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Abstract. Non Intrusive Load Monitoring is the field that encompasses
energy disaggregation and appliance detection. In recent years, Deep
Neural Networks have improved the classification performance, using
the standard data representation that most datasets provide; that be-
ing low-frequency or high-frequency data. In this paper, we explore the
NILM problem from the scope of transfer learning. We propose a way
of changing the feature space with the use of an image representation
of the low-frequency data from UK-Dale and REDD datasets and the
pretrained Convolutional Neural Network VGG16. We then train some
basic classifiers and use the metric F1 score to test the performance of
this representation. Multiple tests are performed to test the adaptability
of the models to unseen houses and different datasets. We find that the
performance is on par and in some cases outperforms that of popular
deep NN algorithms.

Keywords: NILM · Energy Disaggregation · Transfer Learning · Arti-
ficial Neural Networks.

1 Introduction

Energy demands have risen greatly in the past 40 years. More and more electrical
devices are becoming essential in a household; computers, tablets, cell phones
etc. That, of course, means that more energy is being spent. Therefore a need
arises for efficient monitoring of the energy being consumed. With the progress
of technology, it has become possible to monitor the energy consumption of a
house with the use of smart meters. The idea is to apply a smart meter in each
appliance of the house and have real-time information about energy consump-
tion. The application of smart meters on the appliance level is still quite costly
and therefore other ways have to be explored.

A more cost-efficient way of monitoring power consumption of a house would
be to have to install only one meter per household, which will monitor the total
energy being consumed. The real world application of this is possible with the
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help of algorithms that are able to infer the total energy signal to the device level
sub-signals that compose it. This is also known as an energy disaggregation task
and the field that studies it is Non-Intrusive Load Monitoring (NILM).

The most popular NILM approaches in machine learning are producing mod-
els whose input for the training is high or low-frequency data of the mains of
a house and the labels are the true energy consumption values of a chosen ap-
pliance. Usually, both the training data and labels are chronologically arranged
and one of the goals of the chosen model is to find correlations between the ag-
gregated signal and the appliance signal, given a certain time frame. In NILM,
appliances within a household often change and get replaced by others as time
passes. Therefore, there are many occasions where a model trained to classify
an appliance in a certain time frame of a house cannot predict it accurately on
a different time frame. That being said, it is worthwhile investigating whether
the application of a transfer learning technique can be used to classify electrical
appliances (ON/OFF state) given the aggregated power signal of a house.

Transfer learning [15,3] does not rely on training and test data being in the
same feature space or even having the same distribution, in contrast to the
more classical approaches of machine learning techniques. It can be beneficial
in problems where there is a shortage of data, such as an accurate classifier or
regressor is not able to be trained, or there is a need for a more general model; a
model that generalizes in different distributions. There are several ways transfer
learning can be achieved. In this work, we focus on feature representation. The
idea is to encode the existing knowledge to another feature space. E.g, encode a
time series to an image representation. This approach, to our knowledge, has not
been previously explored in the existing literature concerning NILM problems.
It has been however applied to other time series classification tasks and has been
proven to yield good results

In this study, the idea involves transformation of low-frequency data (1 Hz
data), from popular datasets UK-Dale [9]and REDD [11] to images using Wang
and Oates’ [20] time series to image algorithm, which uses Gramian Angular
Field Matrices (GAF), and afterwards changing the feature space with the help
of the pretrained Convolutional Neural Network VGG16 image classification
algorithm [19] to vectors. The final step is, feeding those vectors, accompanied
with their respective device labels, to a classification algorithm, such as a decision
tree algorithm, and training it to be able to recognize whether the appliance is
ON or OFF.

In the following sections, the process of the feature transformation and trans-
ference is analyzed, as well as a set of experiments for the appliance “fridge” of
the UK-Dale and REDD datasets is compared directly to previous implementa-
tions.

2 Related Work

Hart [6] was the first to work on this problem and used combinatorial techniques
in order to monitor changes on the appliances states of a household given the
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aggregated signal. Since then there have been many approaches to the problem.
Factorial Hidden Markov Models (FHMM) solutions [16,1,10,17] have been the
leading implementations the past two decades, while Deep learning Artificial
Neural Network (ANN) architectures have become popular in the last decade
[12,8,2,13,21]. Nalmpantis and Vrakas [14] in their review describe some of the
most important recent Machine Learning approaches for the problem of NILM.
The approaches are compared in detail, presenting a qualitative and quantitative
analysis.

De Baets et al. [4] at their work represent the Vi trajectory of appliances as
images and train a Siamese Neural network from which a new feature space is
derived. This new representation is the input of the DBSCAN algorithm that
ultimately is able to recognize appliances in a household that are left unlabeled.
They use the high-frequency data from the datasets PLAID [5] and WHITED
[7]. Their approach seems to be successful in recognizing unknown appliances in
a household.

Wang et al. [20] propose a novel way of transforming time series into images,
in order to test whether this new representation of the data improves classifi-
cation results. The images are constructed by transforming a time series to its
polar coordinate representation. For this the time series used are scaled either to
the interval [-1,1] or [0,1]. The rescaled time series X̃ can then be represented as
its polar coordinates. This can be achieved by using the value of the time series
and the time stamp to encode as the angular cosine and radius respectively. The
equation is defined as:

{
φ = arccos(x̃i,−1 ≤ x̃i ≤ 1, x̃i ∈ X̃)

r = ti
N , ti ∈ N

(1)

The next step is constructing a Gramian Angular Summation/Difference
Fields (GASF/GADF) matrix which contains the correlation between elements
of different timestamps. GASF and GADF are defined as follows:

GASF = [cos(φi + φj)] = X̃ ′ · X̃ −
√
I − X̃2

′

·
√
I − X̃2 (2)

GADF = [cos(φi − φj)] =

√
I − X̃2

′

· X̃ − X̃ ′ ·
√
I − X̃2 (3)

In their study they test the above representation on multiple datasets. They
use a Tiled Convolutional Neural Network for extracting features. For the clas-
sification task they use a Denoising Auto-Encoder. The results are promising as
the Mean Squared Error metric is reduced by a maximum of 48% compared to
approaches that use raw data.
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Fig. 1. proposed training/prediction procedure.

3 Implementation

3.1 Data Preprocessing

The process begins with the transformation of the mains aggregated energy
signal of a house to multiple vectors of length 64 that will, in turn, become
the input of GAF algorithm. In this study only the GADF form is used. The
vector size corresponds to 6.4 minutes of data and is chosen so that the time
frame is not considerably large, but at the same time is not too small which
would cause substantial delays in most machines when producing the image files.
Moreover, the time frame chosen cannot be bigger than 6.4 minutes because of
computational restrictions. The nilmtk framework for Python 2.7 is used in order
to preprocess the data and construct the input files for the GAF algorithm. The
set sampling rate for both the mains data and the appliance data is set to 6
seconds. Once the data has been preprocessed the GAF algorithm can begin
generating the images. The output of this algorithm are multiple images in .png
format and 100x100 pixel size. PAA smoothing is applied on them. The images
are also tied with same length vectors of labels for the appliance “fridge”, for
which the experiments are conducted. The whole procedure can be seen in figure
1.

3.2 Data Extraction

The next step concerns the transference to another input space by using the
VGG16 pre-trained model in Keras, Python to categorize the images produced
by the GAF algorithm in the previous step. VGG16 is an image classification
Convolutional Neural Network (CNN) which is trained for 1000 classes of the
ImageNet database [18]. It has been proven very successful on image classifica-
tion tasks. Its input consists of a 3D tensor that represents the image. Because
the model has already been trained there is no need to re-train it with our im-
ages. Instead, each image passes through the network and its prediction/ output
is the new data space we wanted. Therefore, each image is inferred to 512 cate-
gories vectors. After each image for a selected house and time period has been
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processed, an array of dimensions [numberofimages x 512] is constructed. This
will be the input for the training of the classification algorithms that are tested
in this study.

3.3 Classification

The labels of each image are averaged and simplified to 1 or 0, depending on
whether the averaged number surpasses the threshold of the appliance. If the
appliance was on an ON state, during the 6.4 minutes the image represents, the
label for it becomes 1. If the appliance was deactivated (and therefore on an OFF
state) during the time period of the image, the label for it is 0. Alternatively,
one could choose the maximum value of the label vector as the representative
point on whether the appliance is in use or not.

For the classification task, the algorithms that were chosen belong to Python’s
Scikit-learn library. Those are the following: 1) Multi-Layered Perceptron Classi-
fier (MLPC), for which several hidden layer sizes were tested and were concluded
to an optimal size of 50. 2) AdaBoost Classifier, with Decision Tree Classifier
learners (ABDTC), that each developed to a maximum depth of 2. 1000 esti-
mators were used for the training of this meta-classifier. 3) AdaBoost Classifier
(ABC), with its default parameters and 1000 estimators.

Note that some of the above models are trained on UK-Dale’s dataset data
for house 1, while others for several houses of the REDD dataset. Moreover, the
training data and labels are always shuffled before the training of an algorithm
begins and a small portion of it is left out as a validation set, while a different
set is put aside as the test set. The test set is the one which is used for evalu-
ation of the models, while the validation set is used for fine tuning the models’
parameters.

3.4 Evaluation Metrics

The metric that is used to evaluate the models is F1 score:

F1 = 2× Precision×Recall
Precision+Recall

(4)

F1 score is better than accuracy for evaluating models as it is a function
of precision and recall that calculated a balance point of the two. It is a very
useful metric for problems that suffer from class imbalance as it can make that
apparent.

3.5 Specifications

All experiments can be reproduced by our implementation code in our GitHub
repository: https://github.com/LampriniKyrk/Imaging-NILM-time-series. The
hardware that is used for all of the model training and testing is an AMD Ryzen
5 1600x processor, an AMD R7 260x GPU and 8GB ddr4 RAM. Note that the
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Fig. 2. The bar chart on the left shows the results for all the models that are trained
for the data of house 1 of UK-Dale and tested on data from the same house. The bar
chart on the right shows the results for the same models as the left but the data tested
belong to the unseen houses 2, 4 and 5 of the UK-Dale dataset.

Fig. 3. The bar chart on the left shows the results for all the models that are trained for
the data of house 1, 2 and 4 of UK-Dale and tested on data from house 5 of UK-Dale.
The bar chart on the right shows the results for the models that are trained for the
data of house 1 of UK-Dale dataset and tested for the houses of the REDD dataset.

image production takes a significantly long time, even when running in multiple
threads, as the hard disk serves as the bottleneck.

On the experiment section, it is defined in which house and time period data
each algorithm is trained on and what the test set for each experiment entitled.

4 Experiments and Results

In this section, we discuss the experiments and results of our novel NILM so-
lution and compare it directly to previous work. The proposed method is com-
pared with some popular ANN architectures as they were implemented in a
previous work of Krystalakos et al.[12]. The following networks were used for
this task: Gated Recurrent Units Network (GRU)[12], Recurrent Neural Network
(RNN)[8], Windowed GRU (WGRU)[12], Short-Sequence2Point (SS2P)[21], and
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Denoising Auto-Encoder (DAE)[8]. The comparison between the aforementioned
ANN architectures and our approach is direct, meaning the training and testing
of the models are done for the exact same time periods and houses.

The ANN architectures that were used as a base for the comparison follow.
GRU consists of two convolutional layers, followed by two bidirectional GRU and
two fully connected layers. RNN consists of one convolutional layer, followed by
two bidirectional LSTM layers and two fully connected layers. WGRU consists
of one convolutional layer and two bidirectional GRU layers who are followed by
two fully connected layers. The last four layers have dropout between them. SS2P
consists of a total of seven layers: five convolutional layers followed by two fully
connected layers. All layers of the SS2P architecture have dropout between them.
DAE consists of a convolutional layer, three fully connected layers followed by
one convolutional output layer. All layers of the DAE architecture have dropout
between them.

We train multiple models based on the new feature space on the task of pre-
dicting ON/OFF states of the appliance “fridge”. In the following sub-sections,
the results are presented, categorized by experiment type.

In the first experiments category, all models are being trained on house 1 of
the UK-Dale dataset and the dates 1/4/2013 to 1/4/2014. The test also occurs
for the data of the same house, though the time frame is 1/4/2016 to 1/4/2017.
As it can be seen in figure 2 the proposed approach gives comparable results with
those from the ANN models. This experiment uses the F1 metric and evaluates
how well the algorithm performs on data of the same house.

The second category of experiments uses the same trained models as above
but the test occurs on different houses of the same dataset. In these experiments,
we test how well the models generalize on unseen houses of the same dataset.
The metric we use for this evaluation is F1 score. Our approach seems to be on
par with the comparative models for the houses 2 and 5. Testing on house 5 the
AdaBoost classifier with low depth decision trees (ABDTC) seems to outdo all
of the ANN models. On house 4 our models are not as accurate as the ANN
models, which could be due to the fact that house 1 and house 4 differ greatly
based on the number of appliances each house has. House 1 has a total of 54
appliances, while house 4 has only 6.

In the third experiment category, the models are trained with data from
multiple houses of the UK-Dale dataset. The houses used for the training data
are 1, 2 and 4. From house 1 only the time frame from 1/4/2013 to 1/4/2014 is
used for the training, as it has the most data out of all the houses and therefore
if all where to be used a memory error could occur. This test evaluates if it
is possible for a model to learn from multiple houses and be able to predict
accurately on an unseen house. Some ANN models were not able to converge.
Our models have a significantly lower F1 score from the best ANN, which is the
Windowed GRU model.

The last experiment category tests how well a model trained in UK-Dale
generalizes for the data of the REDD dataset. That way, if a model performed
well on the unseen houses of the different dataset it is safe to say that it has
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the potential to be accurate on data regardless of the country of origin. Note
that UK-Dale is a UK based dataset while REDD is a US-based dataset. As it
is shown in figure 3 most models, whether they’re ANN’s or the different input
space approaches, perform well on most houses. Our approach is on par with the
ANN’s on most houses and on house 3 it outperforms them.

5 Conclusions and Future work

Transferring of NILM data to a different feature space shows promise as the
results seem on par with most of the modern NILM approaches. It certainly has
room for improvement as the algorithms we use for classification are not state
of the art nor are configured in the best way. Furthermore, the accuracy of the
approach could potentially be improved if smaller time windows were to be used
(e.g 3 minutes or less), as the problem that arises from bigger time windows is
that we don’t always get a good estimation of the true appliance state. Moreover,
the approach could be explored for regression and multi-label tasks, in addition
to the classification approach that is researched in this study. Closing, we believe
that continuing this research by combining the new feature space with state of
the art algorithms, it is possible to achieve even better results.
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