
LadyBug. An Intensity based Localization Bug
Algorithm

1st Athanasios Lentzas
School of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece
alentzas@csd.auth.gr

2nd Dimitris Vrakas
School of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece
dvrakas@csd.auth.gr

Abstract—Localization and navigation is a crucial task of
autonomous robots. This paper introduces LadyBug a novel bug
algorithm. Using the Received Signal Strength Indication (RSSI)
of an electromagnetic signal, the algorithm is able to accurately
calculate the position of the beacon emitting the aforementioned
signal. Various experiments were performed with a simulated
robot equipped only with local sensors. The proposed algorithm
was compared with similar approaches with very promising
results.

Index Terms—robot navigation, robot localization, RSSI, bug
algorithm, path planning

I. INTRODUCTION

Recently mobile robots have become more commonplace
in commercial and industrial settings. Self localization is a
crucial task for all autonomous robots. Localization relying
on odometry or inertial sensors, although it can provide robust
results against environmental changes, is susceptible to error
accumulation. In order to overcome that problem, solutions
based on beacons have been proposed in the literature [1].
Despite the fact that localization improves with the usage of
beacons, complex beacon placement and expensive sensors
needed, could increase the cost of such solution. In this paper
an approach based on the Received Signal Strength Indication
(RSSI) of a beacon that emits any electromagnetic signal is
proposed for localization.

Localization is important for robot navigation. Indoor navi-
gation of robots is an area gathering more scientific interest, as
it can be exploited in various scenarios, e.g. search and rescue,
industrial settings, assistant robots etc. Although simultaneous
localization and mapping (SLAM) techniques are extensively
used [2], their high complexity and computational cost is a
drawback when the use of a small, simple robot is needed.
Bug algorithms are ideal for deployment on small, resource
limited robots. They are characterized by low complexity and
minimum computational needs while they remain effective.

In this study, a novel bug algorithm (LadyBug) is presented.
For localization a light source was selected as the source of the
electromagnetic signal. Among the several available beacons
the particular one was chosen based on the easily available
sensors and the relevant low cost. RSSI based localization is a
subject extensively researched in the literature [3]. Most pub-
lished papers rely on a network of beacons. In our approach,

a single beacon was employed and the algorithm was able to
accurately locate its position.

II. RELATED WORK

Bug algorithms is a topic extensively researched. The first
bug algorithm introduced was the Common sense algorithm
(Com) [4], also known as Bug0. A robot using Bug0 will
move towards a target until an obstacle is found. When an
obstruction is detected, it will move around it, until there is
no obstacle between the robot and its target.

Although Bug0 could solve many mazes, the algorithm
is not complete, as there are scenarios where it can’t reach
the goal. In order to overcome the problems encountered,
Bug1 was introduced [4]. When Bug1 detects an obstacle, it
will circumnavigate it completely. While moving around the
obstacle, it keeps track of the point closest to the target. When
the robot reaches the point where it found the obstacle, it will
continue to the point closest to the target, and there it will
move towards the goal.

Bug1 is a complete algorithm but the path found is not
optimal. Therefore a new algorithm was proposed, called Bug2
[5]. Bug2 draw an imaginary straight line between the obstacle
and the goal. The robot will follow the obstacle until the line
is found at a point closer to the goal than the hit point.

A variation of the Com algorithm, named Com1, was pro-
posed in the literature [6]. The proposed algorithm, compared
to the previous version, remembers the hit point’s distance to
the target. As a result it will leave the obstacle only when the
path to the goal is clear and the distance to goal is smaller
than the hit point. All the aforementioned approaches rely on
contact sensors to perceive the obstacles found on their path.

Relying on the logic of Com1, an intensity bug algorithm
(I-Bug) was proposed [7]. I-Bug navigates towards a beacon
based on the signal strength. The authors assume that a tower
orientation sensor is used, allowing the agent to know whether
its facing the source or not. When an obstacle is found
the intensity is saved and circumnavigation begins. While
navigating around the perimeter, the intensity is compared to
the one on the hit point as well as the intensity a time step
back. If the strength of the signal decreases after increasing
then a local maximum has been detected and the robot leaves
the obstacle. It is worth mentioning that in order to leave the

obstacle and navigate to the source, the intensity must be larger
than the hit point, i.e. closer to the target.

Although the majority of Bug Algorithms proposed offer
a simplistic approach to robot navigation, they rely on an
accurate positioning system [8].

III. MOTIVATION

The key idea of I-Bug is very interesting and it could prove
to be very important in many real world scenarios where the
environment is GPS denying and the robot cannot afford to
navigate around using SLAM (e.g. time critical situations or
limited on board resources). Our motivation was to build an
approach where the robot would still use local sensing alone,
but have the ability to extract the exact location of the goal
(in robot-centric coordinates system) in real time.

The benefits of such an approach would be numerous: a)
The robot would be able to follow an optimized path, since
both the starting and goal points would be known. b) The
calculated trajectory would be smoother, since I-Bug has to
stop every now and then and rotate in place in order to face
the target. c) When travelling around obstacle the robot would
be able to leave the circumnavigation behavior earlier resulting
in shorter paths. d) It would be more noise resilient since the
robot could apply averaging techniques in order to estimate the
goal position using past measurement and e) it would facilitate
the use of more advanced navigation algorithms, like Tangent
Bug [9].

IV. LADYBUG ALGORITHM

The LadyBug algorithm proposed in this paper has two
distinct parts. The first part is localization, where the position
of the beacon in the robot-centric coordinates system are
calculated. The second part is navigation. where the robot
navigates to the beacon while avoiding obstacles found on
it’s way.

The navigation part of our algorithm is similar to the one
employed by Com1 algorithm. The main idea of Com1 is
expanded by: a) the local sensing, localization scheme, b) the
circumnavigation behaviour that uses distance sensors instead
of bumpers and c) an efficient yet simple controller for moving
in empty spaces. The complete LadyBug algorithm can be seen
on Alg.(1).

At each cycle the algorithm employs the localization scheme
in order to estimate the position of the source. This estimation
is combined with the estimation made in the previous cycle
in order to amend for occasional faulty readings due to noise.
The previous cycle estimation contains information from all
the previous readings, thus using it provides more robust
results. The next step is to use the projection of the source
to the ground (thus the elimination of the z coordinate) to
calculate the distance to the target. If the distance is larger
than a threshold (Czero) LadyBug checks if the way towards
the target is blocked or not in order to choose between the
Circumnavigate and the MoveToGoal behaviours. Note that
when the algorithm senses an obstacle (hit point) and employs
circumnavigation it stores the distance to the target (dL) in

order to ensure that the leave point will be closer to the target
than the hit one.

Algorithm 1: LadyBug Algorithm

1 (x, y, z)← find Beacon Location()
2 (x, y, z)← (x′, y′, z′) ∗ 0.9 + (x, y, z) ∗ 0.1

// (x’,y’,z’) is the beacon’s
location calculated on the previous
step

3

4 dist←
√
x2 + y2

5 if dist < Czero then
6 stop() // goal reached
7 end
8 θ = atan2(y, z) // find angle towards the

goal
9

10 if readings of all sensors in(θ − Cang, θ + Cang) >
Csafeanddist < dL // Leave obstacle

11 then
12 dL ←∞
13 MoveToGoal()
14 end
15 else
16 if dL =∞ // Hit obstacle
17 then
18 dL ← dist
19 end
20 Circumnavigate()
21 end

A. Localization

The localization scheme of the robot is based on RSSI.
Given an electromagnetic wave (light, radio, Bluetooth etc.),
the localization sub system can calculate the coordinates (in
the robot-centric system) of the source in 3d space. This
removes the requirement for a universal localization system.
Additionally, our approach requires sensors that are easily
accessible (light, radio, Bluetooth etc) as long as they return
the intensity of the received signal.

1) Basic Scheme: The main idea is to use the RSSI mea-
surements of four sensors in order to calculate the position
of the electromagnetic source in the 3d space. These sensors
(S0, SR, SL, SF) should be placed on the perimeter of a
circle with radius r as seen on Fig. 1. Each sensor returns
a measurement E, defined by (1), which is proportional to the
intensity of the source (W) and the angle of incidence (φ) and
inversely proportional to the square of the distance between
the sensor and the source.

E =
W

4πd2
cosφ (1)

The triangle formed by the sensor, the source and the
projection of the source onto the sensors plane can be seen
on Fig. 2. The cosine of the angle of incidence is equal to the

Fig. 1: The position of the four sensors on the robot.

sine of the angle formed by d and b (cosφ = sin (90− φ)).
Thus equation (1) can be written as:

E =
W

4πd2
sin (90− φ)⇒ E =

W

4πd2
h

d
⇒ E =

Wh

4πd3
(2)

Fig. 2: The triangle formed. L is the source, S is the sensor
and P is the projection.

Solving equation (2) for d, we come up with equation (3)
where β = Wh

4π .

d =
β

1
3

E
1
3

(3)

Working on the robot-centric system, the coordinates of
each sensor are as seen on Table I, where (xs, ys, zs) is
the position of the source. Using equation (3), the distance
between the sensors and the beacon are shown below, with
(E0, ER, EL, E0) being the measurement of the corresponding
sensor.

TABLE I: Position of the sensors on the robot-centric system

Sensor Coordinates (x,y,z)
S0 (0,0,0)
SR (-r,0,0)
SL (r,0,0)
SF (0,-r,0)

β
2
3

E
2
3
0

= x2 + y2 + z2 (4)

β
2
3

E
2
3

R

= x2 + y2 + z2 + r2 − 2rx (5)

β
2
3

E
2
3

L

= x2 + y2 + z2 + r2 + 2rx (6)

β
2
3

E
2
3

F

= x2 + y2 + z2 + r2 − 2ry (7)

By adding equations (5) and (6) we come up with (8):

(5) + (6) => 2(x2 + y2 + z2) + 2r2 =
β

2
3

E
2
3

R

+
β

2
3

E
2
3

L

(8)

Subtracting equation (4) from (8) we are able to express β
based on sensor measurements and the radius of the robot as
seen in (9).

(8)− (4) => β
2
3 =

2r2

1

E
2
3
R

+ 1

E
2
3
L

− 2

E
2
3
0

(9)

Knowing the value of β, we are able to calculate y (10) by
subtracting equation (4) from (7) and x (11) by subtracting
(5) from (6). Finally the value of z (12) is given by replacing
the values of y and x on equation (4).

(7)− (4) => y =

r2 − β 2
3 (1

E
2
3
F

− 1

E
2
3
0

)

2r
(10)

(6)− (5) => x =

β
2
3 (1

E
2
3
L

− 1

E
2
3
R

)

4r
(11)

(4), (10), (11) => z =

√√√√ β
2
3

E
2
3
0

− x2 − y2 (12)

2) Enhanced Scheme: The basic localization scheme can
be further enhanced by adding redundant sensors. The imple-
mentation of LadyBug uses a total of five sensors in order to
create four groups (Group 1, Group 2, Group 3 and Group 4)
as seen in Fig 3. Each one of these groups contains 4 sensors
with the formation required by the Basic Scheme and is able
to estimate the position of the source.

For instance, when Group 2 is considered, EF comes from
the reading of sensor SR, EL from SF and ER from SB
respectively because the virtual sensor triangle is rotated by
90° CW. The four estimates are then averaged in order to
obtain a more precise estimation of the source’s position. The
complete localization algorithm can be seen on Alg.(2)

B. Navigation

Knowing the location of the beacon in the robot-centric
system, the robot utilizes the navigation algorithm to reach it.
While navigating to the source of the signal, the robot avoids
obstacles found on its way. Obstacle avoidance assumes that
the robot is equipped with a sensing medium, such as sonars,
bumpers, IR sensors etc.

Two distinct behaviors were implemented on the navigation
part of the algorithm: move to goal and circumnavigate. If no
obstacle is detected, the robot moves towards the beacon.

(a) Group 1 (b) Group 2

(c) Group 3 (d) Group 4

Fig. 3: Sensor groups

Algorithm 2: Find Beacon Location

1 (x, y, z)← 0
2 foreach SensorGroup ∈ Sensors do
3 (E0, EF , EL, ER)← read sensor intensity()

// Read intensity for center,
front , left and right sensor
respectively

4 β
2
3 ← (2 ∗ radius2)/((1/E

2
3

R) + (1/E
2
3

L)− (1/E
2
3
0))

5 y ← y+(radius2−β 2
3 ∗(1/E

2
3

F−1/E
2
3
0))/(2∗radius)

6 x← x+ (β
2
3 ∗ (1/E

2
3

L − 1/E
2
3

R))/(4 ∗ radius)

7 z ← z + sqrt(β
2
3 /E

2
3
0 − x2 − y2)

8 end
9 (x, y, z)← (x/4, y/4, z/4)

10 return (x,y,z)

When an obstruction is detected between the robot and its
path to the goal, the robot saves its current location and begins
circumnavigating the obstacle. This behavior terminates when
the robot reaches a place where no obstacle exists between the
robot and its target and the distance to the beacon is smaller
than the point the robot found the obstacle.

The MoveToGoal behavior of LadyBug is a simple con-
troller that leads the robot to the goal while maintaining
a constant translational speed (C2 m/sec) and a rotational
speed that is proportional to the angle between the robot’s
direction and the goal. The controller pseudocode can be seen
on Alg.(3).

Circumnavigate is a controller that drives the robot to
follow the contour of the obstacle while maintaining a safe
distance from it (Dsafety). In order to achieve this, it calculates
two angles φlin and φrot that are combined to produce the
rotational speed. φrot is the offset of the robot regarding the

Algorithm 3: MoveToGoal Controller

1 θ ← atan2(y, x) // Angle to Goal
2 Vrot = θ ∗ C1

3 Vtran = C2

desired safety distance from the obstacle, transformed to the
[−π/2, π/2] range through the arctan function. The distance
between the robot’s body and the obstacle is obtained by
taking the minimum reading of the distance sensors. φlin
is an approximation of the obstacle’s contour based on the
sensors readings. Firstly the algorithm finds the sensor with
the minimum reading (closer to obstacle) smin. Based on the
reading of this sensor (reading(smin)), its distance from the
center of the robot’s body (R(smin)) and the vertical rotation
of the sensor (angle(smin))), Circumnavigate estimates the
closest point of the obstacle (x1, y1) in the robot-centric
coordinates system. The next step is to check if on of the
two sensors next to smin (one to the left and one to the right)
were also able to detect an obstacle. If this was the case the
algorithm uses the same formula to estimate a second point on
the obstacle (x2, y2) and uses the line segment between these
two points as a guide for the obstacle’s contour. If neither
of the sensors next to smin detected an obstacle, then the
algorithm computes a vector vertical to smin’s orientation as
a guide for the obstacle’s contour. The controller’s pseudo code
can be seen on Alg.(4)

Algorithm 4: Circumnavigate Controller

1 smin ← argmax(reading(si)) : iinSonars
2 x1 ← (R(smin) + reading(smin)) ∗ cos(angle(smin))
3 y1 ← (R(smin) + reading(smin)) ∗ sin(angle(smin))
4 s+ next← nil
5 if reading(Smin+1) <∞ then
6 snext ← Smin+1

7 end
8 else if reading(Smin−1) <∞ then
9 snext ← Smin−1

10 end
11 if snext = nil then
12 φlin ← atan2(x1,−y1)
13 end
14 else
15 x2 ←

(R(snext) + reading(snext)) ∗ cos(angle(snext))
16 y2 ←

(R(snext) + reading(snext)) ∗ sin(angle(snext))
17 φlin ← atan2(y2 − y1, x2 − x1)
18 end
19 φrot ← atan(reading(smin)−Dsafety)
20 vrot ← (φlin + φrot) ∗ C3

21 vtran ← cos(vrot) ∗ C4

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of the LadyBug al-
gorithm and provide an empirical comparison against the I-
Bug algorithm, we implemented both algorithms in the Webots
Open Source Robot Simulator by [10]. We used a generic disc
shaped robot, with 40 cm diameter, equipped with differential
drive kinematics and a belt of eight distance sensors located on
the perimeter of the robot’s body. The tower emitting signals
that served as the goal of both robots was a simple point light
placed at 1.5 m above the ground and all the tower related
sensors were implemented using a group of light sensors
placed on top of the robot body.

LadyBug used five light sensors: one at the center, one at
the front, one at the back and two at the left and right side
of the robot. I-Bug used the same distance sensors in order to
navigate around the obstacles, instead of the naive approach
using bumpers. The intensity sensor was implemented using a
light sensor at the center of the robot and the tower alignment
sensor was implemented using 12 light sensors located on the
perimeter of a 2cm circle in order to simulate the original IR-
Seeker with 9 regions plus the dead zones [11]. The virtual
tower alignment sensor compares the reading of all 12 sensors
and returns true when the highest intensity is read from sensor
number 9 (the one facing at the front). In all experiments both
robots were stopped when their distance from the projection
of the light on the floor, would get below 40 cm (one body
size).

Four experiments were conducted in order to validate the
assumptions stated in the Motivation section.

A. Shorter Paths

The first assumption was that due to LadyBug being able
to know at real time both its starting and goal point it
would follow a shorter path than I-Bug in worlds without
obstacles. Since the robot is able to rotate in place (a behaviour
extensively used by I-Bug) the best way to compare the total
distance travelled by the robots were to use the odometer
readings from both wheels and take the average.

We simulated three worlds with the robot placed approxi-
mately 6 meters away from the goal (projection of the point
lamp). In all three worlds the starting and goal positions were
the same and we just changed the relative direction towards
the goal (World 1 at 10°, World 2 at 80° and World 3 at -
50°). Figures 4a, 5a and 6a present the travelled paths and the
average odometer readings for worlds 1,2 and 3 respectively.

It is clear from the results that LadyBug travelled shorter
paths in all three cases (approximately 7% shorter on average).
The second conclusion drawn from the odometer readings is
that the performance of I-Bug seems to depend more on the
robot’s initial orientation (The stdev of the I-Bug readings were
approximately double compared to the ones by LadyBug).

B. Smoother Trajectories

The second assumption was that apart from travelling
shorter paths in obstacle-free worlds, LadyBug would be
able to move in smoother trajectories than I-Bug. In order

(a) Path followed

(b) LadyBug Velocities

(c) I-Bug Velocities

Fig. 4: Path and velocities for World 1

(a) Path followed

(b) LadyBug Velocities

(c) I-Bug Velocities

Fig. 5: Path and velocities for World 2

(a) Path followed

(b) LadyBug Velocities

(c) I-Bug Velocities

Fig. 6: Path and velocities for World 3

Fig. 7: Path for World 4

to validate this we recorded the rotational and translational
velocities from both robots in the three worlds (World 1, World
2 and World 3) of the previous experiment. The resuts can be
seen in Figures 4b, 5b and 6b for LadyBug and in Figures 4c,
5c and 6c for I-Bug respectively.

It is obvious from the results that I-Bug had a lot of steep
changes in both rotational and translational velocities, which
occur when the robot realizes it is not facing the goal anymore
and it has to come to a complete stop, activate the in place
rotation and then stop the rotation and start moving again. On
the other hand, LadyBug knowing the exact position of the goal
is able to adopt a simple but efficient controller for moving
towards the goal that produces much smoother changes in
rotational speed and a constant translational one.

C. Earlier Leaving Points on Obstacles

The third assumption was that although both robots use
the same circumnavigate behaviour when they come across
obstacles, LadyBug would be able to leave the obstacle and
travel towards the goal earlier than I-Bug and thus produce a
shorter path in total.

I order to verify the above we simulated two worlds (World
4 and World 5) with obstacles of different size and shape and
we recorded the paths travelled and the average odometer for
both robots. The results presented in Fig. 7 and Fig. 8 show
that I-Bug followed paths that were on average 11% longer
than the ones by LadyBug. This is due to the fact that I-Bug
has to detect a local maximum in the RSSI value in order to
leave the obstacle, while LadyBug checks if the obstacle is
blocking the line segment between the robot and the goal.

D. Noise Resilient Goal Detection

The last assumption was that a sensor returning the exact
position of the goal offers more capabilities for logical re-
dundancy in sensing than a tower detection sensor returning
boolean values. Therefore LadyBug would present a more
robust behaviour in noisy environments than I-Bug.

In order to evaluate the above, we created a simple obstacle-
free world (similar to World 1) and we simulated both robots
with 7 increasing levels of noise in the light sensors readings.
We started with a noise-free environment and in the 7th run
the noise in the sensors reading’s was 50%. For each noise

Fig. 8: Path for World 5

level we recorder the path followed by the two robots and the
average odometers measurements. Fig. 9a and Fig. 9b present
the results.

LadyBug clearly outperformed I-Bug in noisy environments
since the latter followed paths that were, on average, 61%
longer. This was due to the fact the the tower detection sensor
was unable to correctly detect if the robot was facing the goal
especially as it came closer to the light source, resulting in the
spiral movement shown in 9b. On the contrary, noise seemed
to affect the goal identification system of LadyBug especially
when the robot was farther from the light source, resulting in
paths diverging in their first half and converging at the second
one.

The second conclusion that can be drawn from the odometer
readings is that as the noise level increases the behaviour of
I-Bug deteriorates in a more aggressive manner than LadyBug.
Fig. 9c presents the average odometers of the two robots as
the noise level increases and there is a clear difference in the
slope of the two lines. The slope of I-Bug is 2.5 times larger
than the one of LadyBug at the biggest level of noise.

VI. CONCLUSIONS

In this paper a novel Bug Algorithm, called LadyBug was
proposed. LadyBug has two distinct functions: Localization
and Navigation. The algorithm is able to localize a source of
an electromagnetic signal based on RSSI and navigate to it.

Our approach was compared on a simulated environment
with I-Bug, a bug algorithm based on intensity as well. The
proposed algorithm produced shorter paths and smoother tra-
jectories. Even when noise was introduced on the experiments,
LadyBug presented a more robust noise resilient behaviour and
clearly outperformed I-Bug.

Although results from LadyBug were promising there is still
further work we could do in order to improve its performance.
The next step would be to implement the same localization
technique in a navigation scheme that makes better use of
distance sensor readings, i.e. similar to tangent bug’s approach.
This would reduce the time spent on following the boundaries
of the obstacles and result in even shorter paths.

Our approach was only tested on a simulation environment.
In near future an implementation of the LadyBug algorithm
will be realized on a real robot. This will allow us to

(a) Path followed by LadyBug

(b) Path followed by I-Bug

(c) Odometer readings per noise levels

Fig. 9: Paths for noise

evaluate the performance of our algorithm in real conditions.
Evaluating the localization part of LadyBug in non simulated
environment is also critical. Real world has noise that can’t be
simulated easily (i.e. reflection of the electromagnetic signal,
non-uniform noise etc.)

Additionally, small obstacles are harder to detect with the
current configuration. Although laser sensors can be placed as
low on the robot’s body as possible, there will still be an area
which is not covered. In order to detect obstructions located
under the field of view, bumper sensors could be employed in
future implementations.

Another important part of our future work is the gener-
alization of the localization algorithm. In our experiments
we used a source of light and a robot equipped with light
sensors. Using those sensors on a real robot is tricky. A
light wave is susceptible to reflection and can’t pass through
solid materials such as walls. Also the noise levels will make
localization a difficult, if not impossible, task. For that reason,
the generalization and experimentation with different sources
(radio, Bluetooth etc.) lies in our goals.

REFERENCES

[1] X. Luo, W. J. O’Brien, and C. L. Julien, “Comparative
evaluation of received signal-strength index (rssi) based indoor
localization techniques for construction jobsites,” Advanced
Engineering Informatics, vol. 25, no. 2, pp. 355 – 363, 2011,
information mining and retrieval in design. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474034610000984

[2] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization
and mapping: A survey of current trends in autonomous driving,” IEEE
Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220, Sep.
2017.

[3] M. Shahkhir Mozamir, R. B. A. Bakar, and W. I. S. W. Din, “Indoor
localization estimation techniques in wireless sensor network: A review,”
in Proceedings - 2018 IEEE International Conference on Automatic
Control and Intelligent Systems, I2CACIS 2018, 2019.

[4] V. Lumelsky and A. Stepanov, “Dynamic path planning for a mobile
automaton with limited information on the environment,” IEEE Trans-
actions on Automatic Control, vol. 31, no. 11, pp. 1058–1063, November
1986.

[5] V. J. Lumelsky and A. A. Stepanov, “Path-planning strategies for a
point mobile automaton moving amidst unknown obstacles of arbitrary
shape,” Algorithmica, vol. 2, no. 1, pp. 403–430, 1987. [Online].
Available: https://doi.org/10.1007/BF01840369

[6] A. Sankaranarayanan and M. Vidyasagar, “A new path planning al-
gorithm for moving a point object amidst unknown obstacles in a
plane,” in Proceedings., IEEE International Conference on Robotics and
Automation, May 1990, pp. 1930–1936 vol.3.

[7] K. Taylor and S. M. LaValle, “I-bug: An intensity-based bug algorithm,”
in 2009 IEEE International Conference on Robotics and Automation,
May 2009, pp. 3981–3986.

[8] K. McGuire, G. de Croon, and K. Tuyls, “A comparative
study of bug algorithms for robot navigation,” Robotics and
Autonomous Systems, vol. 121, p. 103261, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889018306687

[9] I. Kamon, E. Rivlin, and E. Rimon, “A new range-sensor based globally
convergent navigation algorithm for mobile robots,” in Proceedings of
IEEE International Conference on Robotics and Automation, vol. 1,
1996, pp. 429–435 vol.1.

[10] O. Michel, “Webots: Professional mobile robot simulation,” Journal
of Advanced Robotics Systems, vol. 1, no. 1, pp. 39–42, 2004.
[Online]. Available: http://www.ars-journal.com/International-Journal-
of- Advanced-Robotic-Systems/Volume-1/39-42.pdf

[11] K. Taylor and S. M. LaValle, “Intensity-based navigation with global
guarantees,” Autonomous Robots, vol. 36, no. 4, pp. 349–364, 2014.
[Online]. Available: https://doi.org/10.1007/s10514-013-9356-x

