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Class imbalance is an intrinsic characteristic of multi-label data. Most of the labels in multi-label
data sets are associated with a small number of training examples, much smaller compared to the
size of the data set. Class imbalance poses a key challenge that plagues most multi-label learning
methods. Ensemble of Classifier Chains (ECC), one of the most prominent multi-label learning methods,
is no exception to this rule, as each of the binary models it builds is trained from all positive and
negative examples of a label. To make ECC resilient to class imbalance, we first couple it with random
undersampling. We then present two extensions of this basic approach, where we build a varying
number of binary models per label and construct chains of different sizes, in order to improve the
exploitation of majority examples with approximately the same computational budget. Experimental
results on 16 multi-label datasets demonstrate the effectiveness of the proposed approaches in a
variety of evaluation metrics.
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1. Introduction

Class imbalance is an intrinsic characteristic of multi-label
data. Each training example in a multi-label dataset is typically
associated with a small number of labels, much smaller than the
total number of labels. This results in a sparse output matrix,
where a small total number of positive class values is shared
by a much larger number of example-label pairs. Though the
distribution of the number of positive class values is not uniform
across labels — in some real-world applications it follows a power
law [1] — most of the labels are typically associated with a small
number of positive class values. The imbalance ratio (ImR) of a
label is the ratio of the number of the majority class examples to
the number of minority class examples. Fig. 1(a) shows a density
estimation plot and Fig. 1(b) a box-plot of the imbalance ratio
logarithm for all labels in the 16 multi-label datasets of Table 1
that are part of our empirical study. We can see indeed that most
of the labels are characterized by severe class imbalance.

The starting point of this work is Ensemble of Classifier Chains
(ECQC) [2], a popular multi-label learning algorithm with state-
of-the-art predictive performance that is also accompanied by
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theoretical interpretation based on probability theory [3]. ECC
suffers from class imbalance, as each of the binary models it
builds is trained from all positive and negative examples of a
label. While several approaches have been recently proposed to
highlight and address the class imbalance problem in the context
of multi-label learning, none of them has considered to build on
top of ECC.

To make ECC resilient to class imbalance we contribute a
new approach, called ECCRU, that couples it with random un-
dersampling [4]. We then present two extensions of this basic
approach, called ECCRU2 and ECCRU3, in order to improve the
exploitation of majority class examples with approximately the
same computational budget. This is achieved by building a vary-
ing number of binary models per label and constructing chains
of different sizes. Experimental results on 16 multi-label datasets
demonstrate the effectiveness of the proposed approaches in a
variety of evaluation metrics.

This paper extends our previous work [5] in the following
main aspects:

e We present empirical results on the influence that the two
parameters, Opmin and 6Opqy, of ECCRU3 have in its accuracy
and training time.

o We discuss the special case, where the positive class, instead
of the negative class, is associated with the majority of the
examples.

e We compare our approach with an additional recent state-
of-the-art method for dealing with class imbalance in
multi-label learning [6].
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Fig. 1. (a) Gaussian kernel density estimation plot and (b) box-plot (values superimposed and jittered) of the imbalance ratios of all labels in the 16 datasets of

Table 1.

e We discuss related work in more detail.
o We exemplify the generation of partial chains in ECCRU2 to
improve the clarity of its presentation.

The remainder of this article is organized as follows. Sec-
tion 2 presents our basic approach, along with its two extensions.
Section 3 discusses existing work related to dealing with class im-
balance in the context of multi-label learning. Section 4 presents
and discusses the experimental results. Finally, Section 5 sum-
marizes the main contributions of this work and points to future
directions.

2. Our approach

We first introduce the notation used in the rest of the paper
and describe the ECC algorithm. Then, we present our approach
for making classifier chains resilient to class imbalance along
with two extensions that improve the exploitation of majority
examples. In the last subsection, we analyze the computational
complexity of the proposed methods.

2.1. Notation

Let ¥ = R? be a d-dimensional input feature space, L =
{li, L, ..., 1} a label set containing q labels and Y = {0, 1}9 a
g-dimensional label space. D = {(x;, ¥;)|1 < i < n} is a multi-label
training data set containing n instances. Each instance (x;,y;)
consists of a feature vector % € X and a label vector y; € Y,
where yj; is the jth element of y; and y; = 1(0) denotes that J; is
(not) associated with ith instance. For label ;, m; = min(lD]Q|, |Dj1 )]

and M; = max(|D}|, |D}|) denote the number of minority and
majority class examples respectively, where D]’? = {(x, ¥)lyij =
b,1 < i < n}. ImR; = M;/m; is the imbalance ratio of I;. A

multi-label method learns a mapping function h : x — {0, 1}¢
or f : X — RY from D that given an unseen instance x, outputs
a label or a real-valued vector y with the predicted labels of x or
the corresponding relevance degrees to x respectively.

2.2. Ensemble of classifier chains

Classifier Chain (CC) is a well-known multi-label learning
method that is based on the idea of chaining binary models [2].
CC exploits high-order label correlations by sequentially con-
structing one binary classifier for each label based on a chain
(permutation) of the labels CH, where CH; is the index of the
label in L. The jth classifier h; is constructed by the binary dataset
whose class is label ICHj and the feature space of training instances

is extended with the values of the previous labels in the chain.
Once the classifier chain {hy, ..., hy} is built, the unseen instance
x is predicted by traversing all classifiers iteratively. The input
of h; is the ¥ augmented by predictions of all preceding labels
obtained from previous classifiers.

The performance of CC is highly affected by the sequence of
the labels within the chain. To relieve the impact of label ordering
and make the model more robust, the ECC algorithm constructs ¢
different chains and corresponding CC models [2]. To make these
models more diverse, each chain is trained on a different training
set D' obtained by sampling with replacement (|D’| = |D|). The
prediction of ECC for a test instance is obtained by combining the
predictions of all CCs with the voting strategy. The jth element
of relevance degree vector y, denoted by ¥;, is calculated as the
number of CCs that predicts [; as the relevant label of x divided
by the number of chains c.

2.3. Ensemble of classifier chains with random undersampling

To deal with the class imbalance inherent in multi-label data,
we firstly propose coupling CC with random undersampling [4], in
order to balance the class distribution of each binary training set.
This leads to the Classifier Chain with Random UnderSampling
approach (CCRU), whose pseudo-code is shown in Algorithm 1.

Then CCRU builds binary classifiers sequentially according to
a given label sequence. Random undersampling of majority ex-
amples is applied to each binary training set before building the
corresponding classifier (line 4). In specific, m; majority class
examples are randomly sampled without replacement from label
l; in order to create a fully balanced binary training set.

In the original CC model, the true values of the labels are con-
sidered when using them as input features. Recent work found
that two alternative approaches lead to better results in the
context of multi-target regression chains [7]: (i) using in-sample
estimates of the values of these labels by considering the pre-
dictions of the corresponding binary models on the training set,
(ii) using out-of-sample estimates of the values of these labels
by considering the cross-validated predictions of the correspond-
ing binary models on the training set. CCRU avoids the second
approach because cross-validation would construct training sets
that are further deprived of the already small number of minority
class examples, leading to a deviant distribution of predictions
compared to the predictions of the corresponding binary models.
In addition, cross-validation is very time consuming. Instead,
CCRU follows the first of the above approaches, i.e. it considers
the predictions of the corresponding binary models on the train-
ing set. As only a subset of the majority examples of the training
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Algorithm 1: Training of CCRU

Algorithm 3: Prediction of ECCRU

input : multi-label data set: D, sequence of labels: CH
output: CCRU model: h = {h], ceny h\CH\}
1 DCH1 <~ {(x17y1CH1 ) s (x|D|~y|D|CH1 I

2h<0;

3 forj < 1to |[CH| do

4 DéHj < RandomUnderSample(Dey,) ; /* apply random
undersampling to Dy */

5 train h; based on Dij ;

6 h <~ hUh;;

7 if j < |CH| then

8 Denyyy <9

9 foreach (x, y) in Dcy; do

10 JA’CHJ- < hij(x) ;

n X < [X1, .., Xa, Jenys - Yol s /* add augmented

features */

12 Danjyy < Denyyy U (X, Yy ) s

13 end

14 end

15 end

16 return h = {h], vy h‘(‘H‘} )

Algorithm 2: Training of ECCRU

input : multi-label data set: D, number of chains: ¢
output: ECCRU model: h = {h', ..., h¢}
1 L < label set of D ;
2 fori < 1toc do
3 CH' < RandomPermute(L) ;
random permutation */
4 D' <« SampleWithReplacement(D) ; /* sample the D with
replacement */
5 h' < TrainCCRU(D', CH!) ; /#* train a CCRU according to
Algorithm 1 */

/* generate a chain by

6 end
7 h< {h',...,h};
s return h = {h', ... K} ;

set are used for the training of the corresponding binary model
(line 5), CCRU essentially considers a mixture of in-sample and
out-of-sample predictions: in-sample for the minority class and
the equal number of retained majority class examples, and out-
of-sample for the rest of the majority class examples that were
removed (lines 7-14). Specifically, for each label, except for the
last label [icy), each instance x in DCHj is given as input to h; to
get its prediction Jcy; (line 10). If ® is in D;Hj , then Jey; is an
in-sample prediction, otherwise it is an out-of-sample prediction.
Subsequently, the features of ¥ and the corresponding predictions
for previous labels are connected as new features X', which along
with YeH, constitute the instance (¥, Yeui, ) of Dew;. that would
be used in the next iteration, where x; and x4 is the 15t and d™
feature of x respectively (lines 11-12).

Similar to ECC, the Ensemble of Classifier Chains with Random
Undersampling (ECCRU) algorithm aggregates several CCRUs that
are built upon different label sequences and resampled versions
of the original training set. The training and prediction algorithms
of ECCRU are presented in Algorithms 2 and 3, respectively.

2.4. Improving the exploitation of majority examples

In ECCRU, the probability that a majority example of a label is
eventually used for training the binary models of that label de-
pends on the number of minority, m, and majority, M, examples
of that label, as well as on the number of chains, c. In each chain,

input : test instance x, number of labels: g, ECCRU model:
h = {h', k2, ..., h%}
output: relevance degree vector y
1y<0;
2 fori< 1toc do

3 for j < 1to qdo

4 k < the index of label trained by hi ;
5 X < [X1, .., Xg, HE(X), ..oy h]’;](x)] :

6 if hi(x') = 1 then

7 | Ie<d+1;

8 end

9 end

10 end

1 forj < 1to qdo
12 | §<Ji/c;

13 end

14 return y ;
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Fig. 2. The empirically estimated (simulated) and theoretically approximated
probability of a majority example of a label being retained for training by at
least one of the 10 corresponding models of ECCRU with 10 chains, assuming
1000 training examples and a number of minority examples varying from 20 to
400 with a step of 20. In the simulation, the sampling process was conducted
10,000 times.

sampling of all the training examples with replacement is first
performed once, followed by separate samplings of the majority
examples of each label without replacement. If we skip the first
sampling process for the sake of simplifying the analysis, then
the probability that a majority example of a label is selected in at
least one of the ¢ chains of ECCRU, denoted as P, can be obtained
by Eq. (1).
m c

P=1 (1 M) (1)

Fig. 2 plots Eq. (1) for 10 chains, 1000 training examples and
varying number of minority samples, as well as the empirical
probability in question estimated using 10,000 runs. We notice
that for ImR > 15 this probability is less than 0.5, with an
alternative interpretation being that less than half of the majority
examples are eventually used by ECCRU in such a case. As intu-
itively expected, we see that the higher the ImR of a label, the
lower the exploitation of its majority examples.

A straightforward way to increase the exploitation of majority
examples when ImR is high is to increase the number of chains.
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| Chaimy | 1| 06| 1] | Chaim |1 [ 1] 1]
| Chain | 1| 1| 1| 12| | Chains | 13| 12| 1) ]
| Chains | 1 | 12| 1| 15| | Chaing | 1] 12 ]
| Chainy | 1| 1| 15| 11 ] | Chaimo | 1] 1) |
| Chains | 1 | 1| 13| 12| | Chainy | 1| 1) |
| Chaing | 1, | 15| | 1, | | Chaima [ 1, ] 12 |

Fig. 3. The example of ECCRU2 to constructing chains with various length on a
dataset with 100 instances and 4 labels, each with 10, 20, 30 and 40 minority
instances respectively.

This is also theoretically grounded based on Eq. (1). Increasing
the number of chains however leads to increased computational
cost. We instead consider a variation of our algorithm that im-
proves the exploitation of majority examples without increasing
the computational budget. A key observation is that each label
contributes a different computational cost to ECCRU, which is
proportional to the number of its minority examples, as each
corresponding classifier is trained with twice that number of ex-
amples. For example, given a dataset with 100 training examples
and 4 labels (ly, 5, I3, 1), each with 10, 20, 30 and 40 minority
examples respectively, the binary classifiers of Iy, I, I3 and I4 will
be trained with 20, 40, 60 and 80 training examples respectively.
Our proposal is to redistribute this computational cost by
building a different number of classifiers per label, inversely
proportional to its number of minority examples. This way we can
achieve uniform exploitation of majority examples across labels
at the same computational cost. We call this variation of our
approach ECCRU2. Continuing the previous example, if we build
10 chains, then the total number of exploited majority examples
is 1000 (10 times 10 + 20 + 30 + 40). Our approach divides
this computational budget equally across labels, i.e. 250 majority
examples per label. We then divide this with the number of
minority examples of each label to get the number of classifiers
to build for each label, i.e. 25, 12.5, 8.3 and 6.25. In general, given
q labels and a budget of ¢ chains, the number of classifiers, ¢j,
constructed by ECCRU2 for label j is given by Eq. (2).

— ] (2)

To accommodate the fact that the number of classifiers to be
constructed differs among labels, ECCRU2 considers partial chains
containing a decreasing number of labels until the minimum
of two labels. Continuing the aforementioned example, ECCRU2
would build 6 chains with all four labels, 2 chains including
the first three labels and 4 chains containing only [; and I.
An example of such chains is illustrated in Fig. 3. Although the
same short-length chains may appear more than once, the initial
process of sampling with replacement and, most importantly,
the random undersampling process that follows lead to different
majority class instances being used to train the models, and
eventually to diverse models.

The pseudo-code of the training process of ECCRU2 is given
in Algorithm 4. Firstly, the number of classifiers trained for each
label ¢; is calculated according to Eq. (2). To limit the number
of classifiers in the case of highly imbalanced labels, we confine
¢j to be less than a predefined maximal value cpq, defined as a
multiple of ¢: ¢y = COmax (line 3). In our empirical study we
set ¢ = 10, O;yex = 10 and therefore c;,q, = 100. Then, in each

iteration of building a CCRU model, labels whose correspond-
ing counter cn; recording the number of classifier needed to be
trained is larger than O are added into the label set S, and only
labels collected in S are utilized to generate the label sequence to
train the current CCRU model. The loop (in line 6-21) terminates
when ¢y chains have been built or |S| < 2. The rest parts of the
training phase of ECCRU2 are identical to ECCRU.

The pseudo-code of the prediction process of ECCRU2 is given
in Algorithm 5. In ECCRU2, the number of binary classifiers con-
tained in CCRU K/, denoted as |h|, does not always equal q. Hence,
a q dimensional vector cc is introduced to count the number
of binary classifiers for each label, which is used in line 14 to
normalize the y;, for j = 1,...,q. The rest parts of prediction
process of ECCRU2 are as in ECCRU.

One issue in ECCRU2 is that very few classifiers, even just one,
can be built in the case of balanced labels with large mj, leading
to fewer full-sized chains being built. To address this problem, a
variant of ECCRU2 called ECCRU3 is proposed. The only change
in ECCRU3 is the addition of a lower bound cpi, for ¢;, where
Cmin = COmin and % < Omin < 1 to ensure that 1 < cpin < ¢. Hence,
the confined ¢; (cn;) is computed as min{max{c;j, cOmin}, COmax} and
so at least ¢, chains containing all of the labels are built. In our
empirical study we set ¢ = 10, 6,,;; = 0.5 and therefore ¢;;;; = 5.
The rest parts of the training and prediction process of ECCRU3
are the same with ECCRU2.

Note that when 6, = 1/c (e.g. 0.1 when ¢ = 10), ECCRU3
reverts to ECCRU2, as the minimal number of binary classifier
built for each label is 1. Furthermore, when 0,;, = 1 and 6,4 = 1,
ECCRU3 reverts to ECCRU, as to the lower and upper boundaries
of the number of binary classifiers for each label are always c.

Algorithm 4: Training of ECCRU2
input

: multi-label data set: D, number of labels: g, standard
number of chains: c, the coefficient of maximal number
of chains: 6,0«
output: ECCRU2 model: h = {h', ..., h¢'}

1 forj < 1toqdo

2 calculate ¢; according to Eq. (2) ;

3 Cj < min{¢j, COnax};

4 cnj < ¢j; /* the number of classifiers needed to be

built for each label */

5 end

6 ¢ «<—0; /* the counter to record the number of chains
built actually */

7 fori < 1 to cOpg do

8 S<0;

9 forj < 1to qdo

10 if cnj > 0 then

11 S<«<SUl;

12 nj <—cnj—1;

13 end

14 end

15 if |S|< 2 then

16 | break;

17 end

18 CH' < RandomPermute(S) ; /* generate a chain by
random permutation */

19 D' <« SampleWithReplacement(D) ; /* sample the D with
replacement */

20 hi < TrainCCRU(D', CH!) ; /#* train a CCRU according to
Algorithm 1 */

21 ¢ «~c+1;

22 end

23 h<{h',...,h};

24 return h = {h', ..., h¢} ;
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Algorithm 5: Prediction of ECCRU2
input

: test instance x, number of labels: g, ECCRU2 model:
h={h',h%, ... K¢}

output degree relevance vector y

y<0;

cc <~ 0;

fori < 1toc do

for j < 1 to |h'| do
k < the index of label trained by h; ;
ccp <—cc+1;
X < [x1,..., x4, hi(x), ...,hj‘;l(x)] ;
if hi(x') = 1 then

| Je<=d+1;

10 end

1 end

12 end

13 for j < 1to q do

1 | </

15 end

16 return y ;

/* cc is a q dimensional counter */

N G A W N o=

© ®w

2.5. Complexity analysis

Let us define ®;(m;, d) and ®p(d) the complexity of training
and prediction of a binary classifier for label I;, respectively.
The complexity of ECCRU is O (c }_/; ©:(mj, d) + ncq®,(d)) for
training and O (cq@p(d)) for prediction. The training complexity
of ECCRU2 is given in Eq. (3), while its prediction complexity is
0(©,(d) X"}, ). In both algorithms, the first part of the training
complexity concerns building classifiers and the second relates to
generating the augmented feature space.

ofsZme 2 (e

The number of binary classifiers in ECCRU2 are more than
in ECCRU, which results in larger complexity of prediction and
generation of augmented features. However, the comparison be-
tween the training complexity of the first part of ECCRU2 and
ECCRU depends on the m; and &;(m;, d) of each label. The for-
mulation of the training and testing complexity of ECCRU3 is the
same with ECCRU2, but ECCRU3 is more time-consuming than
ECCRU2 in both processes in practice, because a larger lower
bound in the number of classifiers is applied to ECCRU3.

q
Z (3)

¢((mj, d ) +ne,(d

3. Related work

The traditional class imbalance problem in binary and multi-
class classification has been widely studied [8]. There are four
main kinds of approaches to deal with it: (1) data level meth-
ods make the class distribution more balanced via resampling
instances [9], (2) algorithm level methods modify the exist-
ing learning algorithm to handle class imbalance [10], (3) cost-
sensitive learning methods bias the classifier to the minority
class via assigning a higher misclassification cost to the minority
class instance [11], and (4) ensemble methods are usually com-
bined with data level and cost-sensitive learning methods, which
incorporate various classifiers based on different misclassifica-
tion costs or built on resampled datasets with diverse sampling
ratios [12].

In multi-label learning, approaches to tackle class imbalance
problem are more complex due to the multi-dimensional out-
put space. A series of approaches by the same research group
have been proposed for dealing with class imbalance in the

context of multi-label learning using under/over-sampling. LP-
RUS and LP-ROS are two twin sampling methods, of which the
former removes instances assigned with most frequent labelset
and the latter replicates instances whose labelset appears fewer
times [13]. ML-RUS and ML-ROS delete instances with majority
labels and clone examples with minority labels, respectively [14].
MLeNN is a heuristic undersampling method based on the Edited
Nearest Neighbor (ENN) rule, which eliminates instances only
with majority labels and similar labelset of its neighbors [15].
MLSMOTE tries to make a multi-label dataset more balanced
via generating synthetic instances according to a randomly se-
lected instance containing minority labels and its neighbors [16].
REMEDIAL decomposes each complex instance into two easier in-
stances, one of which merely contains majority labels and another
only with minority labels [17].

Another kind of methods deal with the imbalance problem
of multi-label learning via transforming the multi-label dataset
to several binary/multi-class classification problems. A simple
strategy is dividing the multi-label dataset into several indepen-
dent binary datasets, as BR does [18], and using sampling or
ensemble strategy to solve each imbalanced binary classification
problem [19-22]. These BR based methods totally ignore any
label correlations. Cross-Coupling Aggregation (COCOA) [23] is
proposed to leverage the exploitation of label correlations as well
as the exploration of imbalance via building one binary-class
imbalance learner and several multi-class imbalance learners for
each label with the assistance of sampling. In the COCOA, each
label couples with K labels and each label pair is utilized to
train one multi-class classifier. The Sparse Oblique Structured
Hellinger Forests (SOSHF) [6] transforms the multi-label learning
task to an imbalanced single label classification assignment via
cost-sensitive clustering method and the transformed imbalanced
classification problem is solved by tree classifiers where splitting
point is determined by minimizing the sparse Hellinger loss.

In addition, some approaches that extend existing multi-label
learning methods to tackle class-imbalance problem have been
proposed. In the data enrichment process of [24], a small bal-
anced subset of the training data is selected to initialize a neural
network model. This subset is incrementally updated by remov-
ing instances with low energy error and adding examples from
the neighborhoods of existing examples with high energy error.
IMIMLRB [25] is an improved multi-instance multi-label radial
basis function neural network that deals with class imbalance by
applying a data density based k-medoids algorithm to produce
more balanced medoids for the first layer of the model and
by using singular value decomposition to update the weights
of the model. The 3D convolutional multi-label-k-output neu-
ral network model for action recognition in hockey videos [26]
deals with imbalanced labels by adjusting the model weights
and prediction threshold. CSRankSVM [27] is a cost sensitive
rank support vector machine that addresses the imbalanced dis-
tribution of labelsets. CSRankSVM assigns larger weights to in-
stances associated with low frequency labelsets and minimizes
the weighted ranking loss. TSMLHN [28] is a two-stage multi-
label hypernetwork that emphasizes imbalanced labels via in-
troducing an imbalance-specific post-processing operation: the
prediction probabilities of positive instance for highly imbalanced
labels are increased based on the information provided by the
co-occurrences among balanced and imbalanced labels.

Finally, other approaches employing different strategies for
addressing the imbalance problem in multi-label learning, include
RMLS [29], MMIB [30] and BPL [31]. RMLS [29] views the class
imbalance problem from the point of the instances, noting that
there are typically more irrelevant labels than relevant labels
in each instance. It leverages an unbiased loss function which
samples irrelevant labels to balance the contributions of relevant
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Table 1

The 16 multi-label data sets used in this study. Columns n, d, g denote the number of instances, features and labels respectively,
LC the label cardinality, MeanImR and MaxImR the average and maximum ImR of the labels and CVImR the normalized standard

deviation of the ImR of the labels.

Dataset Domain n d q LC MaxImR MeanImR CVImR
bibtex Text 7 395 183 159 2.402 144 87.7 0.4097
cal500 Music 502 68 174 26 99.4 223 1.129
corel5k Image 5000 499 347 3.517 2499 522 1.13
enron Text 1702 100 52 3.378 850 107 1.496
eurlex-sm Text 19348 500 186 2213 9673 1056 1.849
flags Image 194 19 7 3.392 6.462 2.753 0.7108
genbase Biology 662 1186 24 1.248 330 78.8 1.286
mediamill Video 43907 120 101 4376 1415 331 1.178
medical Text 978 144 35 1.245 488 143 1.115
rcvisubsetl Text 6 000 472 101 2.88 2999 236 2.089
rcvlsubset2 Text 6 000 472 101 2.634 1999 191 1.724
scene Image 2 407 294 6 1.074 5.613 4.662 0.1485
tmc2007-500 Text 28 596 500 22 2.158 63.8 25.8 0.7909
yahoo-Arts1 Text 7 484 231 25 1.654 1246 101 2.468
yahoo-Business1 Text 11214 219 28 1.599 3737 286 2453
yeast Biology 2417 103 14 4.237 70.1 8.954 1.997
Table 2
Average rank of all methods in terms of five evaluation metrics and training time.

BR ECC BRUS EBRUS COCOA SOSHF ECCRU ECCRU2 ECCRU3
F-measure 7.63 391 7.75 5.13 4.13 5.44 4.44 3.81 2.78
G-mean 8.56 6.00 3.25 5.81 5.31 7.00 2.69 3.59 2.78
Balanced Acc. 8.69 6.00 6.13 5.44 4.44 6.88 2.25 2.97 2.22
AUC-ROC 8.81 6.31 7.94 4.09 4.69 4.88 3.19 3.09 2.00
AUC-PR 7.94 3.00 8.88 5.75 4.94 4.06 4.09 3.91 244
Training time 3.06 8.31 1.00 5.06 3.06 7.75 5.13 5.44 6.19

and irrelevant labels in each instance. It also samples different
labels in each batch of a mini-batch stochastic gradient descent
optimization process to make the model more robust. MMIB [30]
addresses the problem of class imbalance together with the prob-
lem of missing labels by formulating multi-label learning as a
constrained submodular minimization task. It handles class im-
balance by introducing two class cardinality bounds, one that
constrains the number of positive labels for each instance and
another one that constrains the number of relevant instances for
each label. BPL [31] starts from a matrix containing the distinct
label vectors of the training set and increases its dimensionality
by adding artificially constructed labels. These pseudo-labels are
created so that the expanded matrix maximizes an objective
function involving three components: distance between the rows
of the matrix (differentiate label vectors), distance between the
columns of the matrix (differentiate labels) and balance between
positive and negative values (deal with class imbalance). For an
unseen instance, the prediction is made by BPL based on binary
classifiers built upon both original labels and pseudo-labels.
Compared to the above approaches, the strengths of the meth-
ods that we proposed are as follows. Firstly, they build on top
of a theoretically grounded and highly accurate method, ECC.
Secondly, they inherit the ability of ECC to model correlation
among many labels, in contrast for example to [23] that is second-
order and [19-22] that are first-order methods. Thirdly, they
are algorithm independent, as they can be combined with any
binary classifier that best fits the problem at hand, in contrast
to [6,24-28] that build on top of particular learning paradigms.

4. Empirical analysis

We first introduce the setup of our experiments. Then we
present a first set of experimental results along with significance
tests. Subsequently we discuss how the different methods behave
under different levels of imbalance ratio. We then analyze the
effect that different parameter settings have on ECCRU3. Finally,
we investigate the special case where the positive, instead of
the negative, class is associated with the majority of the training
examples.

4.1. Experimental setup

Our empirical study is based on 16 multi-label data sets ob-
tained from Mulan’s [32] GitHub repository.! Table 1 lists these
datasets along with their main statistics. In textual data sets
with more than 1000 features we applied a simple dimension-
ality reduction approach that retains the top 10% (bibtex, enron,
eurlex-sm, medical) or top 1% (rcv1subsetl, rcvisubset2, yahoo-
Arts1, yahoo-Business1) of the features ordered by number of
non-zero values (i.e. frequency of appearance), similar to [23].
Besides, we remove labels only containing one minority class
instance, because when splitting the dataset into training and test
set, there may be only majority class instances of those extremely
imbalanced labels in training set.

The proposed approaches are compared against six multi-label
learning methods. Two of them are imbalance agnostic ones,
namely the Binary Relevance (BR) baseline [18] and the state-of-
the-art ECC [2], on which the proposed approaches build. Three
are imbalance aware ones that similarly to ours are based on
random undersampling, namely BR with random undersampling
(BRUS), ensemble of BRUS (EBRUS) and the state-of-the-art CO-
COA [23]. The last one, SOSHF [6], is another state-of-the-art
method that is based on decision tree learning.

In ECCRU2 and ECCRUS3, 6,4« is set to 10. In ECCRU3, 6y, is set
to 0.5. The ensemble size is set to 10 for all ensemble methods
(ECC, EBRUS, ECCRU*, SOSHF). In COCOA the number of coupling
class labels is set to min(q — 1, 10) as in [23]. The rest of the
parameters of SOSHF are set as in [6]. A decision tree is used
as the base classifier in all methods apart from SOSHF, which is
based on its own decision tree implementation, minimizing the
sparse Hellinger loss.

We employ five widely used binary metrics for imbalanced
data [8,33]: F-measure, G-mean, Balanced Accuracy, area under
the receiver operating characteristic curve (AUC-ROC) and area
under the precision-recall curve (AUC-PR). The first three are

1 https://github.com/tsoumakas/mulan/tree/master/data/multi-label.
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Table 3

Results of the Wilcoxon signed rank test with Bergman-Hommel’s correction
at the 5% level among all pairs of methods. “4” (“|”) denotes the method
in bold typeface in the upper-left corner of each subtable is significantly
superior (inferior) to the corresponding method of each row. “-” denotes lack
of significant difference between the two methods. Abbreviations stand for: (F)-
measure, (G)-mean, (B)alanced Accuracy, AUC-(R)OC, AUC-(P)R, Training (T)ime.

BR vs. F G B A P T ECCyvs F G B A P T
ECC 2 e : £ N A N N
BRUS -y L bt} BRUS (R 2 N
EBRUS - L L | | - EBRUS - - - Lt
COCOA Iy 1 L | - cocoA B
SOSHF - L L | | 1 SOSHF -t - - -
ECCRU bbb b bt ECCRU -l -
ECCRU2 44 4 L 1 ECCRU2 A A A
ECCRU3 I L L | | 1 ECCRU3 R A
BRUSvs. F G B A P T EBRUSvs. F G B A P T
BR -t 1+ 1 L 1 BR N
Ecc Lot - b bt ECC - - -t
EBRUS Lt - 4 ¢ 1t BRUS L 2 N N
COCOA P 1t 1V} L 1t cocoa - - - - -]
SOSHF - 1t 1 L | 1 SOSHF -t - - -
ECCRU L - L | | 1t ECRU -l - -
ECCRU2 I\ - 1 J | 1t ECCRU2 N N N
ECCRU3 ! - L | | 1 ECCRU3 A A
COCOAvs. F G B A P T SOSHF vs. F G B A P T
BR 4ttt - BR S N
Ecc - -ttt EC -y -t - -
BRUS t 4t 1t | BRUS - bt
EBRUS - - - - - 4 EBRUS -y 4y - - -
SOSHF -t 1 - - 1 COCOA -l - -
ECCRU - L L | - 1t ECCRU -l - -
ECCRU2 -y | | - 1 ECCRU2 -yl -y
ECCRU3 - L L | | 1t ECCRU3 -y - -
ECCRUvs. F G B A P T ECCRU2vs. F G B A P T
BR tr ) BR ot
ECC -ttt -t EC -ttt -
BRUS r -t t 1t | BRUS LI N S
EBRUS -+ 1t - 1t - EBRUS S R
COCOA - 1t 1 t - | COCOA R T T R
SOSHF - 1t 1 1t - - SOSHF S T R
ECCRU2 - - - - - - ECCRU - - - - - -
ECCRU3 ! - - | | - ECCRU3 NN A 1
ECCRU3vs. F G B A P T

BR ot

ECC -ttt -

BRUS (T N N N

EBRUS LI Y Y Y

COCOA N N Y I

SOSHF -t - -

ECCRU I

ECCRU2 S N N

Table 4

The summary of statistical test. The n;/n, denotes the corresponding method is
significantly superior to n; methods and inferior to n, methods. Abbreviations
are same with Table 3.

F G B A P T
BR 0/5 0/8 0/8 0/8 1/7 5/1
ECC 2/0 2/4 1/4 2/6 4/0 0/7
BRUS 0/6 5/0 2/4 1/7 0/8 /0
EBRUS 12 2/4 2/3 3/1 2/4 12
COCOA 2/0 2/4 4/3 33 22 6/1
SOSHF 0/0 1/7 1/6 33 2/0 0/4
ECCRU 2/1 5/0 6/0 5/1 3/1 1)3
ECCRU2 3/1 5/1 6/1 5/1 31 3/3
ECCRU3 5/0 6/0 7/0 $/0 6/0 1/4

computed on top of binary predictions, while the last two on
top of ranked lists of test instances in order of relevance to the
positive class, which most of the times is the minority class. For

all these metrics, the higher their value, the better the accuracy of
the corresponding algorithm. Binary predictions are obtained af-
ter setting a separate threshold t € {0, 0.05, ..., 1} per label. This
threshold is set so as to maximize the corresponding evaluation
metric (F-measure, G-mean, Balanced Accuracy) on the training
set.

We compute the average of the above metrics across all labels,
an approach to aggregating binary measures in multi-class and
multi-label tasks that is called macro-averaging. The alternative
approach, micro-averaging, collects the predictions for all labels
as if they were part of a single binary classification task. Macro-
averaging is more suitable for imbalanced learning as it treats all
labels equally, in contrast to micro-averaging where the contri-
bution of each label depends on the frequency of the positive
class [34]. We apply 5 x 2-fold cross validation with multi-label
stratification [35] to each dataset and the average results are
reported.

We used the implementations of BR and ECC from Mulan [32]
and the Matlab implementation of SOSHF provided by the au-
thors.2 BRUS, EBRUS, COCOA and our ECCRU approaches were
also implemented in Mulan. The experiments were conducted on
a machine with 4 x 10-core CPUs running at 2.27 GHz.

4.2. Results and significance tests

Table 2 shows the average rank of each method in terms
of the five evaluation metrics plus the training time, with the
best method highlighted with bold typeface. Detailed results are
listed in Tables A.1-A.6 of Appendix. We first notice that EC-
CRU3 achieves the best results in all evaluation metrics, with the
exception of G-mean, where it is second best behind ECCRU. In
addition, the proposed methods achieve the top 3 positions for all
evaluation metrics, with the exception of F-measure and AUC-PR
where ECC achieves the third and second position respectively,
and G-mean where BRUS is the third best method. In terms of
training time, BRUS achieves the best results followed by BR and
COCOA. The proposed methods come next, followed by SOSHF.
ECC is the slowest method.

To examine the statistical significance of the differences among
the methods participating in our empirical study, we employ
the Friedman test, followed by the Wilcoxon signed rank test
with Bergman-Hommel’s correction at the 5% level, following
literature guidelines [36,37]. Tables 3 and 4 present the results.
We notice that ECCRU3 achieves the most significant wins than
any other method in all measures: 5 in F-measure, 6 in G-mean
and AUC-PR, 7 in Balanced Accuracy, 8 in AUC-ROC. ECC, COCOA
and SOSHF in F-measure, BRUS in G-mean, and ECC along with
SOSHF in AUC-PR are the only 6 out of 30 cases of non-significant
difference between ECCRU3 and the six competing methods in
the five evaluation measures. In terms of training time, BRUS
has the most wins minus losses (7), followed by COCOA (5), BR
(4), ECCRU2 (0), EBRUS (-1), ECCRU (-2), ECCRU3 (-3), SOSHF
(-4) and ECC (-7). While ECC is competitive with ECCRU3 in F-
measure and AUC-PR, it is significantly worse in training time.
If G-mean (F-measure) is the measure of interest, then BRUS
(COCOA) is an algorithm to consider as it is both highly accurate
and efficient. Besides, there is no significant difference between
the training times of ECCRU and ECCRU3, which verifies the
accomplishment of our purpose that improving the performance
without additional computational cost.

2 https://github.com/ZDanielsResearch/SOSHF.
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Fig. 4. Sub-figure (a) shows the percentage of labels and sub-figures (b)-(f) the average rank of all methods for different ImR intervals in terms of the 5 different
evaluation metrics.
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Fig. 5. The increment of performance and training time of ECCRU3 with various parameters settings.

4.3. Accuracy under different imbalance levels

To investigate the accuracy of the competing methods under
different imbalance levels, we divide ImR into 7 intervals: [1, 5),
[5, 10), [10, 15), [15, 25), [25, 50), [50, 100), [100, co). Fig. 4(a)
shows the percentages of the labels from all 16 datasets that
fall into these intervals. We can see that nearly 2/3 of labels
have ImR > 50 and only 16% of the labels have ImR < 15.
Fig. 4(b)—(f) shows the average rank of the 9 competing methods
based on the 5 evaluation metrics calculated on each subset of all
labels belonging to each interval. We can see that the proposed
approaches dominate the rankings for all measures when ImR >
50. When ImR < 50 ECC does well in F-measure AUC-PR.

We also notice that with the exception of Balanced Accuracy,
ECCRU3 dominates ECCRU2 in all other measures for roughly all
levels of ImR, and ECCRU dominates ECCRU2 and ECCRU3 for
ImR < 25. We hypothesize that the observed behavior is due to
the following reason: when imbalance is not that large, then it is
more important to build the full chains of ECCRU, in order to gain
from modeling the dependencies among the labels, similarly to
ECC. When imbalance is large, then it is more important to direct
training effort towards exploiting more of the majority samples
in imbalanced labels that are part of smaller chains. In other
words, given the same budget of training examples, when ImR
is high, then the benefits from exploiting more majority training
examples surpass the benefits of modeling label dependencies.

4.4. Analysis of the parameters of ECCRU3

Here, we investigate the influence that different values of the
Omin and O parameters have on ECCRU3. Fig. 5(a) presents
the relative change in accuracy and training time for O, €
{0.1,0.2, ..., 1.0} compared to setting 6,;; equal to 0.1. Formally,
if p, is the accuracy (left axis) or training time of ECCRU3 when
Omin = z, then the vertical axis of Fig. 5(a) shows (p; — po.1)/Po.1-
The scale of the left axis concerns the accuracy measures, while
the scale of the right axis concerns the training time. Apart from
Omin, other parameters of ECCRU3 are same with Section 4.1. As
Omin increases, more binary classifiers are built for balanced labels,
leading to an increase in training time, but also in accuracy, with
the exception of G-mean when 6,;;; > 0.5. The relative increase
of accuracy is small (largest one is about 0.08 in terms of AUC-PR)
compared to the relative increase in training time (more than 1.0
when 60,;, = 1.0).

Similarly, Fig. 5(b) shows the relative change in the accuracy
and training time of ECCRU3 for 6, € {1,4,7,10, 13, 16, 19}

compared to setting 6., equal to 1. Except for 6,4, other param-
eters of ECCRU3 are same with Section 4.1. The change is steep
from Opax = 1 t0 Opgx = 4, small from Oqx = 4 t0 Oy = 10
and negligible for 6, > 10 for all accuracy measures, with
the exception of Balanced Accuracy. As 6, increases, ECCRU3
performs better in terms of AUC-PR, F-measure and AUC-ROC,
while it becomes worse in terms of G-mean. In terms of Balanced
Accuracy, ECCRU3 is not sensitive to the variation of 6. As
noticed in Fig. 5(a), the changes in accuracy are small compared
to the increase in training time.

4.5. Inverse imbalanced label

Finally, we focus on what we call the inverse imbalanced label
issue, the special case where the presence of a label (class “1”)
is the majority class. Although the majority class of most labels
is “0”, there are still some exceptions. Table 5 presents the 7
datasets that contain inverse imbalanced labels and were used in
the experiments of this part, along with the percentage of inverse
imbalanced labels and their average ImR, denoted as %IIL and ImR
respectively.

Most evaluation metrics (e.g. F-measure, AUC-PR, AUC-ROC)
are asymmetric with respect to the classes and focus on the
positive class (“1”). As a consequence, dealing with the inverse
imbalance, by e.g. undersampling the positive class, is going to
lead to worse accuracy. Therefore, to deal with the inverse im-
balance situation, we modified the three proposed variants of
ECCRU by removing the undersampling strategy for the inverse
imbalanced labels. However, quitting undersampling for inverse
imbalanced labels is a double-edged sword. On the one hand,
it is beneficial to the prediction of inverse imbalanced labels
because the binary classifiers would emphasize the majority class
(“1”). On the other hand, due to the elimination of undersam-
pling, all instances are leveraged in training the classifiers and
the augmented features are always in-sample predictions, which
enlarges the difference between the training and prediction dis-
tributions of the added features corresponding to these labels,
which impacts the rest of the labels. In general, the larger the
percentage of inverse imbalanced labels, the better the accuracy
of the modified models. The higher the ImR of inverse imbalanced
label, the higher the negative influence on other labels.

The results of the modified methods whose performance are
better than their corresponding original approach are listed in
Table 5. To analyze the results, the 7 datasets are categorized
into 5 groups according to their percentage of inverse imbalanced
labels and the average ImR of such labels.
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Table 5

The information of inverse imbalanced labels and results of modified ECCRUs, where I, II and IIl denote that the modified ECCRU,
ECCRU2 and ECCRU3 respectively outperform the corresponding original method, and # is the number of improved modified methods
for each dataset (last column) and each evaluation metric (last row). Abbreviations of metrics are the same as in Table 3.

Dataset % IIL ImR F G B A P #
enron 3.8% 1.083 LILIII LI il Il LILII 10
tmc2007-500 4.5% 1.302 LILII LIII LI ILIT LILII 12
flags 42.9% 2.605 I LILIII LILIIT I LILIIT 11
cal500 4.6% 2.319 I - 11 ILIIT LII 6
mediamill 2% 2.561 ILIT 11 I - 1,111 6
yeast 14.3% 2.966 ILIIT I - - - 3
yahoo-Business1 3.6% 6.521 - - - - - 0
# 12 9 8 6 13

Table A.1

Experiment result in terms of macro-averaged F-measure.

BR ECC BRUS EBRUS COCOA SOSHF ECCRU ECCRU2 ECCRU3

bibtex 0.1073 0.15 0.0992 0.1768 0.1748 0.1259 0.1752 0.1731 0.1742
cal500 0.1809 0.1579 0.2068 0.1236 0.1579 0.2243 0.1486 0.1473 0.1515
corel5k 0.0285 0.0446 0.0366 0.0498 0.0475 0.0299 0.0514 0.0475 0.0488
enron 0.1416 0.1866 0.1497 0.1939 0.1956 0.1524 0.1878 0.1955 0.2001
eurlex-sm 0.2731 0.3382 0.0923 0.2906 0.2866 0.2063 0.2933 0.3299 0.3335
flags 0.647 0.6621 0.6579 0.6733 0.677 0.6661 0.6638 0.6787 0.6787
genbase 0.8587 0.9579 0.761 0.8269 0.8339 0.6487 0.9369 0.9334 0.9438
mediamill 0.1752 0.2486 0.1042 0.1959 0.1938 02317 0.1772 0.2251 0.2293
medical 0.3807 0.4123 0.3732 0.4149 0.4075 0.2567 0.4134 0.4113 0.4193
rcvlsubset1 0.1836 0.2296 0.1347 0.2247 0.2391 0.195 0.2269 0.2407 0.2395
rcvisubset2 0.1669 0.2083 0.1239 0.2159 0.2227 0.189 02127 0.2288 0.2283
scene 0.6183 0.7207 0.592 0.6378 0.6704 0.7285 0.7071 0.7025 0.7025
tmc2007-500 0.5016 0.5498 0.3995 0.5165 0.5542 0.56 0.5282 0.542 0.5451
yahoo-Arts1 0.1542 0.1998 0.1586 0.2058 0.2082 0.1699 0.2019 0.2069 0.2129
yahoo-Business1 0.1613 0.2065 0.1162 0.1918 0.1961 0.1717 0.1928 0.2133 0.2162
yeast 0.3905 0.4158 0.4141 0.376 0.406 0.458 0.411 0.3976 0.3976

Table A.2

Experiment result in terms of macro-averaged G-mean.

BR ECC BRUS EBRUS COCOA SOSHF ECCRU ECCRU2 ECCRU3

bibtex 02134 0.4841 0.7159 0.6606 0.6749 0.4393 0.7198 0.7184 0.7174
cal500 0.1996 0.3299 0.4793 0.2643 0.3044 0.3663 0.3623 0.3121 0.3178
corel5k 0.0572 0.1291 0.3168 0.3435 0.3728 0.0918 0.3501 0.3284 0.3294
enron 0.1656 0.3909 0.5657 0.4984 0.493 0.3003 0.5467 0.5029 05173
eurlex-sm 0.385 0.5772 0.7238 0.68 0.6892 0.3806 0.7452 0.7157 0.7179
flags 0.4477 0.6468 0.6445 0.6547 0.6528 0.6098 0.6522 0.6541 0.6541
genbase 0.8719 0.9719 0.8573 0.8597 0.8433 0.7443 0.9639 0.9644 0.9647
mediamill 0.3251 0.5441 0.6908 0.6523 0.6709 0.484 0.6662 0.688 0.6957
medical 0419 0.5252 0.6962 0.6635 0.6472 0.381 0.7382 0.6823 0.6889
rcvisubset1 0.3592 0.5536 0.7076 0.6471 0.6588 0.4955 0.6989 0.6864 0.6928
rcvisubset2 0.3545 0.5276 0.7008 0.6299 0.6516 0.5033 0.6911 0.6762 0.6833
scene 0.7493 0.8338 0.7917 0.7527 0.7835 0.8332 0.828 0.8341 0.8341
tmc2007-500 0.7187 0.7978 0.8191 0.8151 0.8328 0.8165 0.8374 0.836 0.8371
yahoo-Arts1 02718 0.4715 0.5823 0.5512 0.5412 0.4526 0.5737 0.5721 0.5787
yahoo-Business1 0.2571 0.4652 0.6055 0.5659 0.5717 0.4417 0.6193 0.6221 0.6296
yeast 0.4739 0.5172 0.5621 0.4366 0.4981 0.567 0.54 0.5151 0.5151

For the enron and tmc2007-500 datasets with lower per-
centage (<5%) and ImR (<1.5), the modified approaches are
better than the original ones in most cases, due to the low
ImR.

For the flags dataset with nearly half of inverse imbalanced
labels and moderate ImR (around 2.5), the advantage of
modified methods is obvious as well, mainly coming from
the high percentage.

For the cal500 and mediamill datasets with low percentage
and moderate ImR, modified models outperform original
ones in only 6 out of the 15 cases.

For the yeast dataset with high percentage (nearly 15%) and
high ImR, the damage caused by high ImR is usually larger
than the improvement introduced by the high percentage.
For the yahoo-Business1 dataset with low percentage and the
highest ImR, the latter factor makes the modified methods
perform worse.

Furthermore, from the view of evaluation metrics, the superi-
ority of modified models are more notable in terms of F-measure
and AUC-PR than other three metrics. F-measure and AUC-PR
emphasize on positive (“1”) class, while G-mean, Balanced Accu-
racy and AUC-ROC just treat the two class equally. Without the
undersampling (within bias to class “1”) for inverse imbalanced
labels, improved performance of those labels is more remarkable
in terms of F-measure and AUC-PR than other three metrics.

5. Conclusions and future work

We started from a strong and theoretically grounded multi-
label learning algorithm, ECC, and made it resilient to the chal-
lenge of class imbalance by employing random undersampling to
balance the class distribution of each binary training set, leading
to the ECCRU algorithm. We then discussed approaches to make
the best exploitation of a computational budget based on the
key observation that different imbalance ratios lead to different
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Table A.3
Experiment result in terms of macro-averaged Balanced Accuracy.
BR ECC BRUS EBRUS COCOA SOSHF ECCRU ECCRU2 ECCRU3
bibtex 0.5716 0.6299 0.7194 0.7138 0.724 0.6232 0.7461 0.746 0.7458
cal500 0.5085 0.5157 0.5144 0.5136 0.5166 0.5141 0.5217 0.5167 0.5188
corel5k 05113 0.5249 0.5549 0.5661 0.5731 0.5172 0.5697 0.5665 0.5682
enron 0.5474 0.5981 0.6037 0.6217 0.6175 0.5667 0.6301 0.6225 0.63
eurlex-sm 0.6272 0.714 0.7591 0.7631 0.7711 0.6361 0.7966 0.7874 0.7907
flags 0.6144 0.6602 0.6584 0.6689 0.6642 0.6166 0.6674 0.6663 0.6663
genbase 0.9345 0.9845 0.9211 0.9236 0.9157 0.862 0.9756 0.9761 0.9765
mediamill 0.5761 0.6548 0.6939 0.7025 0.7102 0.6473 0.706 0.7228 0.729
medical 0.6907 0.7246 0.7909 0.7888 0.7841 0.6553 0.8169 0.7976 0.8021
rcvisubsetl 0.592 0.6728 0.7288 0.7225 0.7314 0.668 0.7502 0.7471 0.7534
rcv1subset2 0.587 0.6598 0.7163 0.7102 0.7301 0.6646 0.7421 0.7433 0.747
scene 0.7666 0.8399 0.7922 0.7818 0.7994 0.8428 0.8354 0.839 0.839
tmc2007-500 0.7506 0.8089 0.8196 0.8214 0.837 0.8225 0.8399 0.8378 0.8395
yahoo-Arts1 0.553 0.5941 0.5929 0.6246 0.6182 0.5789 0.6288 0.6313 0.635
yahoo-Business1 0.5557 0.6152 0.6253 0.6526 0.6532 0.6153 0.6706 0.6774 0.6828
yeast 0.5682 0.593 0.571 0.575 0.5909 0.6013 0.597 0.5898 0.5898
Table A4
Experiment result in terms of macro-averaged AUC-ROC.
BR ECC BRUS EBRUS COCOA SOSHF ECCRU ECCRU2 ECCRU3
bibtex 0.5734 0.7469 0.7218 0.8301 0.8399 0.8046 0.8324 0.8362 0.8361
cal500 0.5041 0.5223 0514 0.5346 0.5339 0.537 0.5385 0.5346 0.5374
corel5k 0.5118 0.5309 0.5554 0.5989 0.6036 0.6001 0.6305 0.6346 0.639
enron 0.5442 0.6351 0.603 0.6786 0.6721 0.6675 0.6848 0.6761 0.6898
eurlex-sm 0.6406 0.774 0.7568 0.8841 0.8795 0.8591 0.8833 0.8964 0.9031
flags 0.6267 0.7348 0.6639 0.7238 0.7179 0.7015 0.7319 0.7314 0.7314
genbase 0.9346 0.9979 0.9211 0.9269 0.931 0.9629 0.9811 0.99 0.99
mediamill 0.5962 0.7523 0.692 0.8237 0.8112 0.8221 0.81 0.8192 0.8302
medical 0.6918 0.7677 0.7926 0.85 0.8572 0.8566 0.8788 0.898 0.9014
rcvlsubsetl 0.5916 0.7388 0.7312 0.8654 0.8546 0.8347 0.8691 0.8763 0.884
rcv1subset2 0.5905 0.7365 0.7201 0.8506 0.8458 0.8119 0.8541 0.8582 0.865
scene 0.7561 0.9196 0.7883 0.9235 0.9153 0.9243 0.9222 09214 0.9214
tmc2007-500 0.7321 0.8915 0.8169 0.9027 0.9113 0.8952 0.9079 0.9051 0.9089
yahoo-Arts1 0.5451 0.6318 0.5996 0.6886 0.6801 0.6341 0.6811 0.687 0.6897
yahoo-Business1 0.5459 0.6438 0.6313 0.7417 0.7315 0.7125 0.7396 0.7439 0.7507
yeast 0.5679 0.6494 0.5733 0.6576 0.6556 0.6624 0.6584 0.6513 0.6513
Table A.5
Experiment result in terms of macro-averaged AUC-PR.
BR ECC BRUS EBRUS COCOA SOSHF ECCRU ECCRU2 ECCRU3
bibtex 0.0733 0.1286 0.0529 0.1218 0.1383 0.1189 0.1287 0.1275 0.1294
cal500 0.1561 0.1812 0.1569 0.1818 0.1838 0.1863 0.1847 0.1813 0.1847
corel5k 0.0194 0.0361 0.016 0.0357 0.0349 0.0334 0.0429 0.036 0.0401
enron 0.1111 0.1813 0.1028 0.1716 0.1731 0.1742 0.1752 0.1773 0.1892
eurlex-sm 0.1763 0.327 0.0528 0.2339 0.2418 0.26 0.2515 0.2938 0.3126
flags 0.5999 0.7025 0.6185 0.6895 0.6957 0.6843 0.7066 0.7053 0.7053
genbase 0.8471 0.9679 0.7346 0.8108 0.8429 0.7631 0.9317 0.947 0.9497
mediamill 0.1105 0.2219 0.0659 0.1529 0.1444 0.2411 0.1479 0.1861 0.2001
medical 0.3368 0.4176 0.3108 0.3735 0.3832 0.3642 0.3797 0.4004 04115
rcvlsubsetl 0.1118 0.2088 0.0731 0.1927 0.199 0.2066 0.2042 0.2106 0.2228
rcv1subset2 0.1003 0.1873 0.0661 0.1804 0.1844 0.1942 0.1869 0.195 0.2054
scene 0.5091 0.7874 0.4322 0.7679 0.7503 0.7935 0.7718 0.769 0.769
tmc2007-500 0.385 0.5431 0.265 0.4657 0.5219 0.56 0.4867 0.5062 0.515
yahoo-Arts1 0.1125 0.1846 0.0939 0.1876 0.1847 0.167 0.1838 0.1805 0.1889
yahoo-Business1 0.1068 0.1723 0.0759 0.154 0.1564 0.1849 0.1663 0.1733 0.182
yeast 0.3544 0.452 0.3432 0.453 0.4529 0.4554 0.449 0.4394 0.4394

levels of exploitation of majority examples, leading to the ECCRU2
and ECCRU3 algorithms. Our empirical study showed that the
proposed methods are competitive to related benchmark and
state-of-the-art methods, and especially ECCRU3 achieves the
best performance in terms of five imbalance metrics with positive
significance tests in almost all comparisons.

We also presented an interesting analysis of the behavior
of the algorithms under different levels of class imbalance, and
discussed insights on the causes of this behavior. Finally, we
investigated the special case where the positive, instead of the
negative, class is associated with the majority of the examples
and analyzed the sensitivity of the proposed methods in terms of
different parameter settings.

An interesting future research direction is to address class
imbalance in the context of active multi-label learning [38], es-
pecially in situations where the budget for data annotation is
limited [39], where having multiple imbalanced labels increases
the complexity of the problem.

Acknowledgment

Bin Liu is supported from the China Scholarship Council (CSC)
under the Grant CSC No. 201708500095.

Appendix

See Tables A.1-A.6.



12

B. Liu and G. Tsoumakas / Knowledge-Based Systems 192 (2020) 105292

Table A.6
Training time (in second) of comparison and proposed methods.
BR ECC BRUS EBRUS COCOA SOSHF ECCRU ECCRU2 ECCRU3
bibtex 87.1 1757 22 253 225 848 300 278 282
cal500 2.444 334 1.616 20.2 10.8 86.9 14.7 14.8 15.6
corel5k 195 1748 89.6 905 265 856 605 750 953
enron 2.571 37.9 1.161 114 7.994 151 15.1 34.2 37.3
eurlex-sm 3651 71171 223 2145 1746 1526 2834 7670 7814
flags 0.2704 0.5398 0.0194 0.1794 0.0678 38.5 0.1729 0.1623 0.1081
genbase 0.78 5.836 0.6326 3.82 3.324 278 3.062 14.8 10.3
mediamill 825 13869 106 1201 543 4079 1558 1457 1695
medical 0.5254 5.729 0.2603 2.257 2.238 74.3 2.716 10.2 9.997
rcvisubsetl 435 4940 45.3 495 427 1475 603 651 739
rcvisubset2 462 4735 40.8 482 390 1325 572 603 684
scene 3.476 25.2 0.8777 119 11.7 414 9.948 8.071 6.935
tmc2007-500 3145 44400 2098 21473 6058 7499 28 169 6777 13757
yahoo-Arts1 162 1444 16.8 167 144 605 191 176 201
yahoo-Business1 219 1780 16.6 167 90.8 638 199 206 257
yeast 2.819 23 1.403 19.7 18.1 563 16.6 10.2 10.1
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