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Summary 

This chapter presents a method called PolyA-iEP that has been developed for the 

prediction of polyadenylation sites. More precisely PolyA-iEP is a method that 

recognizes mRNA 3’ends which contain polyadenylation sites. It is a modular system 

which consists of two main components. The first exploits the advantages of 

emerging patters and the second is a distance-based scoring method. The outputs of 

the two components are finally combined by a classifier. The final results reach very 

high scores of sensitivity and specificity.  

Key Words: Data Mining, Machine Learning, Classification, Emerging Patterns, 

Bioinformatics, Polyadenylation. 

 

1. Introduction 

PolyA-iEP [1] is a method that addresses the problem of discriminating sequences 

that contain polyadenylation sites from the ones that do not. The discrimination of 

mRNA 3’ ends that contain polyadenylation sites from intronic or 5’ UTR sequences 

without polyadenylation site seems to be very difficult and the performance of the 

existing methods is moderate. PolyA-iEP has emerged from a previously published 

method called PolyA-EP [2], although the new one is more robust and sophisticated. 

PolyA-iEP is a modular system which consists of two main components. The first 

component exploits the concept and the advantages of the frequent itemsets. The term 

frequent itemset has been proposed in the framework of association rule mining. 

Association rule mining is a popular field of data mining which has been proposed by 

Ragesh Agrawal [3]. It is a research field that aims to discover interesting relations 



 

 

between variables in large databases. This field was initially introduced in the 

framework of market basket analysis but currently it is applied in many application 

areas including bioinformatics with outstanding results. 

More precisely, the first component uses the concept of interesting emerging patterns 

[4]. Emerging patterns are defined as itemsets whose supports increase significantly 

from one dataset to another. A significant drawback of this method is that the number 

of emerging patters that can occur may be huge. An approach to overcome this 

drawback is to use a measure of interestingness in order to reduce the number of the 

mined patterns to those that carry the most information. In our method we used as 

interestingness measure the chi-test and therefore the emerging patterns are called chi 

emerging patterns [5]. The formal definition of frequent patterns, emerging patterns 

and chi-emerging patterns are going to be presented in detail in the following section. 

The second component is completely independent from the first. It is a distance-based 

scoring for the sequences. In order to calculate the distance, the method uses the 

Manhattan distance. The equation that calculates the Manhattan distance is also 

presented in the following section. 

Every component calculates some scores. The first component calculates eight scores 

and the second one calculates five scores. The total of thirteen scores is used as input 

to a classifier, which decides whether a sequence contains a polyadenylation site or 

not. In that step any classifier that handles real-valued attributes can be used.  Some of 

the state of the art machine learning algorithms that have been used are Support 

Vector Machines, Neural Networks and Classification Trees.  

 

2. Materials 

In this section we are going to present the definitions and the equations of every 

method that is used by PolyA-iEP. 

2.1 Datasets 

The datasets that our method can handle are divided in two major categories, namely 

the positive and the negative datasets. The positive dataset are mRNA 3` end 

sequences. The negative examples are a combination of 5` UTR, coding and Intronic 

sequences. The datasets are provided to the method in text files which contain the 

sequences. Each sequence has length of 400 nucleotides. In the positive sequences the 

polyadenylation site is found at the 301st position. 

2.2 Frequent Patterns and Association Rules 

Let I = {i1, i2, …, iN} be a finite set of binary attributes called items and D = {t1, t2, …, 

tN} be a finite multiset of transactions, which is called the database. Each transaction 



 

 

ti contains a subset of items chosen from I and has a unique transaction ID. A set of 

items is reffered to as an itemset. If an itemset contains k items, it is called a k-itemset. 

The number k is called size or length of the itemset. The itemset that does not contain 

any items is called an empty itemset. A transaction TD is said to contain an itemset 

XI, if XT.  

An Association Rule is an implication of the form XY where XI, YI and XY=. 

The itemset X is called antecedent or Left-Hand-Side (LHS) of the rule and the 

itemset Y is called consequent or Right-Hand-Side (RHS) of the rule.  

There are many measures that have been proposed in order to evaluate a rule’s 

interestingness. The most popular are support and confidence. They respectively 

reflect the usefulness and certainty of discovered rules. More specifically, support 

determines how often a rule is applicable to a given dataset, whereas confidence 

determines how frequently items in Y appear in transactions that contain X. The 

support of a rule XY is equal to the support of the itemset XY and is defined as the 

fraction of transactions in the database which contain the itemset. The support of an 

itemset X is calculated as presented in the following equation: 
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 The confidence of the rule XY is defined as the fraction of transactions in database 

that contains XY over the number of transactions that contain only X. In other words, 

confidence is equal to the fraction of the support of XY in D, over the support of X 

in D. The equation that defines confidence is presented below:  
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2.3 Emerging Patterns 

Emerging patterns are itemsets whose supports increase significantly from one dataset 

to another.  Given two datasets D1 and D2, the growth rate of an itemset X from D1 to 

D2 is defined as (indices 1 and 2 are used instead of D1 and D2): 
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Given a minimum growth rate threshold ρ > 1, an itemset X is said to be ρ-emerging 

pattern, or simply emerging pattern, from D1 to D2, if 1 2 ( )gr X   . D1 is called 

background dataset and D2 is called target dataset. 

The strength of an emerging pattern X from D1 to D2 is defined as: 
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2.4 Interesting Emerging Patterns 

Given a background dataset D1 and a target dataset D2, an itemset X is called a chi 

emerging pattern, if all the following conditions are true: 

1) 2 ( )supp X  , where σ is a minimum support threshold. 

2) 1 2 ( )gr X   , where ρ is a minimum growth rate threshold. 

3) 1 2 1 2, ( ) ( )Y X gr Y gr X     

4) 1 | | >1 ( | | = | | -1 ( , ) ),X Y X Y X chi X YX          Where η = 3.84 is a 

minimum chi value threshold and chi(X, Y) is computed using chi-squared test.  

More information about the used method can be found in [1]. 

 

2.5 Manhattan Distance 

The Manhattan distance between two items is the sum of the differences of their 

corresponding components  

d(x, y) = ∑ (xi – yi) 

2.6 Machine Learning and Classification  

Supervised learning is probably the most common type of machine learning problems. 

In general, it is the task in which a function is generated in order to map inputs to 

desired outputs. The function, which is called classifier if the output is a discrete 

value, is inferred through analyzing training data. The problem of inferring this 

function is called classification or prediction. The training data which are given to the 

machine learning algorithm are in most cases a pair of a vector and the category to 

which the example belongs. In the field of machine learning the category which is 

assigned to each training data is called label. The classification process is presented in 

Figure 1. 

 

3. Methods 

In this section we are going to present in detail every step of the PolyA-iEP method. 

Figure 2 presents the architecture of our method. The upper side presents the first 

component which is related to Chi Emerging Patterns. The lowest side presents the 

distance-based scoring. It is clear that the results from the two components are used as 



 

 

inputs to a classification algorithm which will decide whether the sequence is a 

positive or negative example, i.e contains or not a polyadenylation site. 

3.1 Extraction of Elements 

3.1.1 Input 

Nucleotide sequences in the form that is presented in paragraph 2.1. 

3.1.2 Processing 

Previous studies have shown that the region near the polyadenylation site can be 

divided in four elements. These elements contain different nucleotide frequencies and 

so they must contain different patterns which our method is intended to mine. The 

elements, which are presented in Figure 3, are FUE (Far Upstream Element), NUE 

(Near Upstream Element), CE (Cleavage Element) and NDE (Near Downstream 

Element). 

 

The application is fully customizable. The user can choose the boundaries of the 

elements. The main reason behind the consideration of the elements is to search for 

extended patterns in the sequences, i.e. patterns in different elements that occur 

simultaneously. An example of a simple pattern could be {ATTA}. An example of an 

extended pattern would be {FUE_ATCT, NUE_AAA, CE_TT, NDE_AAAG}. This 

pattern can be interpreted as following: Simultaneously appear the ATCT in the FUE 

element, the AAA in the NUE element, the TT in the CE element and the AAAG in 

the downstream element. Extended patterns can definitely be more informative than 

the simple patterns, which can lead in better distinction of the positives and negative 

examples and the increasing of the overall accuracy of the method.  

3.1.3 Output  

Each sequence divided in the four elements. 

3.2 Extraction of k-grams  

3.2.1 Input 

Each element of the sequence has been produced in the previous step (see 3.1.3). 

3.2.2 Processing 

In this step each sequence is going to be presented by a number of vectors one for 

each element, i.e. FUE, NUE, CE and NDE. These vectors will contain the 

frequencies of each valid nucleotide pattern. The user can specify the maximum 

length of the pattern. The patterns can contain every combination of the four 

nucleotides. Moreover, we have included some wildchars which represent the 



 

 

presence of one or another nucleotide, based on the IUPAC notions. These wildchars 

are: R (A or G – puRine), Y (C or T - pYrimidine), M (A or C – aMino), K (G or T – 

Keto), S (C or G – Strong, 3 H bonds), W (A or T – Weak, 2 H bonds). For instance, 

if CCT and CTT are valid patterns then also the valid pattern CYT occurs.  

3.2.3 Output 

Vectors which contain the frequencies of each valid nucleotide pattern found in the 

sequences. 

3.3 Binary Discretization 

3.3.1 Input 

The vectors with the frequencies of each valid nucleotide pattern that where 

calculated in the previous step. 

3.3.2 Processing 

Information entropy was used as the discretization method in PolyA-iEP. All possible 

cut points are checked for each k-gram pattern among all pattern frequencies. The cut 

point that has the maximum information gain is finally selected. Given a set of 

training examples S, entropy (E) is defined by the following equation: 
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where c is the number of classes and pi is the proportion of examples in S that belong 

in class i. By definition, if pi is zero, then the term 2log ( )i ip p  is set to zero. 

Given an ordered set of candidate N cut points T={t1,…,tN} for the values of an 

attribute A, that partition the set of examples in N+1 subsets (S1,…,SN+1), the 

information gain (G) is defined by the following equation: 
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where 1{ | [ ] [ , )}  i i i iS s S s A t t .  

As mentioned below PolyA-iEP uses binary discretization and a single cut point 

which maximizes information gain is sought among all attribute values. 

3.3.3 Output 

The k-gram vectors that were extracted as described in section 3.2 are transformed 

into a transaction of items. The items included in the transaction are those k-grams 

that have frequency greater than the corresponding cut point, which was previously 

calculated. In this step the data are transformed in a format that permits the extraction 



 

 

of emerging patterns. 

 

3.4 Mining Interesting Emerging Patterns 

3.4.1 Input 

The transactional data that have been produced in the previous step are used in this 

step for mining interesting emerging patterns. 

3.4.2 Processing 

For mining the interesting emerging patterns FP-Growth, a frequent itemsets mining 

algorithm [6] has been modified accordingly. The modified algorithm receives as 

input two datasets, the background and the target dataset, and discovers all chi-

emerging patterns, based on the user-specified parameters (i.e. minimum support 

threshold and minimum growth rate threshold). For this reason, two sets of emerging 

patterns E+ and E-, are generated for the positive and the negative class respectively. 

As already mentioned a dataset that contains 3 types of negative sequences (5’ UTR, 

coding, and intronic), has been used in the proposed setup. These negative sequences  

express quite different nucleotide distributions. If all negatives were dealt as a whole 

only, then the effectiveness of classification would be moderate. So, PolyA-iEP mines 

four pairs of E+/E- sets of emerging patterns, one for discriminating positives from all 

negatives as a whole and three for discriminating positives from each type of 

negatives separately. An example of an “extended” interesting emerging pattern, than 

can be mined by PolyA-iEP is the following: {FUE_AGT, NUE_CT}: 0.25. This 

interesting emerging pattern associates the appearance of pattern “AGT” in the Far 

Upstream Element, with pattern “CT” in the Near Upstream Element. The strength of 

this interesting emerging pattern is 0.25 

3.4.3 Output 

The four E+/E- pairs of sets of emerging patterns. 

3.5 Distance-Based Scoring 

3.5.1 Input 

Nucleotide sequences in the form that is presented in paragraph 2.1. 

3.5.2 Processing 

The distance-based scoring of PolyA-iEP is independent from the previous steps. This 

step includes the calculation of the frequencies of nucleotides at each position of a 

sequence and the construction of a nucleotide frequency matrix for each class, as 

shown in Table 2. For example, nucleotide A has 0.14 frequency is position 1 of the 

sequences used to generate the matrix presented in Table 1. Then, for each position in 

the sequence the rankings of the nucleotides are calculated according to their 

frequency at this particular position (Table 2). In our setup five nucleotide frequency 



 

 

ranking matrices are constructed, one for each of the following categories: positives, 

all negatives, 5΄ UTR negatives, coding negatives, and intronic negatives. 

 

 

 

3.5.3 Output 

The five nucleotide frequency ranking matrices that are constructed, for each of the 

following categories: positives, all negatives, 5΄ UTR negatives, coding negatives, and 

intronic negatives. 

 

3.6 Classification 

3.6.1 Input 

Any unlabeled sequence that has been processed through the steps 3.1-3.3 and is 

represented in transactional format.  

3.6.2 Processing 

As mentioned before the two PolyA-iEP components are used in order to produce 

thirteen scores. The first component produces eight scores and the second one five 

scores. These scores represent the attributes of each sequence from the initial dataset. 

These scores are given as inputs to any classifier that can handle real-valued numeric 

attributes and decides whether the sequence contains or not the polyadenylation site. 

Some of the state of the art machine learning algorithms that have been used are 

Support Vector Machines, Neural Networks and Classification Trees.  

From the first PolyA-iEP component the mined E+/E- pairs of sets of emerging 

patterns (see 3.4.3) are used for scoring an instance as being positive or negative. For 

this reason, pairs of scores for an instance T in transaction format are calculated as 

described by the following equations.  
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The first score indicates if T is positive and the second if it is negative. The final 

classification could be made by comparing the values of the two scores and assigning 

the instance to the class with the highest score. The total number of scores that are 

produced in this step are 8. Two scores (one for positive and one for negative class) 

are assigned to each of the following discriminations: positives/all negatives, 

positives/5΄ UTR negatives, positives/coding negatives, and positives/intronic 

negatives. 



 

 

From the second PolyA-iEP component the distance of a sequence from a class and 

subclass (5΄ UTR, intronic, or coding) is calculated. For this reason, the sequence is 

converted into a nucleotide frequency ranking vector using the nucleotide frequency 

matrix of the class or subclass (see section 3.5). Then, the distance from the unary 

vector is calculated and divided by the length of sequence. For example, given the 

ranking matrix in Table 2, the ranking vector that corresponds to the sequence 

“ATGGC” is <4, 1, 2.5, 1, 2>. The distance (Manhattan distance is used in our setup) 

of this vector from the unary vector <1, 1, 1, 1, 1> is 5.5. Dividing this distance by the 

length of the sequence, namely 5, the mean nucleotide distance is finally calculated to 

be 1.1. This is the mean nucleotide distance of the above sequence from the category 

to which the nucleotide frequency matrix in Table 2 belongs. Five distances-scores 

are finally calculated, one for each of the following categories: positives, all 

negatives, 5΄ UTR negatives, coding negatives, and intronic negatives. 

3.6.3. Output 

The final classification of the input sequences as containing or non-containing a 

PolyA site. 

4. Notes 

4.1 Machine Learning Algorithms 

We have mentioned in paragraph 3.6 that the last step of the PolyA-iEP method is the 

building of a classifier in order to classify unknown sequences. For this purpose, the 

WEKA machine learning library [7] has been used. WEKA provides many algorithms 

implemented in a very efficient way that can handle real valued attributes. The state 

of the art machine learning algorithms that have been used are referred to in paragraph 

3.6. The implementation of the Support Vector Machines can be found under the tab 

classify to the path classifiers/ functions/ SMO. The implementation of Neural 

Networks can be found also under the tab classify to the path classifiers/ fuctions/ 

multilayerPerceptrons. Lastly, in weka there is an implementation of a classification 

tree algorithm called C4.5. The implementation of this algotithm can be found under 

the tab classify to the path classifiers/ trees/ J48. 
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CAPTIONS 
Figure 1: Training and prediction processes. 

Figure 2: PolyA-iEP architecture. 

Figure 3: The four sequence elements used in PolyA-iEP. 

 

 

Table 1: An example of a nucleotide frequency matrix for sequences of length 5. 

nucleotide 
position in sequence 

1 2 3 4 5 

A 0.14 0.06 0.30 0.11 0.16 

C 0.21 0.21 0.18 0.29 0.28 

G 0.35 0.36 0.26 0.40 0.28 

T 0.30 0.37 0.26 0.20 0.28 

 

 

 

Table 2: The nucleotide frequency ranking matrix that corresponds to Table 1 data. 

nucleotide 
position in sequence 

1 2 3 4 5 

A 4 4 1 4 4 



 

 

C 3 3 4 2 2 

G 1 2 2.5 1 2 

T 2 1 2.5 3 2 

 


