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a b s t r a c t

Microsatellite loci comprise an important part of eukaryotic genomes. Their applications in biology as
genetic markers are related to numerous fields ranging from paternity analyses to construction of genetic
maps and linkage to human disease. Existing software solutions which offer pattern discovery algorithms
for the correct identification and downstream analysis of microsatellites are scarce and are proving to be
inefficient to analyze large, exponentially increasing, sequenced genomes. Moreover, such analyses can
be very difficult for bioinformatically inexperienced biologists. In this paper we present Microsatellite
Genome Analysis (MiGA) software for the detection of all microsatellite loci in genomic data through a
user friendly interface. The algorithm searches exhaustively and rapidly for most microsatellites.
Contrary to other applications, MiGA takes into consideration the following three most important
aspects: the efficiency of the algorithm, the usability of the software and the plethora of offered summary
statistics. All of the above, help biologists to obtain basic quantitative and qualitative information
regarding the presence of microsatellites in genomic data as well as downstream processes, such as
selection of specific microsatellite loci for primer design and comparative genome analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Microsatellites (or simple sequence repeats SSRs) constitute
one of the most important classes of genetic markers, widely
applied in an array of research areas, such as studies of genetic
variation and structure, or construction of genetic maps [1]. Some
of the most well known applications in which microsatellites play
a key role are paternity testing [2,3], the confirmation of family
pedigrees [4] and forensic investigations [5]. The ubiquity of
microsatellites within genomes has played an important role in
many genetic mapping projects such as in human [6], mouse [7],
dog [8], trout [9] and other species.

Recently, the advent of next generation sequencing platforms has
produced a wealth of genomic data, permitting a more in depth
analysis of microsatellite genome abundance and distribution across
different organisms. In this paper we propose a new algorithm for
the detection of microsatellite loci in genomic data. The algorithm
searches exhaustively for mono-, di-, tri-, tetra-, penta- and hexa-
nucleotide microsatellites and for perfect, imperfect, perfect com-
pound and imperfect compound microsatellites simultaneously in
one execution. The algorithm has been implemented and is offered in
the user friendly application Microsatellite Genome Analysis (MiGA).

The MiGA application, the user manual and example datasets are
available on http://mlkd.csd.auth.gr/bio/miga/index.html.

The paper is organized as follows. Section 2 provides some
necessary background knowledge. Section 3 is dedicated to the
detailed description of our approach. This includes the description
of the algorithm, the data repository, the front end and the results.
Section 4 presents related work and the existing tools. Section 5
presents results of a task oriented user evaluation. In Section 6, as
an example, we present a full microsatellite analysis of the
genome of Danio rerio, (an important vertebrate model organism).
The paper is concluded in Section 7.

2. Background knowledge

2.1. Repeated sequences

The entire genome of an organism contains non-coding regions
as well as coding regions which are translated into proteins. Big
parts of non-coding DNA are organized in repeated sequences.
These sequences appear in various sizes and in multiple copies in
the genome and it was initially believed that they had no
particular role in biological processes. Today, it is accepted that
they play a significant role in the structure, the function and the
evolution of the genomes and can interact with gene regulatory
mechanisms [11,12,13].
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2.1.1. Simple sequence repeats-SSRs
Simple Sequence Repeats (SSRs) or short tandem repeats (STRs)

constitute a very common type of repeated sequences (oligomers)
in eukaryotic genomes, e.g. (A)n, (ACAG)n or (GGC)n. The subscript
n denotes the number of the repetitions of the sequence in
brackets. This repeated sequence is called motif or pattern. The
size of the motif is 1–6 nucleotides long [14]. The number of the
repetitions within microsatellite sequences can vary a lot, whereas
their length usually varies from 10 to 300 nucleotides [14,15].

2.1.2. The four types of SSRs
There are four types of microsatellites. The first type is perfect

SSRs constituted by only one repeat motif e.g. ATGCATGCATG-
CATGC or (ATGC)4. The only parameter concerning perfect SSRs is
its minimum length. The second type of SSR is imperfect SSRs
which are the same as perfect, but include some mismatch in the
repeat sequence, e.g. (ATGC)3G(ATGC)5. The third type of SSRs is
perfect compound SSRs. These are SSRs which constitute of two or
more different perfect SSRs e.g. (ACCG)4(GGGC)3. The last category
of SSRs is called imperfect compound SSRs and are constituted from
two or more imperfect SSRs.

3. The MiGA application

3.1. Pattern discovery algorithm for SSR extraction

MiGA0s algorithm uses an exhaustive search in order to identify
microsatellites in genomes. The algorithm searches for SSRs in a
character string (sequence). It finds the first pattern (1–6 char-
acters) that is repeated and continues by calling itself, with the
remaining substring as input, to identify all the patterns and the
number of their repeats. This was necessary in order to achieve
better execution time. This is essential for complete genome
analysis since complete genomes are big datasets and therefore
their analysis with desktop computers is prohibitive.

MiGA0s algorithm is modular and is divided in two main parts
the Repeated Pattern Discovery and the SSR Assembly.

3.1.1. Repeated pattern discovery
The first part of the algorithm is executed only once during the

initial loading of a FASTA file, (the most popular file format in the
field of bioinformatics), or during the initial loading of a full
genome from the Ensembl database. Its purpose, in general, is to
extract all perfect repeats (one to six nucleotides long) from the
genomic data. Therefore, the algorithm scans the sequence six
times (i.e. each time for a different motif length).

In general, the algorithm places the Beginning Search Position
(BSP) at the beginning of the sequence. The algorithm considers as
the first candidate motif the N long string of nucleotides, which
can be found N places after the BSP, BSP included. For instance, at
the first scan, N is equal to one and the candidate pattern is the
first nucleotide of the input sequence i.e the BSP. Considering an
input sequence such as: AGGGCT…, the BSP is nucleotide A, and
the candidate mono-nucleotide motif is “A”. In case of scanning for
tri-nucleotide long motifs, the candidate motif would be “AGG”.

After the identification of the candidate motif, the algorithm
checks whether the N-next nucleotides are the same as the
nucleotides of the candidate motif, or simply put, if the candidate
pattern is repeated. If yes, then the algorithm proceeds, until
failure of the comparison and the repeated sequence is subse-
quently stored in a list along with its start and finish position. The
algorithm will then move the BSP at the first position after the
ending of the repeated sequence.

Consider for example an input sequence to be the following:
AAAGTTCT…CTC. In the first scan of the sequence, for

mononucleotide SSRs, the BSP is at the first nucleotide and the
candidate pattern is “A”. The algorithm will check and find this
pattern two additional times. After this, the comparison fails, the
algorithm saves the pattern “A” in a list, along with the starting
and ending position and moves the BSP to nucleotide G, right after
the repeated sequence “AAA”. The candidate sequence is now “G”.
In case of tri-nucleotide long motifs, the first candidate motif
would be AAA. This motif is clearly not repeated, so the BSP would
move on to the second A and the pattern “AAG” would become the
candidate motif.

Completion of the perfect repeated sequence search is followed
by a number of modifications and filtering of results. The most
important, is that, to avoid redundancy, the algorithm assigns a
repeated sequence as a sequence with the minimum length of
motif with the most repetitions. For instance, for a repeated
sequence AAAAAAAAAAAA, the algorithm has initially stored this
as repetition of motif “A” twelve times, repetition of motif “AA” six
times, etc. After filtering, the algorithm stores this only as a twelve
times repeated motif “A”.

3.1.2. SSR assembly
The second part of the algorithm, depends heavily on the first and

is executed only according to a specific search requested from the user.
Unlike the first part, it is executed every time there is a new search
request, with different parameters. There are four main functions for
this part, related to the four microsatellite types (perfect, imperfect,
perfect compound and imperfect compound SSRs).

The simplest function is the one concerning perfect SSRs. In order
to find the perfect SSRs, the algorithm simply subtracts the end
position of a putative SSR from its start position (as available from
the first part of the algorithm). The size of a perfect SSR should be
greater than the minimum length value, supplied by the user as a
parameter. For instance, if the minimum SSR length was set to 16,
then the sequence (ATGC)3 would not be considered as a micro-
satellite. A second function produces sequences assigned to imperfect
SSRs. After finding all perfect SSRs the algorithm checks if the
distance between consecutive perfect SSRs is even or shorter than
the maximum allowed mismatch that has been provided by the user.
Our definition of an imperfect microsatellite does not take into
consideration the nature of the mutations of the possible mismatch
and how they resemble or not the correlated repeat motif. To be
assigned as an imperfect SSR, the algorithm also checks if the two
patterns of the perfect SSRs belong to the same repeating cycle.
Consider the following imperfect SSR: “ATGATGCTGATGA”. The
algorithm accepts this SSR as an imperfect one, because the pattern
TGA and the pattern ATG belong to the same repeating cycle (i.e.
patterns ATG, GAT and TGA are equivalent).

The third function assembles perfect compound SSRs. It oper-
ates in the same way as with imperfect SSR search, with only small
changes to the conditions of acceptance. Firstly, two consecutive
SSR sequences should not be equivalent, unlike imperfect SSRs
which should belong to the same repeating cycle. Secondly, these
two consecutive perfect SSRs should have an (intergenic) distance
even or shorter than the one provided by the user and lastly, the
length of every individual repeated pattern should be even or
greater than the minimum length provided by the user.

The last function, concerning imperfect compound microsatel-
lites operates in the same way as the third function with one
difference. At least two of the consecutive repeated sequences
must belong to the same repeating cycle, though another repeated
consecutive sequence should exist with a different motifs.

3.1.3. General comment for the algorithm
We would like to mention the importance of the algorithm0s

modular nature. In general, when performing an analysis of a
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dataset, biologists tend to analyze the same datasets many times
with different parameters. Having realized this, we constructed
the algorithm in this modular way in order to avoid the repetition
of pattern discovery (Section 3.1.1) which is the most time
consuming. When there is a new request to analyze the same
data with different parameters, only the second part (Section 3.1.2)
will be executed.

3.2. Data repository

Taking into consideration the size of the data and the information
that can be downloaded and analyzed when using the Ensembl
database through the program, it became clear that a local Data
Repository (DR) should be used in order to store all Ensembl
originated data. This data can be used in downstream (as well as
future) analyses of MiGA. The DR consists of two parts, a database
and a collection of files. The first part called LoBiD (LOcal BIology
Database), is designed and organized in the same way as commercial
databases (Fig. 1). LoBiD consists of five tables which refer to the
organism, slices (which are fragments of the DNA sequence), genes,
transcripts and exons. The table organism contains the scientific
name of the organism, the id of the organism in the Ensembl
database, the information whether this organism has an organized
karyotype in the Ensembl database or not and the names of the
chromosomes in case of karyotype existence. Lastly, this table
contains the information about the last update of the particular
organism in LoBiD. The remaining four tables contain information
about the DNA sequences of this organism.

The second part of the DR consists of files which contain the
sequences and the results from the performed analysis. The use of

files for storing the DNA sequences was essential, for the efficient and
rapid process of the data. The two parts of the database are closely
related. In other words, the files contain the raw data of the genome
and the database contains all the information about the structure of
the genome (i.e. location of genes, names of chromosomes). The
existence of the data repository also allows the user to restore the
search history and retrieve previous projects and consequently, to
perform analysis on previously seen data in a very fast way. The term
history has a twofold meaning. Firstly, the application stores the
Repeated Pattern Algorithm analysis (for each FASTA file or genome)
in binary files in the DR. Therefore, in future SSR discovery analyses,
this part of the algorithm does not run again, saving time. Secondly,
the application stores the specific analysis parameters, in order to
avoid re-execution of the algorithm in case the requested analysis is
done on the same data with identical parameters.

3.3. Functionality overview and front–end description

3.3.1. Source of data
MiGA gives the user the opportunity to choose the source of

the data that will be analyzed. MiGA0s first window has two tabs
which correspond to the two different possible ways for providing
data to the application. The first way is to search for microsatellites
within user provided data in FASTA format. One single file can
contain multiple sequences. Users should specify a name for the
project. MiGA will store all results in a folder with the project0s
name in the data repository. In this step, MiGA also allows the user
to retrieve all previous projects in a dropdown menu, in case the
user would like to analyze previous data.

Fig. 1. Schema of the LoBiD Database.
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The second option is the analysis of complete genomes. The
complete genome analysis is made through the Ensembl database
[10], the most comprehensive database for fully annotated

eukaryotic genomes. The user can choose from available Ensembl
organisms and then MiGA downloads the selected genomes in
the DR.

Fig. 2. “Search parameters for SSR discovery” tab.

Fig. 3. “Sequence Retrieval along with Flanking Regions” tab.
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3.3.2. Parameters for SSR discovery
MiGA allows the user to search for mono-, di-, tri-, tetra-, penta-

and hexa-nucleotide SSRs and for perfect, imperfect, perfect com-
pound and imperfect compound SSRs simultaneously in one execu-
tion (Fig. 2). The user should specify the appropriate parameters for
each type of SSR. In case of perfect SSRs the parameter is only the
minimum SSR length, in base pairs. In case of imperfect SSRs the user
should provide (i) the maximum length of the gap/mismatch and
(ii) the minimum length of each SSR. For compound SSRs the para-
meters are (i) the minimum length of the SSRs and (ii) the maximum
inter-repeat region (i.e. the region between the two perfect SSRs)
that will be allowed.

3.3.3. Sequence retrieval and flanking regions
One important aspect when analyzing microsatellite sequences, is

to clarify the composition of the flanking regions of each micro-
satellite locus. The retrieval of those regions is important for primer
design for downstream analyses of microsatellite loci, or for compar-
isons of different loci in different species. There is therefore a tab for
sequence retrieval (Fig. 3).

In order to retrieve one SSR sequence, the user has to copy the
path, which is the subdirectory from the root folder to the file that
contains the SSR, the start and the end of the SSR as given in the
results file. The program identifies the SSR and the slice from
which it is retrieved in the local database (LoBiD) and provides the
user interface with the sequence as it is. In the same way, the
program provides the user the additional opportunity of flanking
regions retrieval for each SSR. The user should specify the length
of the upstream and downstream flanking region.

3.4. Results and statistics

At the end of the data analysis, the application produces results
and summary qualitative and quantitative statistics, saved in text
files. Those files are stored in a local folder with a folder for every
different projects in the data repository.

3.4.1. Results
Each result file starts with a header which contains the

project0s name and all the search parameters used. Then, follows
information about SSRs found during the analysis. This analytical
information includes the motif of the SSR found, the number of
repeats for each SSR, the start and end position in the sequence
and lastly the path from where the user can retrieve the SSR
sequence and its flanking regions.

3.4.2. Summary statistics
The application produces a text file, called motif Statistics, which

contains analytical information for each exact motif found in the
sequences, based on the Repeated Pattern Discovery algorithm
(Section 3.1.1). This information includes how many times the motif
is found in the genome (count), the total number of the repeats of the
motif (repeats), the count of the nucleotides in base pairs (bp) which
is the product of the length of the motif multiplied with the repeats,
the average microsatellite length (Avg_Length), the standard devia-
tion of the average microsatellite length (SD_Length), the maximum
length (Max_Length) and the average motif repeat (Avg_Repeats).
Moreover, the application provides the percentage of each nucleotide
in a microsatellite motif.

The user can specify whether the program produces standar-
dized, partially standardized or non standardized results. The
standardization, partial or not, is a process in which similar,
microsatellite motifs are grouped together. More precisely, partial
standardization is considered as equivalent motifs that belong to the
same repeating cycle. Full standardization takes into account the

reverse complements of microsatellite motifs as well, based on the
notion that sequencing machines produce DNA sequences of both
strands and therefore of unknown direction. The matrices for the
standardization process are the same with the Sciroko tool [16].

MIGA also produces a summary table for each SSR type (i.e.
perfect, imperfect, perfect compound, and imperfect compound).
The statistics offered by the application are the following: The
count of each type of SSR, the total size of each type of SSR, the
percentage of each nucleotide (A, G, T, C) found in SSRs, the
relative frequency of each type of SSR (i.e. count of SSRs/total
count of SSRs), abundance (i.e. total size of each type of SSR/total
genome length) and relative abundance (i.e. total size of each type
of SSR/total length of SSR found in the genome). The text file that
contains the statistics is also generated in html format for more
usability.

4. Related work

Microsatellites present wide applications in the field of biology.
Thus their analysis is a research area with many branches,
especially now that genome information is increasingly available.
For instance, LobSTR [17] and RepeatSeq [18] are such new
applications that aim to infer diploid genotypes in microsatellite
loci after full genome sequencing of individuals based on pre-
existing reference genomes. Another new branch in microsatellite
analysis is to trace microsatellite loci within assembled or non-
assembled genomes of any kind of species (non-model included).
MiGA belongs to this category.

Several tools already exist in this category based on different
approaches and methodologies [19]. Some of the most important
tools are TROLL [21], STAR [22], MISA [23], SSRFinder [24], SSRIT
[25], TRF [20], Sciroko [16], QDD [26], Sputnik, Modified Sputnik I
[27] and Modified Sputnik II [28]. Some tools use a dictionary
approach which means that the motifs have to be defined in the
program, while others use heuristic approaches. The first algo-
rithms developed to address the problem of finding SSRs in
genomes used exhaustive search. In the past, these algorithms
were condemned to be applied only in small sequences due to lack
of processing power of computers. Nowadays, that this problem
has been solved, many new tools [29,30] prefer this methodology
in order to be more precise than the heuristic ones. Regardless of
the methodology, the purpose of these tools has to be the
identification of repeats in a DNA sequence, without a priori
knowledge of the repeat unit0s composition [20]. Moreover, there
should be no limitations in the motif, motif length, and the
number of copies that can be detected [19].

In many publications of previously developed programs such as
TROLL, STAR and others, comparisons were made using as main
criteria only the number of hits and the overall execution time,
simplistically concluding that the less execution time and the
more hits, the better the tool. In 2009 Jentzsch published her Ph.D.
dissertation [19] providing a detailed presentation and compar-
ison of the most important existing tools. One of the key conclu-
sions was that the input parameters should be fine-tuned
individually for each program, so that searches can become
equivalent; i.e. there is no meaning in comparing different tools,
if these tools are not looking for the same thing. This process
requires deep knowledge of the various existing programs. An
additional main characteristic that Jentzsch considers in her study
was the capability of the program to analyze large sequences in
the order of millions of nucleotides.

Although, as just stated, a thorough comparison with an
existing tool is a difficult process, in this section we are going to
provide a qualitative comparison between MiGA and TRF [20]
which is the most widely used tool in microsatellite analysis. The
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first and main difference is that TRF is a heuristic approach which
performs approximate search in sequences. On the contrary, MiGA
performs an exhaustive search which means that it will discover
every microsatellite in a given sequence with respect to the
aforementioned definitions. Another difference is that MiGA offers
the possibility to run a complete search of perfect, imperfect and
compound perfect together or distinctively. TRF does not offer this
option. For instance, due to the probabilistic nature of the algo-
rithm TRF cannot search exclusively for perfect repeats. Another
difference is that TRF produces some redundant hits. MiGA filters
them and presents only SSRs with the minimum motif, as
explained earlier. Moreover, MiGA also offers motif standardiza-
tion, summary statistics, connection to online database and history
options, all utilities that TRF does not offer.

Overall, available tools lack some or all of the following
characteristics: (i) a graphic user-friendly interface (ii) summary
SSR statistics, (iii) connection to an online database, (iv) use of a
local database to store and retrieve results and data, (v) full
genome SSR search efficiently and fast, and (vi) complete search
in one execution. MiGA offers all these characteristics in a very
easy way to accomplish.

5. User evaluation

Biologists could be a very diverse group concerning being con-
versant with computers. A bioinformatics application can be judged
inside the scientific community, in terms of success, based on the
simplicity and the ease of accomplishing tasks. It is common sense
that one of the most important aspects in software design is the
usability. Usability can be measured in various ways, but one of the
most reliable is through a task oriented evaluation, which is performed
by ordinary users who had no involvement in the process of designing
and developing the application. Inside knowledge of the whole
project, makes designers and developers unsuitable for identification
of possible flaws in the design and more generally, for performing an
unbiased evaluation of a software0s usability. For all the reasons
presented above, we conducted a task oriented user evaluation. The
purpose of this evaluation was to identify possible flaws and draw-
backs in the design and to measure the application0s usability.

5.1. Evaluation description

Our user evaluation involved 12 users, mostly postgraduate
students from the Biology Department of the Aristotle University
of Thessaloniki, as well as research staff from our lab (9 biologists
and 3 computer scientists). It is important to mention that no user
was familiar with the application. The evaluation was designed in
a way that simulates a complete microsatellite analysis by a
biologist. It consisted of four tasks which were strongly dependent
as consecutive parts of the analysis. At the first task users were
asked to start the application, load the data for analysis and give a
specific project name. The second task was the analysis of the data
with some specific parameters. The third task consisted of replying
to four questions, based on the results of the analysis. At the last
task users were asked to perform the whole analysis from
the beginning. The objective of the first three tasks was to evaluate
the capability of completing a microsatellite analysis with ease.
The last task evaluated the ability of the user to make use of the
previous projects without running again the whole process. For
each one of the tasks, except the third one, we measured the time
needed for the completion. For the third task we measured only
the accuracy of the answers. In order to compare MiGA with an
existing tool, users were asked to perform the first two tasks with
Sciroko, a successful tool in bioinformatics community and one of

the few that provide a friendly user interface. The time needed for
completion of analysis was again measured.

After evaluation, users were asked to fill a questionnaire. The
first part of it, consisted of three questions, comparing the two
applications. The second part evaluated some features that MiGA
offers. The scoring scale was from 1 which corresponds to useless,
to 5 which corresponds to very useful. In order to come to more
robust conclusions users were asked to self evaluate themselves
with respect to computer familiarity and bioinformatics software.

5.2. Evaluation analysis and conclusions

The scale for the self-evaluation of the users was between
1 and 5. The average score for the computer familiarity was 4.08
and the average score for bioinformatics software familiarity was
2.58. That means that most of them use computers regularly but
they are not too familiar with bioinformatics software.

In order to compare MiGA0s and Sciroko0s user interface, a
repeated measures T-test was conducted to compare the time needed
for the completion of the first two tasks in both applications. T-test
assumes that the data follow normal distribution. In order to test the
normality of the data, we conducted a Shapiro–Wilk test which is
appropriate for small sample sizes (o50 samples). The significance
values for the Shapiro–Wilk test are 0.378 and 0.639 for MiGA and
Sciroko respectively, proving that data follow normal distribution.
Results of the repeated measures T-test show that there was a
significant difference in the scores for MiGA (M¼97.33, SD¼29.199)
and Sciroko (M¼201.58, SD¼48.801) conditions; t(11)¼�7.225,
p¼0.000. Although these results are based on a limited sample of
twelve individuals, they suggest that MiGA does have a more friendly
and intuitive user interface.

This result was also confirmed by the questionnaire. All users
responded that they found MiGA to be more user friendly.
Admittedly the users were familiar with the developing team so
the questionnaire comparison might be biased.

Lastly, the analysis of the questionnaire concerning the features
offered by MiGA showed that the following were the most
important for the users: project history, analysis of whole gen-
omes from Ensembl, the short execution time and the html
presentation of the results which offers better visualization of
the results.

6. Results of full genome analysis of Danio rerio

Zebrafish (D. rerio) is a tropical freshwater fish and a model
organism for the science of biology [31,33,34]. Its sequencing
project started in 2001 by the Sanger Institute and from then on
several assemblies have been released. Its full genome was
published in 2013 [32]. The assembly of Zebrafish0s genome that
has been analyzed was 1.357.051.643 base pairs (bp). The para-
meters used for the microsatellite analyses, for each type were:
(i) perfect SSRs: Minimum SSR length (bp)¼12, (ii) imperfect
SSRs: Maximum mismatch length for Imperfect SSRs (bp)¼4 and
Minimum SSR length before given mismatch length (bp)¼8, (iii)
compound SSRs: Minimum SSR length (bp)¼12, Maximum inter-
repeat region for Compound SSRs (bp)¼12. Additionally motif-
statistics were given on a fully standardized search.

The analysis was performed in a typical workstation. RAM: 4GB
DDR II. CPU: Intel Core 2 Duo CPU E8500 @ 3.16 GHz 3.17 GHz. OS:
64-bit Operating System Windows 7. The time for finding all SSRs
in each category is: 5 min for perfect, 286 min for imperfect and
365 min for compound perfect and imperfect SSRs. Given the fact
that this is an exhaustive search, the running time needed is
considered logical and certainly non-prohibitive. Memory usage
did not exceed 474MB RAM. This is attainable because MiGA does

I. Kavakiotis et al. / Computers in Biology and Medicine 46 (2014) 71–7876



not load the full genome to the RAM memory. The whole genome
is processed in slices which are fragments of DNA 25000 nucleo-
tides long. This is why the whole analysis can be performed with a
single click (run), and the user does not have to load multiple
separate FASTA files or to supervise the whole process.

MiGA application gives four main tables as output which contain
basic and analytical information regarding perfect, imperfect,
compound microsatellites (Tables 1–3) as well as the nature of

the motifs found in these microsatellites (not shown), based on
which the most common motifs present in the genome data can
be deduced (Table 4). The above information can be used for the
subsequent description of the structure of the repeated sequences
within genomes [35,36], the comparison among different species
[37] and the deduction of microsatellite regions which have been
conserved through evolution highlighting possible functional
importance [38].

Table 1
Characteristics of Perfect Microsatellites in D. rerio genome.

Motif Count bp A% T% C% G% Relative freq. Abundance Relative abundance Mean length

Mono 211,325 3,337,144 47.65 47.574 2.351 2.425 0.085 0.002 0.067 15.8
Di 481,259 16,698,668 38.156 38.168 11.854 11.822 0.193 0.012 0.335 34.7
Tri 259,406 4,792,107 44.673 44.599 5.342 5.386 0.104 0.004 0.096 18.5
Tetra 55,7039 12,016,836 36.853 36.598 13.054 13.495 0.223 0.009 0.241 21.6
Penta 101,372 2,324,855 43.954 43.557 6.238 6.251 0.041 0.002 0.047 22.9
Hexa 882,942 10,705,368 37.122 36.958 12.964 12.955 0.354 0.008 0.215 12.1
TOTAL 2,493,343 49,874,978 39.152 39.029 10.858 10.962 1 0.037 1 20.0

Table 2
Characteristics of Imperfect Microsatellites in D. rerio genome.

Motif Count bp A% T% C% G% Relative frequency Abundance Relative abundance Mean length

Mono 25,860 568,195 45.942 46.288 3.802 3.968 0.087 0 0.050 22.0
Di 112,669 5,817,335 35.822 35.519 14.449 14.209 0.38 0.004 0.512 51.6
Tri 31,983 1,125,528 46.595 46.491 3.371 3.543 0.108 0.001 0.099 35.2
Tetra 106,968 3,207,631 37.576 36.988 12.176 13.261 0.360 0.002 0.282 30.0
Penta 17,419 592,689 44.811 42.465 6.237 6.488 0.059 0 0.052 34.0
Hexa 1834 49,738 39.209 38.787 10.871 11.132 0.006 0 0.004 27.1
TOTAL 296,733 11,361,116 38.374 37.936 11.733 11.956 1 0.008 1 38.3

Table 3
Characteristics of Compound Microsatellites in D.rerio genome.

Type Count bp A% T% C% G% Relative frequency Abundance Relative abundance

Compound perfect 125,797 6,988,308 21.217 20.446 5.675 5.642 0.72 0.005 0.53
Compound imperfect 48,827 6,201,944 17.836 17.548 5.758 5.876 0.28 0.005 0.47
TOTAL 174,624 13,190,252 39.054 37.994 11.433 11.519 1 0.01 1

Table 4
Characteristics of the most common motifs of D. rerio’s microsatellites.

Motif Count Repeats bp Avg_Length SD_Length Max_Length Avg_Repeats

AC 252,968 3,406,857 6,813,714 26.935 21.388 414 13.468
A 201,302 3,177,761 3,177,761 15.786 4.734 488 15.786
AT 180,310 4,402,167 8,804,334 48.829 53.687 928 24.414
AAT 179,137 1,179,720 3,539,160 19.757 11.834 138 6.586
AAAT 164,225 648,037 2,592,148 15.784 9.377 364 3.946
AAAAAT 95,087 192,754 1,156,524 12.163 1.048 66 2.027
AATG 91,116 380,169 1,520,676 16.689 9.869 496 4.172
ATCC 58,307 345,113 1,380,452 23.676 20.389 472 5.919
AG 47,065 533,921 1,067,842 22.689 16.444 246 11.344
AAATAT 45,050 90,725 544,350 12.083 1.000 102 2.014
AAAAAC 42,033 84,523 507,138 12.065 0.706 66 2.011
AGAT 41,675 647,713 2,590,852 62.168 46.907 988 15.542
AAAC 36,880 140,400 561,600 15.228 8.290 124 3.807
ACAG 30,324 190,379 761,516 25.113 21.769 244 6.278
AAAAAG 29,726 59,795 358,770 12.069 0.681 36 2.012
AAAAT 24,570 93,894 469,470 19.107 12.502 155 3.821
AAC 24,297 126,881 380,643 15.666 7.358 144 5.222
AAAATT 23,774 47,822 286,932 12.069 0.812 72 2.012
AAACAC 19,897 40,236 241,416 12.133 1.185 42 2.022
AAAG 19,793 121,139 484,556 24.481 23.681 296 6.120
OTHER SSRs 885,801 12,635,052
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7. Summary and future work

Many programs exist, nowadays, that can detect microsatellites in
the genome and some of them are quite successful. However, their
drawbacks are numerous. MiGA manages to solve all these problems
and moreover it provides functions that have never been offered
before. In the future, we plan to further expand the application with
new functions such as remote access to the database, in order to
make best use of available computer lab resources. MiGA has some
features i.e. data repository and modular algorithm that make its
expansion possible to more specific directions. We plan to make use
of ample features present in genomic databases such as Ensembl, for
in-depth comparisons of microsatellites present in specific genes and
functional elements. The future goal is to build a robust application,
to be used for comparative genomic analyses based on microsatellite
information.
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