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Abstract

The advent of high-throughput genomic technologies is enabling analyses on thousands or 
even millions of single-nucleotide polymorphisms (SNPs). At the same time, the selection of 
a minimum number of SNPs with the maximum information content is becoming increasingly 
problematic. Available locus ranking programs have been accused of providing upwardly 
biased results (concerning the predicted accuracy of the chosen set of markers for population 
assignment), cannot handle high-dimensional datasets, and some of them are computationally 
intensive. The toolbox for ranking and evaluation of SNPs (TRES) is a collection of algorithms 
built in a user-friendly and computationally efficient software that can manipulate and analyze 
datasets even in the order of millions of genotypes in a matter of seconds. It offers a variety of 
established methods for evaluating and ranking SNPs on user defined groups of populations 
and produces a set of predefined number of top ranked loci. Moreover, dataset manipulation 
algorithms enable users to convert datasets in different file formats, split the initial datasets 
into train and test sets, and finally create datasets containing only selected SNPs occurring from 
the SNP selection analysis for later on evaluation in dedicated software such as GENECLASS. 
This application can aid biologists to select loci with maximum power for optimization of cost-
effective panels with applications related to e.g. species identification, wildlife management, 
and forensic problems. TRES is available for all operating systems at http://mlkd.csd.auth.gr/
bio/tres.
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Single-nucleotide polymorphisms (SNPs) are becoming the marker 
of choice for a wide range of organisms and applications, such 
as genetic structure analyses, dispersal studies, wildlife manage-
ment, forensic problems, and eco-certification (Helyar et al. 2011; 
Ogden 2011; Wilkinson et al. 2011). The advent of next-generation 
sequencing and related platforms has enabled those studies greatly, 
through the development and genotyping of thousands or even mil-
lions of SNPs.

A common aim in many of those studies is to infer individual 
ancestry or, simply put, to assign individuals to their group of ori-
gin (e.g. Paetkau et al. 1995; Nielsen et al. 2012). For such applica-
tions, it is advantageous to select those SNPs, among all genotyped 
loci, that can best discriminate analyzed individuals. The importance 
of feature selection for SNP datasets is beyond dispute either for 
biology or informatics. From a computational view, feature selec-
tion, that is, the selection of the most important attributes from a 
dataset, is an important process with many beneficial effects such 
as lower computational demands and response times (Guyon and 
Elisseeff 2003). From a biological point of view, the importance of 
feature selection, that is, selecting SNPs with maximum informa-
tion power, has been extensively discussed in the scientific literature 
(e.g.Wilkinson et  al. 2011, 2012; Nielsen et  al. 2012): although 
genome-wide data are valuable, they are costly to produce. Smaller 
panels (based on a subset of SNPs) facilitate the genotyping of sev-
eral hundreds of individuals with a lower cost and at greater speed 
than genome-wide genotyping.

However, the identification of these (minimum) SNPs can be 
problematic. When dealing with large numbers of SNP markers, 
automated methods for selecting loci with the most power across 
a range of application scenarios are required (Helyar et al. 2011). 
There are 2 fundamentally different approaches. One way is to use 
available software to estimate the assignment power of individual 
loci (WHICHLOCI, Banks et  al. 2003) or combinations of those 
(i.e. GAFS, Topchy et al. 2004 and BELS, Bromaghin 2008). These 
software have their own advantages and disadvantages (reviewed 
in Helyar et al. 2011), but their most important caveat is that they 
have computational limitations. As Helyar et al. (2011) mentioned, 
although, presumably, there are no constraints on the number of loci 
or individuals that can be analyzed, the analysis may be prohibitive 
on a desktop computer. More specifically, applications that search 
for the best combination of loci (GAFS and BELS) can be extremely 
computationally intensive for high-dimensional datasets, such as 
SNP datasets. For backward elimination approaches (such as in 
BELS), evaluation time can sometimes be proportional to m2 (where 
m is the number of features, i.e. SNPs). For more sophisticated, 
exhaustive, searches (such as in GAFS) up to 2m possible subsets 
have to be examined (Witten et  al., 2011).WHICHLOCI is prob-
ably the only available fast software. Finally, as reported extensively 
in Anderson (2010), those applications have been implemented in a 
way that leads to a systematic upward bias in the predicted accuracy 
of the chosen set of markers for population assignment, since the 
same set of individuals is used to initially train and to subsequently 
estimate the accuracy of their model.

A second completely different approach is to rank loci solely 
according to their informativeness, that is, the marker informa-
tion content, which is the amount of information that a locus holds 
regarding the ancestry of an individual. The use of markers with 
high informativeness reduces the number of markers needed for cor-
rect assignment (Rosenberg et al 2003). Several measures/criteria of 
marker informativeness have been proposed (Rosenberg et al. 2003; 
Ding et al. 2011 and references therein), such as Delta (Shriver et al. 

1997), pairwise Wright’s FST given by Wright (1951), global Wright’s 
FST by Wright (1951), pairwise Weir and Cockerham FST by Weir 
and Cockerham (1984), global pairwise Weir and Cockerham FST by 
Weir and Cockerham (1984), and informativeness for assignment (In) 
(Rosenberg et al. 2003). Principal component analysis has also been 
used for the same purpose (Paschou et  al. 2007). Wilkinson et  al. 
(2011) and Ding et al. (2011) have performed comparisons between 
some of these approaches, concluding, respectively, that pairwise 
Wright’s FST and In were 2 of the best evaluators/criteria, whereas 
global statistics did not return satisfactory results. The available lit-
erature, however, is sometimes contradictory in which method is the 
best (see Paschou et al. 2007 vs. Wilkinson et al. 2011), often stating 
that differences in assignment power are marginal, while agreeing that 
no single method outperforms the rest in all circumstances, but that 
the power of assignment success, and the required number of SNPs, 
is dependent on the studied species, the levels of genetic heterogeneity 
and the pool of samples considered, as well as the desired stringency 
of the assignment (Ding et al. 2011; Wilkinson et al. 2011).

It must be stressed that all the above methods and software from 
both approaches produce a limited set of markers appropriate for 
assignment purposes. They should not be used in downstream esti-
mation of general population genetics parameters (e.g. in larger sam-
ple sizes) since this is a biased subset of the total number of markers.

The application of different methods for marker prioritization 
and decision making in the construction of SNP panels is becom-
ing more important as large high-throughput assays become read-
ily available. Though new computer programs exist for elementary 
analysis of large SNP datasets (e.g. Xu et al. 2010), a gap of tools is 
apparent regarding the evaluation of large numbers of SNP loci for 
individual assignment. Recent scientific efforts to use SNP data for 
assignment purposes (Paschou et  al. 2007; Wilkinson et  al. 2011; 
Nielsen et al. 2012) have relied on bioinformatics methods of each 
separate laboratory, and no software solutions are currently avail-
able to meet the needs of genetisists (working with nonmodel species 
in most cases).

In order to address these setbacks, we developed the Toolbox for 
Ranking and Evaluation of SNPs (TRES), a collection of algorithms 
built in a user-friendly and computationally efficient software that 
can manipulate and analyze datasets even in the order of millions of 
genotypes in a matter of seconds.

Application Features and Functionalities

TRES is a user-friendly application for selecting the most informa-
tive SNP markers for assignment purposes from a SNP dataset. 
Moreover it offers a collection of algorithms for data manipulation.

SNP Marker Evaluation
The first and main tab of the application is the “SNP Selection” tab 
where the SNP evaluation is performed. Three methods (presented 
in detail below) are provided for ranking and later on evaluating 
the discriminating power of each SNP (Figure 1, spot 3). The num-
ber of top-ranked SNPs to be returned is user defined, according to 
the needs of individual genotyping assays that a researcher needs to 
prepare (Figure 1, spot 11). Users can also choose specific subgroups 
(populations) to be used for the evaluation (Figure 1, spot 4), that is, 
users can evaluate the SNPs that better distinguish specific subsets of 
samples or all samples together.

Another functionality of TRES, offered in the Compare tab, com-
pares the lists of top-ranked predefined number of loci produced 
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with any combination of the 3 different methods offered by TRES 
(i.e. between Delta, pairwise Wright’s FST, and informativeness for 
assignment, see below) and returns the common loci; Ding et  al. 
(2011) have suggested that in some cases union of the most informa-
tive SNPs among different methods could also be considered as the 
best panel, though researchers need to be also aware of the differ-
ences between the various methods for evaluating ancestry informa-
tiveness of SNP markers.

Input Files
TRES receives as input PED (Pedigree) and ARFF (Attribute–
Relation File Format) files (Figure 1, spot 1). PED files (Purcell et al. 
2007) are Pedigree files used by various software such as PLINK, for 
reconstructing a full pedigree based on genotypes. Currently, except 
from PED files, there are many other file formats that contain SNP 
datasets such as HapMap, VCF, GenePop, and others. Fortunately, 
there are many reliable converters, for instance, PGDSpider (Lischer 
& Excoffier, 2012) that can convert any well-known file format to 
PED file. An ARFF file (Hall et al. 2009) is an ASCII text file that 
describes a list of instances (i.e. individuals) sharing a set of features 
(i.e. SNPs). It is a popular file format in the field of data mining 
and machine learning, as it is used by the Weka machine learning 
library (Hall et al. 2009). ARFF files are used only in the SNP evalu-
ation process. The use of ARFF was essential in order to benefit from 
implemented classes from WEKA that made the whole analysis pro-
cess more efficient which is a most desired feature when dealing with 
very high-dimensional datasets. Finally, TRES can also accept com-
plementarily a MAP file (Figure 1, spot 2) that contains information 
regarding the genomic position of the SNPs.

Results—Output
Results are presented in 2 ways, depending on the existence of 
the MAP file. All results and information are presented within an 

application window (Figure 1, spot 12), but TRES can also export 
results to text files (Figure 1, spot 10). TRES can also save the list 
of selected SNPs (Figure 1, spot 9), without additional information 
in order to be used at the construction of datasets with selected 
SNPs. Descriptive statistics are also given (Figure 1, spot 6) includ-
ing allele and genotype frequencies for each group and for the total 
population.

Dataset Manipulation Algorithms
The first dataset manipulation algorithm is a converter. Although the 
initial genetic datasets are offered in PED files, as mentioned before, 
ARFF files are used in the analysis process. In order to increase the 
usability, the application offers an algorithm that converts PED to 
ARFF files.

The second available algorithm splits a dataset in 2 parts. 
Anderson (2010) and Witten et al. (2011) stressed the fact that “sta-
tistical classification procedures should be assessed using data that 
are separate from those used to train the classifier” and proposed 
“assessing the power of the resulting locus panels using a separate 
holdout set of individuals that was not used in any way to choose the 
set of loci for the marker panel.” Following comments by Anderson 
(2010), our program avoids biased estimates of accuracy by provid-
ing an algorithm for splitting the initial PED file into 2 new ones 
based on a user given (x) value. The first file (training dataset) con-
tains x percentage of the initial data samples and is used to train the 
model (i.e. to run one of the available ranking algorithms and obtain 
the ranked list of SNPs). The second file (test dataset) contains the 
remaining (1 − x) percentage and can be used to evaluate the model 
(evaluate the SNP ranking through assignment of these individuals 
in GENECLASS). It must be stressed that the split is applied sepa-
rately and equally within each subpopulation to assure that no sub-
population will be under-represented in either of the newly produced 
PED files.

Figure 1.  TRES application window. Numbers on gray background indicate features described in the text, except for numbers 5 (area for presenting general 
information of the dataset), 7 (begins execution), and 8 (clears results’ area).
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Finally, users can also construct GENEPOP (Rousset 2008) 
files as input datasets for GENECLASS 2.0 for a desired num-
ber of top-ranked SNPs which occurred from the analysis step. 
GENECLASS2.0 (Piry et  al. 2004) is a software that offers an 
extensive list of genetic assignment methods. Such methods assign 
an individual to the population in which the individual’s genotype 
is most likely to occur. Through the “Reduced Dataset Generator - 
GENEPOP” tab, the application can produce a file as reference pop-
ulation for GENECLASS2.0 (based on the training dataset) and a file 
with individuals to be assigned with GENECLASS2.0 (based on the 
test dataset) containing only a user defined number of top-ranked 
SNPs which is the SNP list produced from the SNP evaluation analy-
sis. In this way users can easily evaluate the assignment accuracy of 
subsets of SNPs offered by GENECLASS2.0 and eventually compare 
their datasets and different markers of informativeness. The same 
functionality is offered for reduced ped and map file construction 
through the “Reduced Dataset Generator – PED.”

A more detailed description of the application can be found at 
TRES’s user guide.

Implementation

The application is implemented in Java and therefore can be executed 
in all operating systems. Java Swing library was used in order to build 
the graphical user interface (GUI). Parts of programming code from 
WEKA machine learning library were used (Hall et al. 2009), mainly 
for data handling. TRES has no intrinsic limits on the number of SNPs 
and individuals that it can analyze. This is possible, due to the dynamic 
nature of the data structures that have been used in its implementation.

Marker Evaluation Methods

TRES offers the following metrics to evaluate SNPs: (1) Delta, prob-
ably the most commonly used measure of marker informativeness 
for human populations (Shriver et al. 1997). (2) Pairwise Wright’s 
FST, and (3) informativeness for assignment measure (Rosenberg 
et al. 2003) which, as stated, have both proved to be highly informa-
tive. In all cases, loci are scored based on the above criteria and later 
on ranked from highest to lowest value.

Delta
For a biallelic marker, the delta value is given by the following equation:

	 δ = −p pA
i

A
j 	

where pA
i is the frequency of the allele A in the ith population and pA

j 
is the frequency of the same allele in the jth population. It is impor-
tant to mention that delta is calculated only between 2 populations, 
so if there are more than 2 populations, the delta value is computed 
for each one of every possible combination between existing popula-
tions and their average is subsequently calculated in order to pro-
duce a value for each SNP marker.

Pairwise Wright’s FST

Pairwise Wright’s FST (Wright 1951) for more than 2 populations is 
computed with the same approach as outlined for delta. For a bial-
lelic marker, the FST value is given by the following equation:

	
F

H H
HST
t s

t

= − 	

where Hs is the average expected heterogygosity across subpopu-
lations and Ht is the expected heterozygosity of the total popula-
tion (Beebee & Rowe 2004), and they are given by the following 
equations:

	 H p p H p p p pt A B s A
i

A
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where pA
i is the frequency of the allele A in the ith population, pA

j is 
the frequency of the same allele A in the jth population and pA is the 
frequency of allele A in all populations. Notations for allele B are 
defined similarly.

Informativeness for Assignment (In)
In is a mutual information-based statistics that takes into account 
self-reported ancestry information from sampled individuals 
(Rosenberg et al. 2003, Ding et al. 2011).
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j
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Where i = 1,2,…,K are the populations with K ≥ 2 and N are the loci, 
pij denotes the frequency of allele j in population I and pj denotes the 
average frequency of allele j over K populations.

In all cases, allele frequencies are calculated as in Ding et  al 
(2011).

Computational Performance

In order to measure the computational performance, we used 2 differ-
ent SNP datasets to calculate the response time of the application. The 
first analysis was conducted on the dataset of Wilkinson et al. (2012). 
This dataset comprised of a comprehensive coverage of pig breed types 
present in Britain; it consisted of 446 pigs from 7 traditional British 
breeds, 5 commercial purebreds, 1 imported European breed and 1 
imported Asian breed that were genotyped with the PorcineSNP60 
BeadChip (59 436 SNPs, Ramos et al. 2009). A standard laptop com-
puter with an Intel Core™ Duo CPU T9600 at 2.80GHz processor 
with 4 GB main memory was adequate for the application to convert 
the PED file into ARFF in less than 60 s and to select the top-100 
SNPs using the Delta metric for the comparison of all populations or 
just 2 populations in 28 and 15 s, respectively. It should be stated that 
data could not be loaded to BELS (inadequate memory allocation) 
and WHICHLOCI or GAFS (both programmes crashed).

The second analysis was performed on data originating from the 
HapMap project (International HapMap Consortium 2003). Our 
dataset consisted of 426 individuals that belonged to 5 different popu-
lation groups genotyped at 1 440 616 SNPs (Figure 1), that is, more 
than half a billion genotypes. Since the size of the dataset was very 
big (>5 GB), we conducted the analysis in a more powerful laptop 
with an Intel Core™ i7 4500u processor at 3.4GHz and 16 GB RAM. 
We ran the application allocating 12 GB RAM. The dataset was fully 
loaded into the application in 155 s. SNP selection analysis based on 
the Delta metric was completed in 230 s. Consequently, our applica-
tion has no intrinsic limits on the number of SNPs and individuals that 
can be analyzed and restrictions can only arise from user’s hardware.

Availability

TRES is a Java application and therefore can be executed in all 
operating systems (tested on Windows, Linux, and MacOs). The 
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user guide contains information about: the installation process; the 
requirements of the application; the exact structure of the input data 
files; the software’s features and functionalities; and finally a step-
by-step complete analysis scenario using TRES. The executable, user 
manual and example datasets are freely available at http://mlkd.csd.
auth.gr/bio/tres/.
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