as to take advantage
of their energy recuperation ability and maximise the driving
range. For example, [15] and [16] propose algorithms for
energy efficient EV routing with or without recharging, while
[17] provides an algorithm for calculating reachable locations
from a certain starting point given an initial battery level.
Moreover, [18] enhances the use of supercapacitors with
machine learning and data mining techniques to maximise the
range of EVs.

Congestion management: algorithms have been designed to
manage and control the charging of the EVs, so as to minimise
queues at charging points, and the discomfort to the drivers.
For example [19] and [20] propose algorithms for routing
EVs to charging points where the least congestion exists,
considering the preferences and the constraints of the drivers
(e.g., final destination, amount of electricity to charge), while
[21] presents a heuristic algorithm to place charging points
given a certain topology so that an EV is able to travel between
any two locations without running out of energy.

Integrating EVs into the Smart Grid: a number of mecha-
nisms have been developed to schedule and control the charg-
ing of the EVs (G2V) so that peaks and possible overloads
of the electricity network may be avoided, while minimizing
electricity cost. Moreover, we also survey approaches that
utilise the storage capacity of the EVs (V2G) in order to
balance the electricity demand of various locations in the
network, or to ease the integration of intermittent renewable
energy sources to the grid. For example [22] and [23] propose
algorithms that schedule the charging of collectives of EVs
considering the needs of the drivers and the limits of the
distribution network, while [24] and [25] use price signals in
order to incentivize EVs not to charge at locations, or during
periods of high demand. Moreover, mechanisms such as [26]
and [27], allow aggregations of EVs to bid for electricity in
markets in order to minimise cost, while [4] and [28] present
mechanisms to manage the integration of renewables into the
grid.

In order to clarify the intersections and differences between
the above challenges at a conceptual level, we provide an
abstract description of the research landscape in Figure I.
While we use a tree representation (signifying a delineation
between the concepts), it is clear that there are overlaps (e.g.,

Fig. 1. The electric vehicles research landscape

in terms of congestion management) between the different
nodes of the tree (which we consider later in the paper – see
Section III).

Thus, from this representation of the research landscape it
can be seen that there are different considerations depending
on whether the EVs can travel or not based on their battery
level (i.e., they need to route to their destination or charge),
which in turn, gives rise to challenges for Grid-to-Vehicle
and Vehicle-to-Grid systems in terms of load balancing or
congestion management among others. Coupled with such
issues, is the problem of incentivising EV owners to take
certain routes, charge at certain times (e.g., to avoid peaks) or
to form part of EV collectives to trade on the energy markets.
Finally, the infrastructure also needs to be designed in order to
handle large numbers of EVs (e.g., by placing charging points
in appropriate places), whichever mechanism is used to charge
EVs or sell their spare capacity to the grid.

In what follows, we elaborate on the above challenges. By
comparing and contrasting, and by critically evaluating these
techniques, we identify areas that need further research, and
thus develop a classification of key techniques and benchmarks
that can be used to advance the state-of-the art in this space.

The rest of the paper is structured as follows: Section II
presents work on energy efficient EV routing and range
maximisation, and Section III work on congestion manage-
ment. Moreover, Section IV presents work on methods and
techniques for the efficient integration of EVs to the Smart
Grid, both G2V and V2G, while Section V summarizes and
discusses a classification scheme of the reviewed papers,
identifying areas that need further research.

II. ENERGY EFFICIENT EV ROUTING AND RANGE
MAXIMISATION

Due to the limited range and the long charging times, a
number of techniques to optimise the battery usage and to
maximise the range of an EV have been developed. Two key
research challenges are considered:
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1) Energy efficient EV routing (considering or not recharg-
ing), where established search algorithms are adapted to
the characteristics of EVs so as to calculate routes that
utilise the EVs’ energy recuperation ability in order to
maximise driving range.

2) Battery efficiency maximisation where techniques to
maximise the utilisation of the energy stored by an EV
are considered.

We elaborate on these challenges in the following subsections
(Table I summarises the key papers of this section).

A. Energy Efficient EV Routing

In contrast to conventional vehicle routing that is concerned
with minimising travel time and distance travelled, EV routing
is concerned with finding ’energy optimal’ routes: routes that
maximise energy recuperation (through regenerative braking5),
or routes that pass through charging points that minimise the
cost of charging.

Now, approaches to EV Routing typically represent the road
network as a weighted directed or undirected graph. In such a
graph, the edge weights represent the amount of energy that
is needed, or the amount of energy that will be recuperated
while an EV is driving over an edge. Whereas in non-EV
routing the weights are positive values (e.g., distance or time),
in EV routing, energy recuperation induce negative edge costs.
This makes it harder to apply standard routing algorithms
(e.g., Dijkstra’s algorithm) and hence, recent work has looked
at algorithms that can take into account such graphs. We
elaborate on them below:

1) Energy Efficient EV Routing Without Considering
Recharging Events: Using the predefined graph representation
and considering energy recuperation, Artmeier et al. [15] and
Eisner et al. [29] recently proposed initial solutions for EV
routing. In particular, [15] extend the shortest path problem
with a set of hard (the battery cannot be discharged below
zero) and soft (points where energy could be recuperated but
the battery’s capacity will be exceeded should be avoided as
the extra energy will be lost) constraints making it a special
case of a Constrained Shortest Path Problem (CSPP). They
proposed a general algorithmic framework for computing trees
of shortest paths and present four variations of this framework.
These variations differ in the strategy they use to choose the
next node to expand in the tree, and they prove their algorithm
to run in polynomial time (O(n3)).

The authors in [29] on the other hand, have managed to
reduce the time complexity to O(nlogn+m) after an O(nm)
preprocessing phase (n is the number of nodes and m the
number of edges). In more detail, they model the overcharging
(charging beyond the maximum capacity of the battery is not
possible) and the battery usage constraints as cost functions on
the edges which obey the FIFO [30] property (O(nm)). Then,
by applying a generalization of the Johnson Potential Shifting
Technique [31] to the (partly) negative cost functions they

5Regenerative braking is a braking technology that can recapture much of
the vehicle’s kinetic energy and convert it into electricity, so that it can be
used to recharge the vehicle’s batteries.

render Dijkstra’s algorithm applicable to the shortest path find-
ing problem with negative edge weights (O(nlogn+m)). For
graphs G(V,E) with constant (negative or positive) edge costs,
Johnson’s shifting technique tries to determine a potential
function φ : V → R in order to replace the edge costs conste
of an edge e = (v, w) by const́e = conste − φ(w) + φ(v).
If no negative cycles exist, there is a φ such as const́e ≥ 0
∀e ∈ E. Note that, in this EV routing scenario no negative
cycles exist, as it is not possible for an EV to take a round trip
and end up with more energy than the initial one. Moreover,
this technique does not affect the structure of the shortest
paths, as the potential cost of a certain path, does not depend
on the path itself. Johnson’s technique also lets the authors use
a speed-up strategy for shortest path queries. This strategy is
based on the construction hierarchies technique [32], which
removes nodes in an iterative manner while it perceives the
shortest path distances between the remaining nodes.

In contrast, Sachenbacher et al. [33] use the A* search
algorithm and they achieve an O(n2) runtime. This solution
uses a detailed vehicle model where the authors consider pa-
rameters such as weight and aerodynamic efficiency amongst
others, making the results even more applicable to a real world
deployment. However, using this representation of the prob-
lem, the computation of edge costs is complex and changes
dynamically with parameters such as vehicle payload, power
demand of auxiliary consumers (e.g., A/C), and battery con-
straints (treated by dynamically adapting edge costs), therefore
making it harder to use preprocessing techniques such as the
Johnson algorithm [31]. For this reason, the A* algorithm is
chosen as the best solution as it expands the least number
of verticies compared to all other search algorithms using the
same heuristics.

In terms of evaluating these algorithms, Artmeier et al. [15]
show that the Dijkstra and the Bellman-Ford-based variants
have reasonable execution times and therefore, practical us-
ability, whereas Eisner et al. [29] compare their algorithm
against [15] and prove that it has a better performance in terms
of complexity and execution time and can handle bigger graphs
(see last column of Table I). Sachenbacher et al. [33] also test
their A* algorithm against the two best variations of [15] and
prove it to be faster especially when the distance between the
source and the destination vertices was short. Note that all of
[15], [29] and [33] use real data from the OpenStreetMap6

and the Altitude Map NASA SRTM7 projects. Furthermore,
[15] have developed a prototype system8 for energy efficient
routing based on this data.

2) Energy Efficient EV Routing with Recharging Events:
the works discussed in the previous section do not consider
the fact that EVs can recharge en-route. However, recharging
en-route is sometimes necessary in order for the EV to be able
to reach its final destination, particularly when it has to travel
beyond its maximum range.

Sweda and Klabjan [34], considered a setting where no
recuperation of energy is performed (edge costs represent

6http://www.openstreetmap.org.
7http://www2.jpl.nasa.gov/srtm/.
8http://www.greenav.org.
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energy loss), but recharging can take place en-route at some
nodes. They model the problem of finding a minimum-cost
path for an EV when the vehicle needs to recharge along the
way as a dynamic program and they prove that the optimal (EV
charging) control and state space (set of nodes the EV can visit
while the battery capacity remains within a certain threshold)
are discrete under some assumptions. By so doing, standard
recursive techniques can be applied to solve the program. The
authors prove that in a directed acyclic graph there exists an
optimal path, in terms of cost, between any two nodes such
that charging (which is modeled to be instantaneous) takes
place at every node. Then, by applying a backward recursion9

algorithm, they decide on the amount of energy that will be
charged at each node.

In some cases, it can turn out that the most energy efficient
route may be considerably longer than the shortest and/or
fastest one. This is because EVs may be able to recuperate
energy over longer routes that involve downward slopes. In
contrast to [15], [29], [33] and [34] that only focus on calcu-
lating the most energy efficient routes, Storand [16] considers
additional criteria in defining the value of chosen routes. In
more detail, apart from the energy cost of a route, it takes into
account time constraints of the driver by trying to balance the
travel time against energy consumption and the number of
required recharging events. More specifically, they consider
two variants:

1) Limiting the number of recharging events, and
2) Minimizing the number of recharging events under a

distance constraint.
These optimisation problems are instances of a constrained
shortest path problem which they show to be NP-hard.
However, they provide preproccesing techniques for fast
query answering. Indeed, the authors test their algorithm
on graphs based on road networks in Germany (using the
OpenStreetMap6 and the Altitude Map NASA SRTM7) and
it is shown to compute solutions for networks with 5M nodes
in less than 20 msecs.

Finally, Storand and Funke [17] address the problem of
EV routing with the goal of finding which destinations are
reachable from a certain location based on the current battery
level of the EV and the availability of charging stations or
battery swap stations.10 This information is very important
for EV drivers when it comes to planning their journey and
therefore, reduces their likelihood of running out of energy.
The authors introduce the notion of EV-reachable (going from
point A to B) and strongly EV-connected (going from point
A to B and back to A) paths and they prove that their
algorithm for calculating these paths has an O(nlogn + m)
time complexity. Moreover, they model battery swap stations
as nodes that instantaneously give a certain amount of energy
to an EV when it passes through them. Despite this being a
simple model of battery swap stations, as it does not consider
the delays incurred in queues at charging stations, this is

9In order to solve a problem of size N, you assume a solution of size N -
1 and then you use this solution to solve the problem of size N.

10In a battery swap station the battery is not recharged but instead it is
replaced by an already charged one. Such stations can reduce battery reloading
time significantly, but they come with a high cost [35].

the only model that considers battery swapping and not only
recharging. The authors evaluate their algorithm in a similar
setting to [16] and it is shown to compute solutions for
networks with 5M nodes and 200 battery swap stations in
under 0.2 seconds.

Now, the techniques discussed above typically ignore the
physics of electric batteries that dictate how much energy can
be stored or extracted from a battery and how these affect
its lifetime. Hence, in the next section, we provide a short
discussion of existing techniques that specifically focus on this
aspect.

B. Battery Efficiency Maximisation

The trend in energy storage technology for EVs (to max-
imise lifetime and allow for fast charging) is to use a chem-
ical battery in conjunction with supercapacitors [18]. In a
supercapacitor, energy is stored electrostatically on the surface
of the material, and does not involve chemical reactions.
Supercapacitors can be charged quickly, and they can last for
millions of charge-discharge cycles, but they have a relatively
low energy density [36]. Supercapacitors can discharge a large
current at short notice (e.g., when accelerating), thus reducing
the stress on the chemical battery. When no current is drawn
from the supercapacitor, it may then recharge, at a slower
rate, from the attached battery. By so doing, the supercapacitor
acts as a buffer for sudden energy demands on the battery. In
such systems, the management of the charging and discharging
of the capacitors and the energy flow from the capacitors
to the battery needs to be optimised in order to maximise
battery lifetime. To this end, [18] develop a stochastic planning
algorithm using dynamic programming. Their algorithm has
quadratic complexity in the discredited capacity levels of the
supercapacitor, but requires an accurate prediction of future
energy requirements. To this end, they apply machine learning
techniques to predict future energy consumption (using data
about commuter trips collected across the United States) and
use such predictions within a Markov Decision Process to
determine a charging/discharging policy. The authors evaluated
their policy against the policies taking part at the Chargecar11

algorithmic challenge and show that it marginally outperforms
the previous best algorithm designed for this problem. (see
details in [37]).

The techniques presented so far focus on individual EV
routing, ignoring the effects of the collective behaviour of EVs
might have on the charging network. We elaborate on this in
the next section.

III. CONGESTION MANAGEMENT

Existing work addresses congestion in EV systems in two
main ways. First, congestion can be managed by individually
guiding EVs to charging points in order to minimise queues.
Second, charging points (and the associated charging slots)
may be placed at specific locations to distribute the load
evenly across the routes usually taken by EVs. In both cases,
most existing work represent the road network as a (weighted)

11http://www.chargecar.org.
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TABLE I
CLASSIFICATION OF PAPERS - EV ROUTING AND RANGE MAXIMISATION

cit. Specific Goal Problem Solving
Technique

Control Scheme Complexity Evaluation Method

[15]
Energy efficient routing
with energy recuperation

Graph-based Search Decentralised O(n3) Theoretical evaluation & Simulation dataset road net-
work OpenStreetMap and Altitude Map NASA SRTM
(0.78M nodes and 1.7M edges)

[29]
Energy efficient routing
with energy recuperation

Graph-based Search Decentralised O(nlogn + m)
with O(nm)
preprocessing

As above (5.5M nodes and 11.7M edges)

[33]
Energy efficient routing
with energy recuperation

Graph-based Search Decentralised O(n2) As above (2M nodes and 4.9M edges)

[34]
Energy efficient routing
without recuperation, with
en-route charging

Mathematical
Programming

Decentralised Polynomial Theoretical evaluation

[16]
Energy efficient routing
considering comfort factors

Graph-based Search Decentralised NP-hard Theoretical evaluation & Simulation dataset road net-
work OpenStreetMap and Altitude Map NASA SRTM
(5.5M nodes and 11.7M edges)

[17]
Finding of reachable loca-
tions from a certain location

Graph-based Search Decentralised O(nlogn+m) Same as the previous

[18]
Battery efficiency maximi-
sation

Mathematical
Programming,
Machine Learning

Decentralised O(n2) Theoretical evaluation & Participation in ChargeCar
competition based on a dataset of 1984 EV trips

directed or undirected graph. Moreover, while in the first area
AI techniques such as stochastic optimisation, utility-based
agent coordination, or mathematical programming are utilised,
in the second area, graph-based search is proven to be NP-
hard and heuristic optimisation algorithms are used instead.
(Table II summarises the key papers of this section).

A. Routing EVs to Minimise Congestion

Initial work by de Weerdt et al. [19] proposed a navigation
system that can predict congestion at charging stations and
suggests the most efficient route, in terms of travel time, but
not energy efficiency, to its user. In order to achieve this, they
proposed an Intention Aware Routing System (IARS) which
is implemented as a software agent. The agent exchanges
intentions with other agents, where the intentions are prob-
abilistic information about which stations the EVs will go to
and when, thus making it possible for each agent to predict
congestion levels. Note that their system can route EVs using
only historical data and can update the routes online as more
accurate information about EVs’ intentions become available.
The authors tested their algorithm (assuming all cars can fully
charge in 30 mins) against other similar approaches which do
not use intentions, and empirically proved that it outperforms
them in terms of waiting time by up to 80%.

Now, a key assumption in [19] is that the communication
between EVs and charging points is reliable, if not continuous.
Instead, Qin and Zhang [20], propose a distributed charging
scheduling algorithm where EVs communicate only with
charging points, but are not able to update their decision
en-route. In more detail, the authors consider a setting of a
highway network with charging points at the exits, modelled
as a graph. For every EV that needs charging, the set of
charging points that exist between its current position and its
final destination is calculated. Based on the preferences of the
owner of the EV, every charging point from this set reports
the minimum waiting time (queuing and charging) that can
be achieved, and the EV selects the one with the minimum

waiting time. The waiting time for the selected charging point
is then compared to the waiting times for the rest of the
charging points, and based on past data, a probability of
an EV driver deviating from the plan and going to another
charging point is calculated. These probabilities are then used
for more accurate predictions on future waiting times. The
authors evaluated their algorithm (assuming EVs minimise
distance travelled) in a simple setting mostly using synthetic
data, and show that it is able to achieve solutions (waiting
times) that are up to less than 10% of the optimal.

While [19] and [20] consider only time as a cost to the
system, Rigas et al. [38] instead introduce pricing mechanisms
as a method to reduce congestion at charging points. Under
their pricing scheme, EVs (modelled as agents with utility
functions capturing time and monetary costs) are incentivised
to avoid charging at congested charging points. Thus, using
prices reported by charging points over time, EVs book
charging slots at the charging point that minimises their delays
(e.g., walking from a charging point to their final destination)
and provides enough charge to route to its final destination.
Bessler and Gronbaek [39] also work on a model similar to
[38], but they consider charging points that are not, necessarily,
close to the drivers’ final destination and therefore require
drivers to use other means of transport (including walking as in
[38]). This approach has the advantage that the set of feasible
charging points can be larger, compared to one where no multi-
modal transportation is taken into consideration, and therefore,
congestion at charging points can be more efficiently handled.
Indeed, the authors test their algorithm on a road network in
Wien, Austria, and prove that they can achieve up to 75% more
charging options compared to a setting where no multi-modal
routes are taken into account.

We next discuss the placement of charging points as an
alternative mechanism to reduce congestion.

B. Charging Point Placement
Initial work by Storand and Funke [21] address the problem

of charging point placement on a road network under the
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constraint that the energy spent for return trips between any
pair of nodes is never larger than an EV’s battery capacity.
The problem is shown to be NP-Hard and heuristic solutions
are developed and tested on road networks from Germany
(using data from OpenStreetMap and SRTM). Similarly, Lam
et al. [40] propose a greedy algorithm which, compared to
an optimal solution that uses Mixed-Integer programming
techniques (using synthetic data), is faster while producing
solutions up to 5% from the optimal, but in considerably lower
computation time. Unfortunately, both of these approaches do
not guarantee that detours will not be imposed on the EV
drivers. However, recent work by Funke et al. [41] investigate
methods for placing charging points, where, given any shortest
path between any two nodes, there are enough stations for an
EV to recover enough energy to continue its journey (assuming
it starts with a fully charged battery). In more detail, this
problem is defined as the EV Shortest Path Cover problem
(SPC) and is modelled as an instance of the Hitting Set
Problem [42].12 Moreover, they adapt existing (for the Hitting
Set Problem) heuristic algorithms to solve the SPC problem
and prove that near optimal results within a factor of O(logn)
of the optimum (n being the number of nodes in the network)
can be achieved.

In general, the efficient placement of charging points is
a necessary but not sufficient condition for the mainstream
adoption of EVs. Along with the placement of such charging
points, it is important to consider the peaks in demand they
can individually handle (by installing enough charging slots)
due to EVs that arrive in different numbers at different times
of the day. Initial work by Bayram et al. [43], introduces the
concept of effective power which is a deterministic quantity
related to the aggregated stochastic demand for electricity at an
EV charging station. The aim of this work is to minimise the
electric power delivered to the station, as well as the number
of charging slots that must be installed in the station, while
the EVs that remain uncharged are kept to a minimum. The
authors use predictions of the actual demand for electricity, as
a percentage of the maximum demand, given a fixed number of
charging slots. The authors evaluate their methodology using
numerical examples and mathematically prove that it can lead
to up to 40% of savings in the total required power, while the
infrastructure cost can be reduced by up to around 30%, while
10% of EVs are not able to charge.

The solutions discussed in this section point to the fact that
the load induced by EVs at different charging points will stress
not only the transportation network but also the electricity
network that delivers energy to each of the charging points.
Alternatively, however, EVs could be used to power local grids
to satisfy demand (from any consumer, including EVs) as part
of a smart grid that permits such serendipitous charging and
discharging events. Hence, in the next section, we elaborate
on the integration of EVs into the Smart Grid.

12Given a set system (U, S) with U being a universe of elements, and
S a collection of subsets of U , the goal is to find a minimum cardinality
subset L ⊆ S such that each set S′ is hit by at least one element in L, i.e.,
∀S′ ∈ S : L ∩ S′ 6= 0.

IV. INTEGRATING EVS INTO THE SMART GRID

The IEEE Intelligent System Applications (ISA) subcom-
mittee13 has recently recognised the usefulness of AI ap-
proaches in solving key power systems challenges involved in
balancing loads on the electricity grid. Hence, in this section
we discuss a number of AI-based solutions that have been
developed to address both Grid-to-Vehicle (G2V) and Vehicle-
to-Grid (V2G) problems. We discuss these solutions in turn.
(Tables III- VI summarise the key papers of this section).

A. Grid to Vehicle (G2V)

Here we focus on solutions that address the scheduling
of charging cycles to minimise the load on transformers
and distribution lines. We identified three main categories
of solutions: (i) load-balancing: techniques to predict future
loads and schedule charging cycles to minimise possible
peaks, (ii) congestion pricing: financial incentives used to
manage demand dynamically, and (iii) electricity markets:
allow competing energy providers and consumers to converge
on efficient allocations of energy that minimise peaks in the
network. In all of these solutions we find commonalities in
the AI techniques used, ranging from agent-based solutions
to electronic auctions. In particular, in the first category
works typically aim to optimise (minimise) either cost (for
the electricity network, and/or for the EVs), or load on the
network, or both using mathematical programming. In the
second category, individuals or collectives of EVs (formu-
lated as agents) minimise charging cost using agent-based
coordination techniques that also consider load on the grid,
and in a few cases apply game theoretic concepts. Finally, in
the third category individuals or collectives of EVs optimise
their participation in electronic auctions and try to minimise
charging cost. Here, works typically use either mathematical
programming, or utility-based agent coordination combined
with concepts from auctions theory, and in some cases they
also use mechanism design. We elaborate on each of these
categories in what follows.

1) Load Balancing: In [44], the authors present a simple
analysis of the impact the uncontrolled charging of Plug-in
Hybrid Electric Vehicles (PHEVs) can have on the distribution
network and develop a dynamic programming solution that
computes the charging schedule for individual EVs across a
network in order to minimise peaks and carbon taxes. They
do so using predictions of EV consumption in future time
slots where such predictions are liable to uncertainty. Their
algorithm is shown (when applied to an IEEE 34-node test
grid using load profiles from a Belgian distribution network) to
reduce losses by up to 2.2% and power deviations by up to 3%,
in spite of errors in predicting future consumption from EVs.
In a similar vein, Anh et al. [45] address the same problem
with a decentralised algorithm where each EV computes its
own schedule (but assuming no prediction error) that is shown
to achieve near-optimal performance (using data from the
Detroit area). Similar techniques have also been proposed in
[12], and evaluated in a Portuguese electricity network. As

13http://sites.ieee.org/pes-iss/.
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TABLE II
CLASSIFICATION OF PAPERS - CONGESTION MANAGEMENT

cit. Specific Goal Problem Solving Technique Control Scheme Evaluation Method

[19]
Navigation system predicting conges-
tion at charging points targeting min-
imisation of journey time

Stochastic optimisation Decentralised Evaluation through simulation against similar algo-
rithms - Results up to 50 EVs are presented (the
authors claim it can work up to 1000)

[20]
Managing congestion at charging points
to minimise charging and waiting time

Graph-based search, and
Mathematical programming,
and Probabilities theory

Decentralised Evaluation through simulation - 300km × 300km
road network, with 100 charging stations and 5 types
of of EVs

[38]
Managing congestion at Charging
Points to minimise load

Graph-based search,
and Utility-based agent
coordination

Decentralised Simulation against an optimal algorithm (Locations
of car parks in a UK city taken from Google maps
and up to 2000 EVs)

[39]
Selecting charging points under a multi-
modal transportation setting to min-
imise load

Graph-based search and
mathematical programming

Decentralised Simulation with dataset from a road network in
Austria taken from OpenStreetMap

[21],
[41]

Optimal Placement of Charging Points Graph-based search, and
heuristic optimisation

Centralised Theoretical evaluation & Simulation dataset road
network OpenStreetMap and Altitude Map NASA
SRTM (15.015.877 nodes and 30.771.648 edges)

[40]
Optimal Placement of Charging Points Graph-based search, and

mathematical programming,
and heuristic optimisation

Centralised Theoretical evaluation & Simulation (up to 200
nodes)

[43]
Optimisation of the number of charging
slots at a charging point, and of the
amount of energy provided to it

Probabilities theory Centralised Simulation through numerical examples (50K EVs)

opposed to the previous works where large numbers of EVs are
managed, Halvgaard et al. [46] develop an economic Model
Predictive Control (MPC) method to minimise the cost of elec-
tricity for a single EV. They propose a dynamic programming
algorithm to calculate an optimal charging plan which achieves
up to 60% cost savings as opposed to uncontrolled charging
when evaluated in a setting using real data taken from the
Danish distribution network.

Vandael et al. [22] also propose a decentralised algorithm
but specifically consider transformer limits and imbalance
costs which are caused by unpredictable changes in production
and consumption. By modelling EVs, transformers and BRPs
(Balancing Responsible Party)14 as agents that express their
individual requirements (charging needs and departure time
for EVs, power limits for transformers, and predicted loads
for BRPs), they can coordinate the schedule of charging
EVs. In particular, they develop an approach that distributes
imbalances across the network and this is shown to reduce
imbalances by 44% (on a dataset from the Belgian distribution
network). In the same vein, Li et al. [23] propose an online
decentralised algorithm that myopically (i.e., with no predic-
tions of future system states) schedules charging cycles using
only the present power system state. Hence, it is more robust
than solutions that rely on, possibly erroneous, predictions of
future system states (e.g., [45], [22]). They achieve coordinated
charging cycles using a charging reference signal that is
computed by an aggregator (i.e., the utility company) that aims
to maximise the SoC (State of Charge) of the vehicles while it
is penalized based on the load at each time point. The authors
prove, both theoretically and empirically, using data from a

14The electricity grid consists of the transmission grid and the distribution
grid. The transmission grid carries electricity from the producers to the
distribution grid which then transfers electricity to the individual customers.
The transmission system operator (TSO) keeps a balance between supply and
demand. In order to achieve this, predictions of the energy that will be injected
to, or withdrawn from each access point of the transmission network must be
made. The predicted load schedule of the consumers and/or producers behind
its access point is provided by the BRP that exists at each access point.

Californian distribution network and simulating EV charging
over a long time period, that this algorithm asymptotically
matches a static optimal one, and also show that it is robust
to forecasting errors. However, they assume that each EV is
available to charge for more than the minimum needed time.

In contrast to the papers presented so far, the work proposed
by Bayram et al. [47] assumes a large number of charging
points, each of them having pre-ordered a certain amount of
energy. In this setting, a centralised mechanism utilises math-
ematical programming techniques to optimally allocate the
energy to EVs (based on individual preferences on charging
rate, and amount of energy needed), so as to maximise the
social welfare by serving the maximum number of EVs. The
authors evaluate the mechanism in a setting where both selfish
(want to charge at the nearest charging point), and cooperative
EVs exist using data regarding traffic traces from the Seattle
area, and prove that, up to 10% of energy savings can be
achieved, while only 5% of EVs remain unserviced.

Now, the above solutions typically ignore the fact that ulti-
mately, EVs may be powered using uncontrollable renewable
energy sources (e.g., wind or solar). In turn, [28] propose dy-
namic programming algorithms that schedule the charging of
EVs according to the availability of energy while guaranteeing
the intended journeys can be completed (assuming knowledge
of future traffic conditions). They also show that their solutions
can adapt to fluctuations in energy generation from renewable
sources and that this allows up to 61% penetration of EVs
(using network and energy generation data from Portugal).

Note that the algorithms by [28] are purely reactive and
do not try to model the uncertainty in energy production. In
contrast, [3] develop a probabilistic model for wind forecasting
(based on [49]) and additionally consider network constraints.
Thus, they solve an Optimal Power Flow problem (to minimise
system generation costs) that guarantees that demand is met
by supply while respecting thermal limits on distribution lines.
By modelling collectives of EVs at individual nodes as one
large battery, their charging algorithm is shown to be robust
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TABLE III
CLASSIFICATION OF PAPERS - INTEGRATING EVS INTO THE SMART GRID - Load Balancing

cit. Specific Goal Problem Solving Technique Control Scheme Evaluation Method

[44]
Load balancing to minimise peaks and
carbon taxes using predictions (with
possible errors) on future EV consump-
tion

Mathematical programming Centralised Simulation with data from household load profiles
and predicted EV penetration from Belgium and the
IEEE 34-node test grid

[45]
Coordination of power generation and
charging to reduce costs and carbon
emissions using predictions (with no
errors) on future power reserves

Mathematical programming Decentralised Simulation with data from DTE Energy in Michigan,
USA (2M EVs)

[12]
Load balancing to minimise peaks us-
ing predictions (with no errors) on fu-
ture loads

Mathematical Programming Centralised Simulation with data from a medium voltage distri-
bution grid in Portugal (6.500 EVs)

[46]
Charging scheduling of a single EV to
minimise costs using predictions (with
no errors) on future loads

Mathematical programming Decentralised Simulation with data from a distribution grid from
Denmark, where a 24h prediction on electricity con-
sumption is assumed

[22]
Charging scheduling of a set of PHEVs
to minimise peaks assuming no predic-
tions on future loads are available

Utility-based agent coordina-
tion

Decentralised Simulation with consumption profiles data from 200
households obtained from the Belgian distribution
grid provider Infrax

[23]
Charging scheduling of a set of PHEVs
to minimise peaks assuming no predic-
tions on future loads are available

Mathematical programming Decentralised Simulation on IEEE 37-bus and IEEE 123-bus sys-
tem and using data from residential distribution net-
works in southern California

[47]
Optimal allocation of a fixed amount
of energy to a set of EVs to min-
imise peaks and maximise social wel-
fare using stochastic predictions on fu-
ture loads

Mathematical programming Centralised Simulation using data on traffic traces from the
Seattle area (1M EVs)

[28]
Scheduling of EVs according to the
availability of energy for load balancing
considering Renewables, but no predic-
tion of their future energy production

Mathematical programming Centralised Simulation using data derived from the low voltage
distribution grid, and data on power generation from
renewables from Portugal for up to 230 EVs

[3] Charging scheduling of EVs for load
balancing and system generation costs
reduction using a probabilistic model to
forecast production from renewables

Mathematical programming Centralised Simulation based on data from the Swiss transmition
operator Swissgrid, driving patterns from an agent-
based transport simulator (MATSim [48]) and wind
output data forecast from the National Renewable
Energy Laboratory (1M EVs)

to errors in wind prediction, but a trade-off between flexibility
and cost minimisation is identified.

We next discuss congestion pricing approaches to managing
EV charging that also consider constraints imposed by the
distribution network.

2) Congestion Pricing: Sundstrom and Binding [24], pro-
pose algorithms that price energy consumption according to
the time of day (i.e., time of use tariffs) under the assumption
that demand will be time dependent. Thus, they develop an
EV charging scheduling algorithm, using MIP (Mixed Integer
Programming), that uses these prices and power constraints
and thermal limits of the network. Taking real data from
distribution grids (in Denmark and Germany) and assuming
that a single wind-powered electricity generator exists, they
show that with their solution only 0.04% of the grid is
overloaded by more than 10%, compared to purely myopic
charging (i.e., as and when needed) where up to 4% of the
grid is overloaded by more than 10%.

While [24] assume energy demands are centrally known
and can be used for scheduling (and hence less robust to
failures), [50] develop a decentralised solution where EVs
react to a price signal broadcast by the utility a day-ahead.
In more detail, two alternative tariffs are explored, one where
the same price profile applies system-wide, and another where
different prices can be defined at different nodes. By shifting
their charging cycles to minimise cost (solving a constrained
Optimal Power Flow problem), the EVs also reduce congestion

on the distribution network. Crucially, they show that their
decentralised algorithm produces solutions that are up to
97% of a centralised algorithm (with known EV profiles and
schedules). Echoing results in another study [51], they show
that their solution mainly balances schedules at individual
nodes rather than across the network. Rigas et al. [38] and
Karfopoulos and Hatziargyriou [52] present solutions to this
problem. In particular, [38] applies congestion pricing across
nodes in the network using pricing functions that are demand-
dependent (at each node rather than across the network). By
minimising charging costs (and time the drivers spent waiting
and/or walking to their actual destination), the EVs (acting as
self-interested agents), automatically schedule themselves to
minimise congestion across the network but also at individual
charging points. Thus they are able to show (using data of car
park locations in Southampton, UK), that their agent-based
congestion management algorithm is able to scale to thousands
of agents, producing good-enough solutions, compared to a
centralised scheme that assumes complete information about
the future arrivals of EVs. Moreover, [52] formulate the
problem as a single-objective, non-cooperative, dynamic game
and apply a number of price signals across a set of regions
of a distribution network. The authors prove that a Nash-
equilibrium can be achieved under the assumption that the
EV agents are (weakly) coupled (they take into consideration
the strategies of others when deciding on their charging).
Moreover, by simulating their mechanism in a setting using
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data from a distribution network in Greece, they show that
as opposed to uncoupled agents, weakly coupled ones can
achieve up to 13% reduction on the maximum line load.
Note however, that real time pricing comes with a higher
infrastructure cost compared to time of use pricing [53].

In contrast to [50], [38] and [52], Bayram et al. [54]
propose the use of fixed prices up to a certain number of EVs
that charge at one charging point, and once this threshold is
exceeded, congestion pricing is used in order to incentivize
EVs to charge at other points. By so doing, they are able to
reduce the need to continuously communicate prices to EVs
(as in [38] for example). In particular, their solution focuses
on maximising revenue for the operator while minimising
the number of EVs priced out of the market. However, as
their mechanism is only tested on synthetic data, it is unclear
whether such results would port to situations where EV arrival
rates are unpredictable.

In contrast to the above, a number of studies [25], [55]
use Game theoretic analysis to study the performance of the
system when EVs and charging points adopt simple strategies
to minimise their individual cost. In particular, they cast
the problem as a game and attempt to predict the Nash
equilibrium of the game. Specifically, while [25] shows that
EVs competing for charging slots across a network would
end up minimising congestion costs across the network, [55]
instead shows that when charging points belong to different
stakeholders, despite the competition between them, EVs can
easily be exploited if they simply go to the nearest charging
point (rather than choosing the cheapest one).

Apart from the above approaches that only price charging
slots, a number of approaches have recently studied how
charging rates can be throttled using congestion pricing. In
particular, we note the work of [56] that applies Internet con-
gestion control techniques to throttle charging rates at different
points in the network. They further decentralise their solution
using Lagrangian decomposition techniques. While they make
some significant assumptions (e.g., residential load is constant
and a fixed number of EVs are connected to chargers), it is
interesting to see how such congestion management techniques
that are popular in communication networks can be transferred
to electricity networks.

Using more traditional agent-based negotiation techniques,
Gan et al. [13], implement an iterative procedure to allow EVs
to negotiate the charging rate (at different time points) with
a utility company (that broadcasts a price signal to control
charging). Crucially, they show that, should the charging
characteristics of all EVs are known, an optimal solution is
reached in a decentralised fashion. They further validate their
approach empirically and show (using data from a Califor-
nian distribution network) that it impressively outperforms a
standard benchmark for this domain [25].

In the settings we have discussed so far, EVs do not have the
option to negotiate on the congestion price (as this is set by the
utility company or charging point owners). Instead, in the next
subsection, we discuss market-based price setting techniques.

3) Electricity Markets: Initial work by Caramanis and
Foster [26], investigate market-based control techniques for
load balancing and to provide regulation services that allow

renewable energy sources to be integrated.15 Specifically, they
assume that EVs join an aggregator that directly participates
in day-ahead16 electricity markets where different generators
(including renewable) participate. Crucially, they develop a
bidding strategy, using stochastic dynamic programming tech-
niques, for the aggregator to account for uncertain demand
from the EVs while maximising regulation service revenues
(by efficiently absorbing unpredictable surges of wind energy
into the EV batteries). In [57] they further develop a new bid-
ding strategy (using mathematical programming) for the EV
aggregator to operate in hour-ahead (real time) markets17 and
show (using data from US power exchange) that it outperforms
typical benchmarks by up to 15% (in cost reduction for the
EVs).

In the same vein, González Vayá and Andersson [58] pro-
pose a bidding strategy, using MIP techniques, for a day-ahead
market having as an objective to minimise charging costs,
while satisfying the EVs’ demand for electricity. The setting is
studied over a period of time, thus making it an intertemporal
problem, and therefore a multi-period optimisation is used. In
addition to this, a single-period optimisation is carried out in
order to allocate energy to individual vehicles. In [27], the
same authors go a step further, as the bidding strategy is
modelled as a two-level problem (implemented as a mixed-
integer linear program), where the upper-level is in charge
of minimising the aggregator’s charging cost (a set of EVs is
represented by an aggregator), while the lower-level represents
the market clearing (the price on which electricity is sold),
where the bids of other participants are not known in advance.
The bidding strategy is evaluated based on historic data on
electricity pricing from Germany and Austria, and driving
patterns taken from the MATSim [48] simulator based on
Swiss transport data, and the results show an up to 37%
reduction costs. Additionally, Yang et al. [59] propose a cen-
tralised charging scheduling framework which also considers
the load mismatch risk between the day-ahead and the real-
time market.18 The framework is based on the day-ahead prices
and on statistical information of the EVs’ driving patterns
and the risk-aware day-ahead scheduling is modelled as a two
stage stochastic linear problem which is solved using the L-
shaped method [60]. Using day-ahead electricity prices from
a distribution network provider in New England and random
vehicle travel activities to simulate a realistic scenario, they
evaluate their risk-aware algorithm and show that it reduces
the total cost by up to 20%, while it also reduces peaks.

15Regulation service corrects for short-term changes in electricity use that
might affect the stability of the power system. It helps match generation and
load and adjusts generation output to maintain the desired frequency. Energy
from renewable sources come with a certain amount of intermittency and,
therefor, regulation service might need to be increased by up to 20%.

16Day-Ahead Market is a forward market in which prices are calculated for
the next operating day based on generation offers, demand bids and scheduled
bilateral transactions.

17Real-Time Market is a spot market in which current prices are calculated
at five-minute intervals based on actual grid operating conditions.

18An entity (e.g., an EV aggregator) buys electricity in the day ahead
market based on predictions on the next day’s consumption. Then in the
real time market it can buy (or sell) electricity to cover the actual demand.
However, real-time markets are more expensive compared to day-ahead ones,
and therefore, the amount of energy bought in the real-time market must be
minimised.
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TABLE IV
CLASSIFICATION OF PAPERS - INTEGRATING EVS INTO THE SMART GRID - Congestion Pricing

cit. Specific Goal Problem Solving Technique Control Scheme Evaluation Method

[24]
Charging scheduling through time of
use pricing to minimise peaks and cost

Mathematical programming Centralised Simulation using data from a distribution grid in
Denmark correlated with consumer profiles from
Germany (3500 EVs)

[50]
Charging scheduling through price tar-
iffs broadcasted a day ahead to min-
imise peaks and cost

Utility based agent coordina-
tion, and mathematical pro-
gramming

Decentralised Simulation based on a model of the Swiss trans-
mition network with 191 nodes, 246 lines and 21
transformers based on data from Swissgrid (1M EVs)

[38]
Charging point selection and charg-
ing scheduling to minimise congestion,
peaks and costs using dynamic pricing

Utility-based agent coordina-
tion

Decentralised Simulation using real car parks locations from a UK
city (2000 EVs)

[52]
Charging scheduling across a set of
regions using price tariffs and game
theoretic analysis to minimise peaks
and cost

Utility-based agent coordi-
nation, and game theoretic
analysis.

Decentralised Theoretical evaluation and simulation using data
from a distribution network in Greece (1200 EVs)

[54]
Charging scheduling using fixed prices
up to a number of EVs and congestion
pricing afterwords to minimise peaks
and cost

Utility based agent coordina-
tion.

Decentralised Simulation using synthetic data

[25]
Minimisation of congestion costs
through EV competition for charging
slots across a network

Utility based agent coordi-
nation, and game theoretic
analysis

Decentralised Theoretical evaluation and simulation using real data
on a distribution network from the Midwest Indepen-
dent System Operator (USA) (10M EVs)

[55]
Charging scheduling over a set of
charging points to minimise peaks and
cost using game theoretic analysis

Utility based agent coordi-
nation, and game theoretic
analysis

Decentralised Theoretical evaluation and simulation using synthetic
data (1350 EVs)

[56]
Scheduling time and rate of charge to
minimise peaks and costs using conges-
tion pricing

Utility-based agent coordina-
tion, and mathematical pro-
gramming

Decentralised Theoretical evaluation and simulation based on an
IEEE 13-bus test feeder

[13]
Scheduling time and rate of charge to
minimise peaks and costs using price
tariffs

Utility-based agent coordina-
tion, and mathematical pro-
gramming

Decentralised Simulation with real data from a distribution network
in USA

Aside from mechanisms that allow collectives of EVs to
participate in electricity markets, new mechanisms have re-
cently been developed to manage congestion at a local level,
while in all these mechanisms the incentives and allocations
are set to ensure the agents have, as their best strategy, to
reveal their preferences for charging times and reserve prices.
In particular, we note the work of [61], [62] and [63] that
use mechanism design techniques to incentivise self-interested
EV agents (that hold their owners utility function) to book
charging slots in order to achieve system-wide objectives (e.g.,
cost reduction, network stability). Specifically, [61] propose a
mechanism for allocating electric power units to self-interested
agents, aiming to maximise the social welfare of the agents. In
order to generate efficient electricity unit allocation decisions,
the authors use a modified version of the Consensus algorithm
[64]. Moreover, they use the concept of pre-commitment (the
mechanism pledges that it will charge the EV by its departure
time, but has the flexibility to choose when and at what rate
the charging will take place), they prove that their mechanism
incentivizes truthful reporting of the preferences of the agents.
Assuming that one charging point exists, and that probabilistic
knowledge on future EV arrivals exists, they evaluate their
mechanism within a scenario involving 100 EVs and show
that their mechanism achieves an 93% or more of that of
an offline optimal mechanism. Instead, in [62], agents state
time windows within which they will be available to charge,
and bid for units of electricity in a periodic multi-unit auction
(one auction per time step). In order to ensure truthfulness, the
authors developed a mechanism that occasionally leaves units
of electricity unallocated (burned), even if there is demand for
them. These units are burned either at the time of allocation

or at the time of departure of the agent. Moreover, in [63],
a two-sided market (between charging points and EVs) is
proposed. In particular, the agents report their preferences and
their value for the electricity and the charging points report
their availability and costs, and then they are allocated the
slot that maximises the difference between their value and the
sellers’ cost. Both [62] and [63] show that their mechanisms
can achieve performance up to 95% of the optimal.

Finally, Tushar et al. [65] cast the problem of the provision
of electricity to collectives of EVs from a smart electricity
grid in a distributed manner as a Stackelberg game19 [66].
In particular, the electricity grid acts as a leader and aims to
maximise its revenues by setting prices for a certain amount of
electricity available for EV charging. In turn, the collectives of
the EVs act as followers and need to decide on their charging
strategies so as to optimise a tradeoff between the benefit from
battery charging and the associated cost. The authors prove
that with the use of variational inequalities,20 the proposed
game reaches a socially optimal Stackelberg equilibrium. In
this state, the grid optimises its price, while the EVs choose
their equilibrium strategies. They show that the equilibrium
reached in the game results a higher average utility than typical

19The Stackelberg leadership model is a strategic game where two (or
more) players (firms) offer an undifferentiated product with known demand.
Players have to compete by choosing the amount of output to produce, but
one of them goes first (leader). The other player(s) (follower) observe what
amount player 1 has chosen, and choose their amount accordingly to maximise
profits. In this setting, player 1 knows that player 2 will follow this strategy
since it can rely on the other player’s economic rationality. In a Stackenberg
model, equilibrium is reached when player 1 pre-emptively expands output
and secures larger profits.

20Given X ⊆ <n and F : <n → <n, the V I(X,F ) consists of finding
a vector z∗ ∈ X such that 〈F (z∗), z − z∗〉 ≥ 0, for all z ∈ X .
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benchmarks in this domain [67], [68].
We next turn to mechanisms that permit EVs to sell their

stored energy back to the grid as part of V2G programmes.

B. Vehicle-to-Grid (V2G)

EVs’ large batteries can, if well managed, become a valu-
able asset to a smart electricity grid. As discussed earlier (see
Section I), the stored energy can be used to smooth out the
fluctuating production of electricity from renewable sources.
Moreover, the provision of V2G services can potentially be
very profitable for EV owners. V2G services can be provided
either in an one-to-one basis (each EV will sell its own spare
energy to the grid), or in the form of collectives of EVs which
act as one entity and trade electricity. Indeed, unless operating
through an aggregator, it is impossible for individual EVs to
sell V2G services in electricity markets where buyers typically
buy energy in Megawatt-hours rather than kilowatt-hours [69].

Now, a number of different AI-based approaches have been
developed to manage V2G programmes. For example, some
seek to optimise, using mathematical programming, the use
of stored energy to cater for low energy production periods
from renewables [70], [14]. Others, instead have applied
coalition formation techniques,21 to coalesce EVs into efficient
groupings that can make profitable V2G trades [72], [73] and
[74]. We elaborate on all these approaches in the following
paragraphs.

In terms of using V2G to balance supply against demand,
Chatzivasileiadis et al. [70] developed a solution which mimics
inertia22 techniques using battery storage from a fleet of
PHEVs, and applied Q-learning in order to learn the optimal
controller placement strategy. They provide theoretical results
that show that the system reaches a stable state where demand
is always balanced by supply, and that costs are reduced as
fewer controllers need to be installed. [4] instead, use particle
swarm optimisation (PSO)23 [75] to optimise energy trades
(charging and discharging of EVs). In comparison to [70],
[4] also consider CO2 emission reduction as a key aspect.
V2G service can reduce CO2 emissions by giving energy to
the grid when demand is higher than supply, and in this way
highly energy consuming reserve power plants (or peaking
plants) are not activated. Thus, PSO is used to schedule the
charging and/or discharging activities of the vehicles so as
cost and emissions to be minimised. The authors also show
(using data from [76]) that their mechanism can trade-off
emission reduction for cost reduction. The intuition is that
when charging cost is low, EVs prefer to charge, and therefore
emissions are high, whereas, when charging cost is high,
emissions are low as EVs prefer to discharge.

21Coalition formation allows groups of autonomous rational agents to form
stable (i.e., in a state of equilibrium) teams [71].

22In case the power fed to an electricity network is suddenly reduced, the
generators deliver to the network an amount of stored energy called inertia.
In this way the frequency of the network remains stable for some time, letting
the controllers handle the change in the level of available energy. Electricity
networks based on renewable energy sources lack such kinds of techniques.

23PSO is a bio-inspired algorithm for the optimisation of non-linear
functions. It is based on the behavior of flocks of birds, or schools of fish,
and it has similarities with other population-based evolutionary algorithms.

Galus and Andersson [14] propose algorithms for an aggre-
gator to trade energy in the energy market by both managing
the charging and discharging of the EVs. Based on the
current SOC of the vehicles, the desired SOC and the time
of departure, it is able to optimise the amount charged in the
batteries in order to make a profit by reselling a quantity that
leaves the EVs with enough to go onto their onward journeys.
Moreover, the authors claim that by using a Model Predictive
Control (MPC) approach, their solution has the ability to cope
with the error in the forecast of energy output from renewable
energy sources, and in particular wind energy. Crucially, they
show (using driving patterns derived from MATSim [48], and
prediction on wind speeds from the Cosmo-2 model [77]) that
their algorithm can handle the infeed error (< 300 MW) from
a 500 MW wind park.

Having as a target to maximise the profit of EVs by
providing V2G services, Wehinger et al. [72] modeled the
German wholesale electricity market and studied the effect of
storage devices and a PHEV cluster on the spot prices (prices
at particular time points at the day-ahead market). The agents
(PHEVs) participate in a day-ahead electricity market, where
they submit bidding curves that represent the agent’s power
output for a specific spot price range. The authors propose
a Q-learning based method called “model predictive bidding”
(a variation of this algorithm where reinforcement learning in
combination with a genetic algorithm is used is presented in
[78]) in order to predict future spot prices and maximise their
profit. This method initially predicts future spot prices that are
later adjusted to incorporate market-power. Finally, the bidding
curves are optimised using dynamic programming. The model
is evaluated on data taken from a German distribution network
and show that an aggregation of PHEVs can lead up to 116%
increase in profit compared to a reference scenario with no
PHEVs.

Couillet et al. [79] tackle the same problem from a dif-
ferent perspective: they investigate the competitive interaction
between EVs or PHEVs in a Cournot market, which consists
of electricity transactions to or from a distribution network. In
more detail, they formulate the problem as a mean field game
and prove that a Nash, or mean field in this case, equilibrium
can be reached. In this formulation, EVs and PHEVs trade
electricity at prices that change dynamically with the time
of the day. In this way, they are incentivized to buy or sell
electricity at specific time periods so as the energy demand for
other appliances attached to the grid to be met, and overloads
to be avoided. Indeed, through some simple simulations, the
authors proved that peak time electricity demand is reduced
and it is shifted to periods of the day with lower demand.

Kamboj et al. [73] consider a special case of V2G pro-
grammes where EVs can be grouped into coalitions to par-
ticipate in electricity markets and make profit by selling
electricity. The formation of coalitions is needed in order the
minimum amount of energy Transmission System Operators
(TSOs) are willing to buy to be reached. In so doing, four
types of agents are used:

1) Vehicle agent: captures the preferences of the EV owners
(minimum SOC, profit from V2G services).

2) Aggregator agent: forms the best coalitions, trades on
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TABLE V
CLASSIFICATION OF PAPERS - INTEGRATING EVS INTO THE SMART GRID - Electricity Markets

cit. Specific Goal Problem Solving Technique Control Scheme Evaluation Method

[26]
Market-based EV charging control
techniques for load balancing and reg-
ulation services provision for the inte-
gration of renewables

Mathematical programming,
and stochastic optimisation,
and auctions

Centralised Simulation using real data from a low voltage resi-
dential feeder in Texas, USA

[57]
Bidding strategy for participation in
hour-ahead electricity markets to min-
imise cost

Mathematical programming,
and stochastic optimisation,
and auctions

Centralised Theoretical evaluation and simulation using data
from various distribution networks in the USA (100
EVs)

[58]
Bidding strategy for participation in a
day-ahead market to minimise cost

Mathematical programming,
and auctions

Centralised Simulation based on data from German and Austrian
distribution operators prices (1M EVs)

[27]
Bidding strategy for participation in a
day-ahead electricity market to min-
imise cost

Mathematical programming
and auctions

Centralised Simulation using data from the Swiss transmition
operator Swissgrid

[59]
Day-ahead charging scheduling mech-
anism considering the load mismatch
risk between the day-ahead and the
real-time market

Mathematical programming,
and auctions

Centralised Simulation using data on day-ahead prices from an
ISO in New England, USA

[61]
Allocation of electric power units to
self-interested agents (EV owners) with
private preferences

Utility-based agent coordina-
tion, and auctions, and mech-
anism design

Decentralised Simulation using real data from a EVs-trial in the
UK (CABLED project) (100 EVs)

[62]
Online auction protocol for allocating
resources (electric power) to agents
(EVs)

Utility-based agent coordina-
tion, and auctions, and mech-
anism design

Decentralised Same as above (200 EVs)

[63]
Two-sided online market for EV charg-
ing where multiple charging points are
considered

Utility-based agent coordina-
tion, and auctions, and mech-
anism design

Decentralised Theoretical evaluation and numerical examples (100
EVs)

[65]
Modelling of the problem of the pro-
vision of electricity to collectives of
EVs from a smart electricity grid as a
Stackelberg game

utility-based agent coordi-
nation, and game theoretic
analysis, and auctions.

Decentralised Theoretical evaluation and simulation using synthetic
data (1000 EVs)

the wholesale energy market, and calculates fair payoffs
to the EVs based on their Shapley [80] values.24

3) TSO agent: mediates between power systems and aggre-
gator agents to ensure limits on the lines are respected.

4) Battery charger agent: charges EVs based on their indi-
vidual characteristics.

Vehicle agents send join requests to the aggregator agents
that are in close proximity (different coalitions are formed
in different geographical areas), and choose to participate
in the coalition that offers them the largest profit. A key
contribution of this work is the actual deployment of the
system in Delaware in collaboration with PJM.25 The system
has been shown to result in $2400 annual profit for each EV
owner that provides V2G services.

Taking inspiration from [73], Ramos et al. [74] present a
mechanism to form EV coalitions under distribution network
constraints. Thus they propose an algorithm to coalesce EVs
(based on join requests sent) within the same region as well as
an incentive scheme that rewards larger coalitions. Individual
agents are rewarded with a price that is commensurate with
their contribution (i.e., energy contributed) to the coalition.
Thus they are able to show (using data from the Brazilian
electricity network) that they are able to provide high quality
solutions (95% of the optimal coalition structure (one that
maximises the sum of the values of all coalitions)) and that
their algorithm can scale to large numbers of agents. It is
important to note here that the incentives in this mechanism

24Shapley value assigns an expected marginal contribution to each player
in a coalitional form game with respect to a uniform distribution over the set
of all permutations on the set of players.

25http://www.pjm.com/.

ignore the fact that different coalitions of EVs may need to
find buyers for their energy in an energy market (possibly other
coalitions of G2V EVs). In light of this, Saad et al. [81] use
non-cooperative game theoretic techniques, specifically double
auctions, to ensure that an efficient allocation is reached (i.e.,
one where buyers and sellers pay their reserve prices). In
particular, they prove this outcome is a Nash Equilibrium of
the system.

In this section, we have presented a number of V2G
management approaches that ultimately aim to smooth the in-
tegration of renewables into the smart grid. An open challenge
remains, however, in incentivising EV owners to participate
in such schemes where their needs for energy may be un-
predictable. In the next section a classification scheme of the
reviewed papers, as well as a discussion on a number of open
research issues are presented.

V. DISCUSSION AND OPEN RESEARCH ISSUES

In this paper, we have analyzed the application of Artificial
Intelligence techniques to address the major challenges that
arise in the deployment and management of Electric Vehicles.
In particular, we have studied AI techniques for energy-
efficient EV routing and charging point selection, as well as
for the integration of EVs into the smart grid.

In order to summarize our study and to provide a concise
yet comprehensive framework for characterizing the reviewed
papers, we classified key goals, techniques, control schemes
and evaluation benchmarks according to the specific research
lines (i.e., EVs routing, Congestion management, Integration
of EVs into the Smart Grid) (See Tables I-VI).



13

TABLE VI
CLASSIFICATION OF PAPERS - INTEGRATING EVS INTO THE SMART GRID - V2G

cit. Specific Goal Problem Solving Technique Control Scheme Evaluation Method

[70]
Balance supply against demand and
minimise costs

Machine learning Centralised Theoretical evaluation and simulation based on syn-
thetic data

[4] Charge and discharge of EVs to min-
imise costs and CO2 emissions

PSO optimisation, and math-
ematical programming

Centralised Simulation using real data on loads and estimations
on emission coefficients and generators production
(50K EVs)

[14]
Charge and discharge of EVs managing
the forecast on energy generation from
renewables

Mathematical programming Centralised Simulation using driving patterns from MATSim [48]
and prediction on wind speeds from the Cosmo-2
model [77] (9000 EVs)

[72]
Q-learning based method to predict fu-
ture spot prices in a day ahead market
and provide financially efficient V2G
services

Mathematical programming Centralised Simulation based on data from a German distribution
grid (8M EVs)

[79]
Game theoretic analysis of V2G ser-
vices

Game theory and auctions Decentralised Theoretical evaluation and simulation using synthetic
data

[73]
EV coalitions to participate in electric-
ity markets and maximise revenues

Game theory and auctions Centralised Real world deployment in Delaware in collaboration
with PJM (5EVs)

[74]
EV coalitions to participate in electric-
ity markets and maximise revenues

Game theory and heuristic
optimisation

Decentralised Simulation using data from the Brazilian electricity
network (40 EVs)

[81]
Non-cooperative game to solve the
problem of collectives of PHEVs sell-
ing energy to the grid

Game theory and auctions Decentralised Theoretical evaluation and simulation using synthetic
data (20K EVs)

The main areas that were reviewed in this paper were
selected based on the main activities of an EV: Driving
(Section II, Table I), selecting a charging point (Section III,
Table II), and charging and/or discharging (Section IV,
Tables III-VI). All of the papers included in this work can
be classified under one of these three categories. Apart from
these categories, though, we further classify the papers along
a number of dimensions:

• Specific Goal: This dimension extracts specific chal-
lenges addressed within individual papers. For example
most of the work on EV routing is related to the energy-
efficient routing problem, while the majority of the work
regarding the integration of EVs into the smart grid study
G2V management.

• Problem-solving Technique: For example most work
that focus on energy efficient EV routing use graph-
based search algorithms, while papers that manage large
collectives of EVs either in a G2V or in V2G mode
mostly use mathematical programming.

• Control Scheme: This is determined by the needs of the
application. For example, as we can see from Table IV,
utility-based agent coordination is achieved mostly under
a decentralised control scheme, while the management
of aggregations of EVs for smooth renewable energy
integration takes place under a centralised scheme.

• Evaluation Method: Most of the works presented in
this paper use either theoretical evaluation (i.e., in terms
of time complexity, or proof of Nash equilibrium), or
simulations using real and rarely synthetic data or, in
some rare cases (as in [73]), real-world deployments.

Based on our analysis, we identify a number of key consid-
erations for individual aspects of EV management:

EVs Routing: work here has focused on energy efficient
EV routing, and typically represents the road network as
directed or undirected graphs. Most of the solutions proposed,
consider the energy recuperation ability of the EVs, and the
negative edge costs that are derived from it, and adapt existing

search algorithms such as the Dijkstra’s or the A* in order
to find the path that minimises the energy consumption of
the EV. Moreover, some of these approaches also consider
recharging, but simply as passing through some specific nodes.
The algorithm presented in [29] is proven to have the best
performance in terms of time and computational complexity.
(Note that in this section in addition to the aforementioned
dimensions, the complexity of the algorithms is also taken
into consideration as it is an aspect thoroughly analyzed in
the papers –Table I).

Charging Point Selection: here a number of problem formu-
lations and solution techniques are proposed. They typically
focus on the minimisation of the traffic congestion and the
delays incurred by the EVs. The most promising solutions
are able to select the best charging point and update this
decision en-route. Moreover, incentives should be given to
EVs in order to avoid charging at few central and congested
charging points. Therefore, a combination of the solutions
presented in [19] and [38] could prove to handle the problem
of the efficient selection of charging points in the most efficient
manner. Finally, the work presented in [41] achieves the
optimal placement of charging points, while long detours of
EVs are avoided.

Integrating EVs to the Smart Grid: here work is typically
divided in terms of G2V and V2G algorithms (to the exception
of [14] which considers both in one system).

We have identified important benchmarks in the context of
G2V, namely (i) [3] which uses mathematical programming
techniques to solve the problem of charging EVs from inter-
mittent renewable sources (ii) [38] and [54] which use conges-
tion pricing techniques to balance the load across the network
and (iii) [63] and [57] that use market based techniques to
ensure EVs satisfy grid constraints and participate in energy
markets.

In terms of V2G solutions, most of them focus on profit
maximisation as a key goal. Solution techniques range from
mathematical programming techniques to optimise trading
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decisions on the energy market [14] and coalition formation
to devise discharging policies [73].

Against this background we can identify some key scientific
dimensions of the problems that need to be tackled:

1) Uncertainty: while several algorithms have been pro-
posed to account for uncertainty in renewable energy
production (e.g., [82], and [49]), very few tackle the
uncertainty in arrival and departure times of EVs and the
load they will impose on the distribution network (some
initial work can be found in [83] and in [84]), as well as
uncertainties in the reliability of communication systems
used to coordinate collectives of EVs. The challenge
here is to produce predictions at short notice as late
decisions could potentially result in major disruption
to the transportation network. Hence, efficient machine
learning algorithms need to be developed to predict
behaviours in the system. In particular, we believe
predictions could be improved by constructing better
models of human mobility [85], [86] as well as by
fusing data from across the transportation network [87],
[88]. To this end, large scale deployments of EVs are
essential, should future machine learning algorithms be
trained and evaluated in big enough datasets so as their
efficiency to be maximised.

2) Dynamism: The state of the electricity grid, the produc-
tion of renewable sources, the charging point availabil-
ity, the congestion at communication and transportation
networks and the number of EVs available to provide
V2G services, change quickly while a large number of
EVs are either driving or charging. Under such a dy-
namic setting, fail-safe mechanisms and approximation
algorithms will be required to solve optimisation prob-
lems at short notice, while minimising communication
bandwidth. While we have noted a number of solutions
that use stochastic dynamic programming, it will be
interesting to see if such solutions can be decentralised
to ensure the system is more robust (e.g., to [89]).

Furthermore, we can identify some key engineering dimen-
sions of the problems that need to be tackled:

1) Interoperability: There is a need EV technologies to
be able to work seamlessly and efficiently together.
Different types of chargers should be able to work with
all EV models, and data exchanged between entities
(EVs, charging points, network operators) should have
an understandable by all format and meaning. For exam-
ple, Semantic Web technologies, such as XML, RDF and
ontologies, can provide a structured and consistent way
to represent the data being exchanged, and therefore,
make the collaboration of various technologies more
efficient.

2) Privacy: In order for EVs to be efficiently managed in
terms of driving, charging and/or discharging, data on
the location and the preferences of them must, in many
cases, be obtained by a central mechanism. This creates
issues of privacy and data protection, as drivers might
not be willing to disclose such information.

3) Real world validation: Currently, most of the mecha-

nisms and the technologies related to the management
of the EVs remain at a theoretical or at a pilot de-
ployment level, and thus, their effectiveness in a large
scale deployment has not been validated. The design
of effective interfaces for human-EV (agent) interaction
to be smooth and efficient, but also the research on
ways to motivate and incentivize people to follow the
instructions given to them by systems (e.g., a routing
system giving instruction on an energy efficient route
to take, or a charging point to charge at) is crucial.
Moreover, the complexity of the coordination of a large
number of entities (e.g., EVs, charging points, electricity
network managers), and the ability of the systems to
react to unexpected situations (e.g., a large number of
EVs wanting to charge within a short period of time)
and prevent negative events (e.g., overloading of the
electricity network) must be carefully studied, analyzed,
and verified.

Our study has shown that several AI-based approaches are
emerging in all areas of EV management: from battery charg-
ing algorithms to network congestion management algorithms.
We believe in a concerted effort, involving transportation
engineers, power systems experts, and AI researchers, in order
to bring the benefits of such solutions to the real world. Hence,
we advocate more joint deployments of novel AI solutions in
field trials, with users of different types, in order to unpack
more specific challenges that remain to be addressed before
EVs can be deployed at scale. Moreover, AI techniques being
exploratory in nature can help EV researchers to quickly
explore optimisation search spaces using heuristics. Since
modern AI is being based on solid scientific approaches all its
experiments and results are verifiable and reproducible. Thus,
engineers can base the development of standards, which are
crucial should a systematic management of EVs activities be
achieved, on the results of AI research on EVs [90]. Currently,
a number of EV related standards already exist,26 and others
are under way.
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