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Abstract

Class imbalance is an intrinsic characteristic of multi-label data. Most of the labels in
multi-label data sets are associated with a small number of training examples, much smaller
compared to the size of the data set. Class imbalance poses a key challenge that plagues
most multi-label learning methods. Ensemble of Classifier Chains (ECC), one of the most
prominent multi-label learning methods, is no exception to this rule, as each of the binary
models it builds is trained from all positive and negative examples of a label. To make
ECC resilient to class imbalance, we first couple it with random undersampling. We then
present two extensions of this basic approach, where we build a varying number of binary
models per label and construct chains of different sizes, in order to improve the exploitation
of majority examples with approximately the same computational budget. Experimental
results on 16 multi-label datasets demonstrate the effectiveness of the proposed approaches
in a variety of evaluation metrics.
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1. Introduction

Class imbalance is an intrinsic characteristic of multi-label data. Each training example in
a multi-label dataset is typically associated with a small number of labels, much smaller
than the total number of labels. This results in a sparse output matrix, where a small total
number of positive class values is shared by a much larger number of example-label pairs.
Though the distribution of the number of positive class values is not uniform across labels
— in some real-world applications it follows a power law (Rubin et al., 2012) — most of the
labels are typically associated with a small number of positive class values. The imbalance
ratio (ImR) of a label is the ratio of the number of examples of the majority class over the
number of examples of the minority class. Figure 1 (a) shows a density estimation plot and
Figure 1 (b) a box-plot of the imbalance ratios of all labels in the 16 multi-label datasets
of Table 1 that are part of our empirical study. We can see indeed that most of the labels
are characterized by severe class imbalance.

The starting point of this work is Ensemble of Classifier Chains (ECC) (Read et al.,
2011), a popular multi-label learning algorithm with state-of-the-art predictive performance
that is also accompanied by a theoretical interpretation based on probability theory (Dem-
bczyński et al., 2010). ECC suffers from class imbalance, as each of the binary models
it builds is trained from all positive and negative examples of a label. While several ap-
proaches have been recently proposed to highlight and address the class imbalance problem
in the context of multi-label learning, none of them has considered to build on top of ECC.
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Figure 1: (a) Gaussian kernel density estimation plot and (b) box-plot (values superimposed
and jittered) of the imbalance ratios of all labels in the 16 datasets of Table 1.

To make ECC resilient to class imbalance we contribute a new approach that couples
it with random undersampling (Breiman et al., 1984). We then present two extensions
of this basic approach, in order to improve the exploitation of majority examples with
approximately the same computational budget. This is achieved by building a varying
number of binary models per label and constructing chains of different sizes. Experimental
results on 16 multi-label datasets demonstrate the effectiveness of the proposed approaches
in a variety of evaluation metrics.

2. Our Approach

We first introduce the notation used in the rest of the paper and describe the ECC algorithm.
Then, we present our approach for making classifier chains resilient to class imbalance
along with two extensions that improve the exploitation of majority examples. In the last
subsection, we analyze the computational complexity of the proposed methods.

2.1. Notation

Let X = Rd be a d-dimensional input feature space, L = {l1, l2, ..., lq} a label set containing
q labels and Y = {0, 1}q a q-dimensional label space. D = {(xi,yi)|1 6 i 6 n} is a multi-
label training data set containing n instances. Each instance (xi,yi) consists of a feature
vector xi ∈ X and a label vector yi ∈ Y, where yij is the j-th element of yi and yij = 1(0)
denotes that lj is (not) associated with i-th instance. For label lj , mj = min(|D0

j |, |D1
j |)

and Mj = max(|D0
j |, |D1

j |) denote the number of minority and majority class examples

respectively, where Db
j = {(xi,yi)|yij = b, 1 6 i 6 n}. ImRj = Mj/mj is the imbalance

ratio of lj . A multi-label method learns a mapping function h : X → {0, 1}q or f : X → Rq

from D that given an unseen instance x, outputs a label or real-valued vector ŷ with the
predicted labels of or corresponding relevance degrees to x respectively.
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2.2. Ensemble of Classifier Chains

Classifier Chain (CC) is a well-known multi-label learning method that is based on the idea
of chaining binary models (Read et al., 2011). CC exploits high-order label correlations by
sequentially constructing one binary classifier for each label based on a chain (permutation)
of the labels CH, where CHj is the index of the label in L. The j-th classifier hj is
constructed by the binary dataset whose class is label lCHj and the feature space of training
instances is extended with the values of the previous labels in the chain. Once the classifier
chain {h1, ..., hq} is built, the unseen instance x is predicted by traversing all classifiers
iteratively. The input of hj is the x augmented by predictions of all preceding labels
obtained from previous classifiers.

The performance of CC is highly affected by the sequence of the labels within the chain.
To relieve the impact of label ordering and make the model more robust, the ECC algorithm
constructs c different chains and corresponding CC models (Read et al., 2011). To make
these models more diverse, each chain is trained on a different training set D′ obtained
by sampling with replacement (|D′| = |D|). The prediction of ECC for a test instance is
obtained by combining the predictions of all CCs with a voting strategy. The j-th element
of relevance degree vector ŷ, denoted by ŷj , is calculated as the number of CCs that predicts
lj as the relevant label of x divided by the number of chains c.

2.3. Ensemble of Classifier Chains with Random Undersampling

To deal with the class imbalance inherent in multi-label data, we firstly propose coupling CC
with random undersampling (Breiman et al., 1984), in order to balance the class distribution
of each binary training set. This leads to the classifier chain with random undersampling
approach (CCRU), whose pseudocode is shown in Algorithm 1.

CCRU builds binary classifiers sequentially according to label sequence CH. Random
undersampling of majority examples is applied to each binary training set before building
the corresponding classifier (line 4). In specific, Mj − mj majority class examples are
randomly removed from each label lj in order to create a fully balanced training set.

In the original CC model, the true values of the labels are considered when using them
as input features. Recent work found that two alternative approaches lead to better results
in the context of multi-target regression chains (Spyromitros-Xioufis et al., 2016): i) using
in-sample estimates of the values of these labels by considering the predictions of the corre-
sponding binary models on the training set, ii) using out-of-sample estimates of the values of
these labels by considering the cross-validated predictions of the corresponding binary mod-
els on the training set. CCRU avoids the second approach because cross-validation would
construct training sets that are further deprived of the already small number of minority
examples, leading to a deviant distribution of predictions compared to the predictions of the
corresponding binary models. In addition, cross-validation is very time consuming. Instead,
CCRU follows the first of the above approaches, i.e it considers the predictions of the cor-
responding binary models on the training set. As only a subset of the majority examples of
the training set are used for the training of the corresponding binary model (line 5), CCRU
essentially considers a mixture of in-sample and out-of-sample predictions: in-sample for
the minority and the equal number of retained majority examples, and out-of-sample for
the rest of the majority examples that were removed (lines 7-14).
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Algorithm 1: Training of CCRU

input : multi-label data set: D, sequence of labels: CH
output: CCRU model: h = {h1, ..., h|CH|}

1 D1 ← {(x1, y1CH1), ..., (x|D|, y|D|CH1
)} ;

2 h← ∅ ;
3 for j ← 1 to |CH| do
4 D∗j ← RandomUnderSample(Dj) ; /* apply random undersampling to Dj */

5 train hj based on D∗j ;

6 h← h ∪ hj ;
7 if j < |CH| then
8 Dj+1 ← ∅ ;
9 foreach (x, y) in Dj do

10 ŷCHj ← hj(x) ;

11 x′ ← [x1, ..., xd, ŷCH1 , ..., ŷCHj ] ; /* add augmented features */

12 Dj+1 ← Dj+1 ∪ (x′, yCHj+1) ;

13 end

14 end

15 end
16 return h = {h1, ..., h|CH|} ;

Similar to ECC, the Ensemble of Classifier Chains with Random Undersampling (EC-
CRU) algorithm aggregates several CCRUs that are built upon different label sequences
and resampled versions of the original training set.

2.4. Improving the Exploitation of Majority Examples

In ECCRU, the probability that a majority example of a label is eventually used for training
the binary models of that label depends on the number of minority, m, and majority, M ,
examples of that label, as well as on the number of chains, c. In each chain, sampling of
all the training examples with replacement is first performed once, followed by separate
samplings of the majority examples of each label without replacement. If we skip the
first sampling process for the sake of simplifying the analysis, then the probability that a
majority example of a label is selected in at least one of the c chains of ECCRU, denoted
as P , can be obtained by Equation 1.

P = 1−
(

1− m

M

)c
(1)

Figure 2 plots Equation 1 for 10 chains, 1,000 training examples and varying number
of minority samples, as well as the empirical probability in question estimated using 10,000
runs. We notice that for ImR > 15 this probability is less than 0.5, with an alternative
interpretation being that less than half of the majority examples are eventually used by
ECCRU in such a case. As intuitively expected, we see that the higher the ImR of a label,
the lower the exploitation of its majority examples.
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Figure 2: The empirically estimated (simulated) and theoretically approximated probability
of a majority example of a label being retained for training by at least one of the
10 corresponding models of ECCRU with 10 chains, assuming 1,000 training
examples and a number of minority examples varying from 20 to 400 with a step
of 20. For the simulation, the sampling process was conducted 10,000 times.

A straightforward way to increase the exploitation of majority examples when ImR
is high is to increase the number of chains. This is also theoretically grounded based on
Equation 1. Increasing the number of chains however leads to increased computational
cost. We instead consider a variation of our algorithm that improves the exploitation of
majority examples without increasing the computational budget. A key observation is that
each label contributes a different computational cost to ECCRU, which is proportional to
the number of its minority examples, as each corresponding classifier is trained with twice
that number of examples. Consider for example a dataset with 100 training examples and
3 labels, each with 10, 20 and 30 minority examples respectively. The classifier of the first,
second and third label will be trained with 20, 40 and 60 training examples respectively.

Our proposal is to redistribute this computational cost by building a different number
of classifiers per label, inversely proportional to its number of minority examples. This way
we can achieve uniform exploitation of majority examples across labels at the same com-
putational cost. We call this variation of our approach ECCRU2. Continuing the previous
example, if we build 10 chains, then the total number of exploited majority examples is 600
(10 times 10+20+30). Our approach divides this computational budget equally across la-
bels, i.e. 200 majority examples per label. We then divide this with the number of minority
examples of each label to get the number of classifiers to build for each label, i.e. 20, 10
and 6.6. In general, given q labels and a budget of c chains, the number of classifiers, cj ,
constructed by ECCRU2 for label j is given by Equation 2.
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cj = b
c
∑q

k=1mk

qmj
c (2)

To accommodate the fact that the number of classifiers to be constructed differs among
labels, ECCRU2 considers partial chains containing an increasingly smaller subset of labels
until the minimum size of two labels. Continuing the aforementioned example, ECCRU2
would build 6 chains containing all three labels and 4 chains including the first two labels.

The pseudo-code of the training process of ECCRU2 is given in Algorithm 2. Firstly,
the number of classifiers trained for each label cj is calculated according to Equation (2).
To limit the number of classifiers in the case of highly imbalanced labels, we confine cj to
be less than a predefined maximal value cmax, defined as a multiple of c: cmax = cθmax (line
3). In our empirical study we set c = 10, θmax = 10 and therefore cmax = 100. Then, in
each iteration of building a CCRU model, labels whose corresponding counter cnj recording
the number of classifier needed to be trained is larger than 0 are added into the label set
S, and only labels collected in S are utilized to generate the label sequence to train the
current CCRU model. The loop (in line 6-21) terminates when cmax chains have been built
or |S| < 2. The rest parts of the training phase of ECCRU2 are identical to ECCRU.

The pseudo-code of the testing process of ECCRU2 is given in Algorithm 3. In ECCRU2,
the number of binary classifiers contained in CCRU hi, denoted as |hi|, does not always
equal q. Hence, a q dimensional vector cc is introduced to count the number of binary
classifiers for each label, which is used in line 14 to normalize the ŷj , for j = 1, ...q. The
rest parts of testing process of ECCRU2 are as in ECC.

One issue in ECCRU2 is that very few classifiers, even just one, can be built in the case of
balanced labels with large mj , leading to fewer full-sized chains being built. To address this
problem, a variant of ECCRU2 called ECCRU3 is proposed. The only change in ECCRU3
is the addition of a lower bound cmin for cj , where cmin = cθmin and 1

c 6 θmin 6 1 to ensure
that 1 6 cmin 6 c. Hence, the confined cj (cnj) is computed as min{max{cj , cθmin}, cθmax}
and so at least cmin chains containing all of the labels are built. In our empirical study we
set c = 10, θmin = 0.5 and therefore cmin = 5. The rest parts of the training and testing
process of ECCRU3 are the same with ECCRU2.

2.5. Complexity Analysis

Let’s define Θtr(mj , d) and Θte(d) the complexity of training and testing a binary classifier

for label lj , respectively. The complexity of ECCRU is O
(
c
∑q

j=1 Θtr(mj , d) + ncqΘte(d)
)

for training and O (cqΘte(d)) for testing. The training and testing complexity of ECCRU2

is O
(
c
q

∑q
k=1mk ∗

∑q
j=1

(
1
mj

Θtr(mj , d)
)

+ nΘte(d)
∑q

j=1 cj

)
and O

(
Θte(d)

∑q
j=1 cj

)
. For

both algorithms, the first part of the training complexity concerns building classifiers and
the second relates to generating the augmented feature space. The classifiers in ECCRU2
are more than in ECCRU, which results in larger testing complexity and large complexity of
generating augmented features. However, the comparison between the training complexity
of the first part of ECCRU2 and ECCRU depends on the mj and Θtr(mj , d) of each label.
The formulation of the training and testing complexity of ECCRU3 is the same with EC-
CUR2, but ECCRU3 is more time-consuming than ECCRU2 in both processes in practice,
because a larger lower bound in the number of classifiers is applied to ECCRU3.
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Algorithm 2: Training of ECCRU2

input : multi-label data set: D, number of labels: q, standard number of chains: c, the coefficient
of maximal number of chains: θmax

output: ECCRU2 model: h = {h1, ..., hc′}
1 for j ← 1 to q do
2 calculate cj according to (2) ;
3 cj ← min{cj , cθmax};
4 cnj ← cj ; /* the number of classifiers needed to be built for each label */

5 end
6 c′ ← 0 ; /* the counter to record the number of chains built actually */

7 for i← 1 to cθmax do
8 S ← ∅ ;
9 for j ← 1 to q do

10 if cnj > 0 then
11 S ← S ∪ j ;
12 cnj ← cnj − 1 ;

13 end

14 end
15 if |S| < 2 then
16 break;
17 end
18 CHi ← RandomPermute(S) ; /* generate a chain by random permutation */

19 D′ ← SampleWithReplacement(D) ; /* sample the D with replacement */

20 hi ← TrainCCRU(D′, CHi) ; /* train a CCRU according to Algorithm 1 */

21 c′ ← c′ + 1 ;

22 end

23 h← {h1, ..., hc′} ;

24 return h = {h1, ..., hc′} ;

3. Related Work

A series of approaches by the same research group have been proposed for dealing with class
imbalance in the context of multi-label learning using under/over-sampling. LP-RUS and
LP-ROS are two twin sampling methods, of which the former removes instances assigned
with most frequent labelset and the latter replicates instances whose labelset appears fewer
times (Charte et al., 2013). ML-RUS and ML-ROS delete instances with majority labels
and clone examples with minority labels, respectively (Charte et al., 2015b). MLeNN is a
heuristic undersampling method based on the Edited Nearest Neighbor (ENN) rule, which
eliminates instances only with majority labels and similar labelset of its neighbors (Charte
et al., 2014). MLSMOTE tries to make a multi-label dataset more balanced via generating
synthetic instances according to a randomly selected instance containing minority labels
and its neighbors (Charte et al., 2015c). REMEDIAL decomposes each complex instance
into two easier instances, one of which merely contains majority labels and another only
with minority labels (Charte et al., 2015a).

Another kind of methods deal with the imbalance problem of multi-label learning via
transforming the multi-label dataset to several binary/multi-class classification problems. A
simple strategy is dividing the multi-label dataset into several independent binary datasets,
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Algorithm 3: Testing of ECCRU2

input : test instance x, number of labels: q, ECCRU2 model: h = {h1, h2, ..., hc′}
output: relevance degree vector ŷ

1 ŷ ← 0 ;
2 cc← 0 ; /* cc is a q dimensional counter */

3 for i← 1 to c′ do
4 for j ← 1 to |hi| do
5 k ← the index of label trained by hij ;

6 cck ← cck + 1 ;
7 x′ ← [x1, ..., xd, h

i
1(x), ..., hij−1(x)] ;

8 if hij(x
′) = 1 then

9 ŷk ← ŷk + 1 ;
10 end

11 end

12 end
13 for j ← 1 to q do
14 ŷj ← ŷj/ccj ;
15 end
16 return ŷ ;

as BR does (Boutell et al., 2004), and using sampling or an ensemble strategy to solve each
imbalanced binary classification problem (Chen et al., 2006; Dendamrongvit and Kubat,
2010; Tahir et al., 2012; Wan et al., 2017). Cross-Coupling Aggregation (COCOA) (Zhang
et al., 2015) is proposed to leverage the exploitation of label correlations as well as the
exploration of imbalance via building one binary-class imbalance learner and several multi-
class imbalance learners for each label with the assistance of sampling. The Sparse Oblique
Structured Hellinger Forests (SOSHF) (Daniels and Metaxas, 2017) transforms the multi-
label learning task to an imbalanced single label classification assignment via cost-sensitive
clustering method and the transformed imbalanced classification problem is solved by tree
classifiers where splitting point is determined by minimizing the sparse Hellinger loss.

In addition, some approaches that extend existing multi-label learning methods to tackle
class-imbalance problem have been proposed, such as neural network based (Tepvorachai
and Papachristou, 2008; Li and Shi, 2013; Sozykin et al., 2017), SVM based (Cao et al.,
2017) and hypernetwork based (Sun and Lee, 2017). Finally, other strategies, such as
representation learning (Li and Wang, 2016), constrained submodular minimization (Wu
et al., 2016) and balanced pseudo-label (Zeng et al., 2014), have been utilized to address
the imbalance problem of multi-label learning as well.

Compared to the above approaches, the strengths of the proposed methods are as follows.
Firstly, they build on top of a theoretically grounded and highly accurate method, ECC.
Secondly, they inherit the ability of ECC to model correlation among many labels, in
contrast for example to (Zhang et al., 2015) that is second-order and (Chen et al., 2006;
Dendamrongvit and Kubat, 2010; Tahir et al., 2012; Wan et al., 2017) that are first-order
methods. Thirdly, it is algorithm independent, as it can be combined with any binary
classifier that best fits the problem at hand, in contrast to (Tepvorachai and Papachristou,
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2008; Li and Shi, 2013; Sozykin et al., 2017; Cao et al., 2017; Sun and Lee, 2017; Daniels
and Metaxas, 2017) that build on top of particular learning paradigms.

4. Empirical Analysis

We first introduce the setup of our experiments. Then we present the experimental results
and their analysis.

4.1. Setup

Our empirical study is based on 16 multi-label data sets obtained from Mulan’s GitHub
repository1 (Tsoumakas et al., 2011). Table 1 lists these datasets along with their main
statistics. In textual data sets with more than 1000 features we applied a simple dimension-
ality reduction approach that retains the top 10% (bibtex, enron, eurlex-sm, medical) or
top 1% (rcv1subset1, rcv1subset2, yahoo-Arts1, yahoo-Business1) of the features ordered
by number of non-zero values (i.e. frequency of appearance), similar to (Zhang et al., 2015).

The proposed approaches are compared against five multi-label learning methods. Two
of them are imbalance agnostic ones, namely the Binary Relevance (BR) baseline (Boutell
et al., 2004) and the state-of-the-art ECC (Read et al., 2011), on which the proposed
approaches build on. The other three methods are imbalance aware ones that similarly to
ours are based on random undersampling, namely BR with random undersampling (BRUS),
ensemble of BRUS (EBRUS) and the state-of-the-art COCOA (Zhang et al., 2015). In
ECCRU2 and ECCRU3, the θmax is set to 10. The θmin in ECCRU3 is set to 0.5. The
ensemble size is set to 10 for all ensemble methods (ECC, EBRUS, ECCRU*). For COCOA
in particular, the number of coupling class labels is set to min(q−1, 10) as in (Zhang et al.,
2015). A decision tree is used as the base classifier in all methods.

We employ five widely used binary metrics for imbalanced data (He and Garcia, 2009;
Akosa, 2017): F-measure, G-mean, Balanced Accuracy, area under the receiver operating
characteristic curve (AUC-ROC) and area under the precision-recall curve (AUC-PR). The
first three are computed on top of binary predictions, while the last two on top of ranked
lists of test instances in order of relevance to the positive class, which most of the times is the
minority class. For all these metrics, the higher their value, the better the accuracy of the
corresponding algorithm. Binary predictions are obtained after setting a separate threshold
t ∈ {0, 0.05, . . . , 1} per label. This threshold is set so as to maximize the corresponding
evaluation metric (F-measure, G-mean, Balanced Accuracy) on the training set.

We compute the average of the above metrics across all labels, an approach to aggre-
gating binary measures in multi-class and multi-label tasks that is called macro-averaging.
The alternative approach, micro-averaging, collects the predictions for all labels as if they
were part of a single binary classification task. Macro-averaging is more suitable for im-
balanced learning as it treats all labels equally, in contrast to micro-averaging where the
contribution of each label depends on the frequency of the positive class (Tang et al., 2009).
We apply 5× 2-fold cross validation with multi-label stratification (Sechidis et al., 2011) to
each dataset and the average results are reported.

1. https://github.com/tsoumakas/mulan/tree/master/data/multi-label
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Table 1: The 16 multi-label data sets used in this study. Columns n, d, q denote the number
of instances, features and labels respectively, LC the label cardinality, MeanImR
and MaxImR the average and maximum ImR of the labels and CV ImR the
normalized standard deviation of the ImR of the labels.

DataSet Domain n d q LC MeanImR MaxImR CV ImR

bibtex text 7395 183 159 2.402 87.699 144 0.410
cal500 music 502 68 174 26.044 22.345 99.4 1.129
corel5k image 5000 499 374 3.522 845.284 4999 1.528
enron text 1702 100 53 3.378 136.867 1701 1.974

eurlex-sm text 19348 500 201 2.213 2420.775 19347 2.136
flags image 194 19 7 3.392 2.753 6.462 0.711

genbase biology 662 1186 27 1.252 143.458 661 1.460
mediamill video 43907 120 101 4.376 331.439 1415.355 1.178
medical text 978 144 45 1.245 328.069 977 1.151

rcv1subset1 text 6000 472 101 2.88 235.58 2999 2.089
rcv1subset2 text 6000 472 101 2.634 190.906 1999 1.724

scene image 2407 144 6 1.074 4.662 5.613 0.148
tmc2007-500 text 28596 500 22 2.158 25.823 63.844 0.791
yahoo-Arts1 text 7484 231 26 1.548 384.756 7483 3.816

yahoo-Business1 text 11214 219 30 1.437 1014.363 11213 2.813
yeast biology 2417 103 14 4.237 8.954 70.088 1.997

Table 2: Average rank of all methods in terms of five evaluation metrics and training time.

BR ECC BRUS EBRUS COCOA ECCRU ECCRU2 ECCRU3

F-measure 6.44 3.09 6.56 5.31 4.22 4.34 3.22 2.81
G-mean 7.75 5.81 3.31 5.63 5.00 2.50 3.28 2.72

Balanced Acc. 7.63 5.38 6.25 5.38 4.50 2.38 2.59 1.91
AUC-ROC 7.81 5.50 6.88 3.81 4.31 3.00 2.84 1.84

AUC-PR 7.00 2.63 7.88 5.06 4.50 3.28 3.59 2.06
Training Time 2.88 7.69 1.00 5.06 3.19 5.38 5.00 5.81

We obtained the code of the five existing methods from Mulan. Our approaches were
also implemented in the context of Mulan. The experiments were conducted on a machine
with 4 10-core CPUs running at 2.27 GHz.

4.2. Results and Analysis

We discuss the experimental results from two aspects. We first report the accuracy and
training time of all participating methods over the 16 multi-label datasets and present
results of significance tests. We then discuss how different methods behave under different
levels of imbalance ratio.

Table 2 shows the average rank of each method in terms of the five evaluation metrics
plus the training time, with the best result highlighted with bold typeface. We first notice
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that ECCRU3 achieves the best results in all evaluation metrics, with the exception of G-
mean, where it is second best behind ECCRU. In addition, the proposed methods achieve
the top 3 positions for all evaluation metrics, with the exception of F-measure and AUC-
PR where ECC achieves the second position. In terms of training time, BRUS achieves the
best results followed by BR and COCOA. The proposed methods come next, followed by
ECC that achieves the worst results. To examine the statistical significance of the differences
between the different methods participating in our empirical study, we employ the Friedman
test, followed by the Wilcoxon signed rank test with Bergman-Hommel’s correction at the
5% level, following literature guidelines (Garcia and Herrera, 2008; Benavoli et al., 2016).
Table 3 presents the results. We notice that ECCRU3 achieves the most significant wins
than any other method in all measures: 4 in F-measure, 4 in G-mean together with BRUS
and the other two variations of the proposed approach, 6 in Balanced Accuracy, 7 in AUC-
ROC, and 6 in AUC-PR together with ECC. BRUS in G-mean, COCOA and ECC in
F-measure and ECC in AUC-PR are the only 4 out of 25 cases of non-significant difference
between ECCRU3 and the five competing methods in the five evaluation measures. In
terms of training time, BRUS has the most wins minus losses (7), followed by COCOA
(4), BR (3), EBRUS and ECCRU2 (-1), ECCRU (-2), ECCRU3 (-3) and ECC (-7). While
ECC is competitive with ECCRU3 in F-measure and AUC-PR, it is significantly worse in
training time. If G-mean (F-measure) is the measure of interest, then BRUS (COCOA) is
an algorithm to consider as it is both highly accurate and efficient.

To investigate the accuracy of the competing methods under different imbalance levels,
we divide ImR into 7 intervals: [1, 5), [5, 10), [10, 15), [15, 25), [25, 50), [50, 100), [100,∞).
Figure 3 (a) shows the percentages of the labels from all 16 datasets that fall into these
intervals. We can see that more than half of the labels have ImR ≥ 100 and only 16%
of the labels have ImR < 15. Figure 3 (b)-(f) shows the average rank of the 8 competing
methods based on the 5 evaluation metrics calculated on each subset of all labels belonging
to each interval. We can see that the proposed approaches dominate the rankings for all
measures when ImR ≥ 15. When ImR < 15 COCOA and BRUS do well in F-measure and
G-mean, EBRUS does well in AUC-ROC and AUC-PR and ECC does well in F-measure,
G-mean and AUC-PR.

We also notice that with the exception of Balanced Accuracy, ECCRU3 dominates EC-
CRU2 in all other measures for roughly all levels of ImR, and ECCRU dominates ECCRU2
and ECCRU3 for ImR < 50. This hints that a meta-approach selecting ECCRU for low
ImR and ECCRU3 for high ImR could lead to even better results. We hypothesize that
the observed behavior is due to the following reason: when imbalance is not that large, then
it is more important to build the full chains of ECCRU, in order to gain from modeling
the dependencies among the labels, similarly to ECC. When imbalance is large, then it is
more important to direct training effort towards exploiting more of the majority samples in
imbalanced labels that are part of smaller chains. In other words, given the same budget
of training examples, when ImR is high, then the benefits from exploiting more majority
training examples surpass the benefits of modeling label dependencies.
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Table 3: Results of the Wilcoxon signed rank test with Bergman-Hommel’s correction at
the 5% level among all pairs of methods. “↑” (“↓”) denotes the method in bold
typeface in the upper-left corner of each subtable is significantly superior (inferior)
to the corresponding method of each row. “-” denotes lack of significant differ-
ence between the two methods. Abbreviations stand for: (F)-measure, (G)-mean,
(B)alanced Accuracy, AUC-(R)OC, AUC-(P)R, Training (T)ime.

BR vs F G B R P T ECC vs F G B R P T

ECC ↓ ↓ ↓ ↓ ↓ ↑ BR ↑ ↑ ↑ ↑ ↑ ↓
BRUS - ↓ ↓ ↓ ↑ ↓ BRUS ↑ ↓ - ↑ ↑ ↓
EBRUS - ↓ ↓ ↓ ↓ - EBRUS ↑ - - ↓ ↑ ↓
COCOA - ↓ ↓ ↓ ↓ - COCOA - - - ↓ ↑ ↓
ECCRU - ↓ ↓ ↓ ↓ ↑ ECCRU - ↓ ↓ ↓ ↑ ↓
ECCRU2 ↓ ↓ ↓ ↓ ↓ ↑ ECCRU2 - ↓ ↓ ↓ ↑ ↓
ECCRU3 ↓ ↓ ↓ ↓ ↓ ↑ ECCRU3 - ↓ ↓ ↓ - ↓
BRUS vs F G B R P T EBRUS vs F G B R P T
BR - ↑ ↑ ↑ ↓ ↑ BR - ↑ ↑ ↑ ↑ -
ECC ↓ ↑ - ↓ ↓ ↑ ECC ↓ - - ↑ ↓ ↑
EBRUS - ↑ - ↓ ↓ ↑ BRUS - ↓ - ↑ ↑ ↓
COCOA - ↑ ↓ ↓ ↓ ↑ COCOA - ↓ - - - ↓
ECCRU - - ↓ ↓ ↓ ↑ ECCRU - ↓ ↓ - ↓ -
ECCRU2 ↓ - ↓ ↓ ↓ ↑ ECCRU2 ↓ ↓ ↓ - ↓ -
ECCRU3 ↓ - ↓ ↓ ↓ ↑ ECCRU3 ↓ ↓ ↓ ↓ ↓ -

COCOA vs F G B R P T ECCRU vs F G B R P T
BR - ↑ ↑ ↑ ↑ - BR - ↑ ↑ ↑ ↑ ↓
ECC - - - ↑ ↓ ↑ ECC - ↑ ↑ ↑ ↓ ↑
BRUS - ↓ ↑ ↑ ↑ ↓ BRUS - - ↑ ↑ ↑ ↓
EBRUS - ↑ - - - ↑ EBRUS - ↑ ↑ - ↑ -
ECCRU - ↓ ↓ ↓ - ↑ COCOA - ↑ ↑ ↑ - ↓
ECCRU2 - ↓ ↓ ↓ - ↑ ECCRU2 - - - - - -
ECCRU3 - ↓ ↓ ↓ ↓ ↑ ECCRU3 ↓ - - ↓ ↓ -

ECCRU2 vs F G B R P T ECCRU3 vs F G B R P T
BR ↑ ↑ ↑ ↑ ↑ ↓ BR ↑ ↑ ↑ ↑ ↑ ↓
ECC - ↑ ↑ ↑ ↓ ↑ ECC - ↑ ↑ ↑ - ↑
BRUS ↑ - ↑ ↑ ↑ ↓ BRUS ↑ - ↑ ↑ ↑ ↓
EBRUS ↑ ↑ ↑ - ↑ - EBRUS ↑ ↑ ↑ ↑ ↑ -
COCOA - ↑ ↑ ↑ - ↓ COCOA - ↑ ↑ ↑ ↑ ↓
ECCRU - - - - - - ECCRU ↑ - - ↑ ↑ -
ECCRU3 - - ↓ ↓ ↓ ↑ ECCRU2 - - ↑ ↑ ↑ ↓

5. Conclusion

We started from a strong and theoretically grounded multi-label learning algorithm, ECC,
and made it resilient to the challenge of class imbalance by employing random undersam-
pling to balance the class distribution of each binary training set, leading to the ECCRU
algorithm. We then discussed approaches to make the best exploitation of a computational
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budget based on the key observation that different imbalance ratios lead to different levels
of exploitation of majority examples, leading to the ECCRU2 and ECCRU3 algorithms.
Our empirical study showed that the proposed method are competitive to related bench-
mark and state-of-the-art methods, and especially ECCRU3 achieves the best performance
in terms of five imbalance metrics with positive significance tests in almost all comparisons.
We also presented an interesting analysis of the behavior of the algorithms under different
levels of class imbalance, and discussed insights on the causes of this behavior.
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(a) Percentage of labels (b) F-measure

(c) G-mean (d) Balanced Accuracy

(e) AUC-ROC (f ) AUC-PR

Figure 3: Sub-figure (a) shows the percentage of labels and sub-figures (b)-(f) the aver-
age rank of all methods for different ImR intervals in terms of the 5 different
evaluation metrics.
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