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Abstract. Computational prediction of drug-target interactions (DTI)
reduces the number of candidate drugs to be verified by the tedious and
costly experimental approach and expedites the drug discovery process.
The most challenging task for computational DTI prediction methods is
to predict interactions between new drugs and new targets due to the
unavailability of interacting information for both new drugs and new tar-
gets. Although there are several methods that could predict interactions
in new drug-target pairs, the accuracy of their predicting results is not
adequate. To improve the performance of existing approaches, we propose
three ensemble DTI prediction strategies that could accompany any DTI
prediction method. The proposed ensemble approaches consist of several
DTI prediction models learned on training subsets which have been de-
fined by different sampling strategies. Experiments were conducted on
four benchmark datasets and the obtained results indicate that the local
imbalance-aware sampling strategy is the most effective.
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1 Introduction

Identifying drug-target interactions (DTI) is a key step for the drug discovery
process [1]. However, the identification of DTIs via in vitro experiments is still
costly and time-consuming. Computational approaches, which predict interac-
tions between drugs and targets efficiently, shrink the number of candidate phar-
maceuticals for further experimental validation and accelerate the drug discovery
procedure. Chemogenomic approaches are the most widely used computational
methods. They have attracted extensive interest, because they utilize informa-
tion from both the drug and the target space. Chemical structure-based com-
pound similarities and protein sequence-based target similarities are the most
common information sources that are employed in DTI prediction tasks, mainly
due to their effectiveness and availability [1].

DTI prediction is associated with four kinds of prediction settings: providing
predictions for pairs of training (known) drugs and targets (S1), new drugs and
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training targets (S2), training drugs and new targets (S3), and new drugs and
new targets (S4). S4 is related to zero-shot learning [8, 7] and is substantially
more challenging than the other three settings [5] because we have no information
about the interaction profiles of either the drug or the target of the new pair.
Although several DTI prediction methods [3, 6, 5, 4] are able to handle the S4
setting, their results show that there is clearly still room for improvement.

Ensemble methods integrate multiple models and are particularly effective in
improving the overall performance and robustness [10]. Here, we propose three
ensemble methods that can be coupled with any DTI prediction approach. We
specifically aim at improving the accuracy of DTI prediction methods for the S4
setting. The three ensemble methods follow the same framework that aggregates
multiple DTI prediction models built upon diverse training sets comprising a
subset of drugs and targets, but employ different sampling strategies to choose
drugs and targets. Based on their sampling strategy, the three proposed en-
semble methods are called Ensemble with Random Sampling (ERS), Ensemble
with Global imbalance based Sampling (EGS), and Ensemble with Local imbal-
ance based Sampling (ELS), respectively. Experimental results on four bench-
mark datasets using two base models show that ELS outperforms the other two
ensemble methods as well as the base models.

2 Our Approaches

Firstly, we define the formulation of the DTI prediction problem. Let D =
{di}ni=1 and T = {tj}mj=1 be the training drug set and target set respectively,
where n is the number of training drugs and m is the number of training tar-
gets. Sd ∈ Rn×n and St ∈ Rm×m denote the chemical structure-based drug
similarity matrix and protein sequence-based target similarity matrix, respec-
tively. Y ∈ {0, 1}n×m is the interaction matrix showing which drugs and targets
interact. The DTI prediction method is built on the training set (D, T , Sd, St,
Y ). Given a drug du and a target tv, along with the similarity vector sdu ∈ Rn

and stv ∈ Rm indicating similarities between du and D and between tv and T
respectively, a DTI prediction method estimates whether du and tj interact or
not. More specifically, in this paper we focus on S4 where du /∈ D and tv /∈ T .

The three proposed ensemble methods follow the same framework that can
be applied to any DTI prediction method. In the training phase, the sampling
probabilities for drugs and targets, denoted as pd ∈ Rn and pt ∈ Rm, are initially
computed, where

∑n
i=1 p

d
i = 1 and

∑m
j=1 p

t
j = 1. The calculation of the sampling

probabilities is different in each of the three methods and will be illustrated later.
Then, q base models are trained iteratively. For the i-th base model, the nR sized
drug subsetDi is sampled fromD without replacement according to pd, i.e. drugs
with larger sampling probability have a greater chance to be added to Di, where
R is a user-specified sampling ratio controlling the number of selected drugs.
In a similar way, the mR sized target subset Ti is derived from T based on pt.
Then, we form a training subset that consists of the similarity sub-matrices and
interaction sub-matrix specified by Di and Ti, upon which the base model Mi is
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built. At inference time, given a test drug-target pair (du, tv), every base model
gives a prediction, and the final prediction is the average of the outputs from
all base models. As the base models are trained based on a subset of drugs and
targets, the similarity vector for du and tv is projected to the low dimensional
space characterized by the drug and target subset used in the corresponding base
model. For example, given a similarity vector [1, 0.6, 0.8, 0.9, 0], its projection on
drug subset {d1, d2, d4} is [1, 0.6, 0.9].

We now illustrate the calculation of sampling probabilities in our three en-
semble methods. ERS employs a sampling probability following the uniform
distribution, i.e. pdi = 1/n and ptj = 1/m, where i = 1, 2, ...n and j = 1, 2, ...m.
This way each drug and target has an equal chance to be selected.

In DTI data, there is typically a small number of interacting drug-target
pairs, which is much lower than the number of non-interacting ones, resulting in
an imbalanced distribution within the global interaction matrix. To relieve this
global imbalance, EGS forms training subsets by biasing the sampling process
to include drugs and targets having more interactions. In EGS, the sampling
probability of each drug (target) is proportional to the number of its interactions:

pdi =
σ +

∑m
j=1 Yij

nσ +
∑n

h=1

∑m
j=1 Yhj

, i = 1, 2, ...n

ptj =
σ +

∑n
i=1 Yij

mσ +
∑n

i=1

∑m
h=1 Yih

, j = 1, 2, ...m

(1)

where σ is a smoothing parameter. By using Eq.(1), the drugs and targets with
more interactions are more likely to be selected in the sampling procedure.

Apart from the global imbalance, the degree of imbalance in the local area
around a drug (target) [2] could also be used to assess the importance of that
drug (target). The local imbalance of a drug di for target tj could be measured
as the proportion of N k

di
having the opposite interactivity to tj compared to di:

Cd
ij =

1

k

∑
dh∈Nk

di

JYhj 6= YijK (2)

where N k
di

is the set with the k nearest neighbours of di, retrieved by choosing

the training drugs having the k largest values in sdi . Higher Cd
ij means that di

is surrounded by drugs that have opposite interactivity to tj . In such cases, cor-
rectly predicting Yij using drug similarities would be difficult. By accumulating
the local imbalance of di for all interacting targets, the local imbalance of di,
which also indicates the difficulty of di, is computed as:

LIdi =

m∑
j=1

Cd
ijJYij = 1K (3)

Similarly, the local imbalance of tj is defined as:

LItj =

n∑
i=1

Ct
ijJYij = 1K (4)
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The local imbalance of a drug (target) reflects its difficulty. The key idea in
ELS is that it encourages more difficult drugs and targets to be learned by more
base models, reducing thereby the corresponding error. In ELS, the sampling
probability is proportional to the corresponding local imbalance:

pdi =
σ + LIdi

nσ +
∑n

h=1 LI
d
h

, i = 1, 2, ...n

ptj =
σ + LItj

mσ +
∑m

h=1 LI
t
h

, j = 1, 2, ...m

(5)

3 Empirical Results

In the experiments, four benchmark DTI datasets, namely Nuclear Receptors
(NR), Ion Channel (IC), G-protein coupled receptors (GPCR), and Enzyme (E)
[9] are used. To evaluate the predictive performance for interactions between new
drugs and new targets, the 2 repetitions of 3×3-fold block-wise CV under S4 [4]
is applied and the Area Under the Precision-Recall curve (AUPR) is employed
as the evaluation metric. For all proposed methods, R and q are set to 0.9 and
5 respectively. For EGS, σ = 0.1. For ELS, k = 5 and σ = 0.1/k. The nearest
neighbour method MLkNNSC [6] and the matrix factorization approach NRLMF
[3] are used as base models with default settings. For MLkNNSC, k = 3. For
NRLMF, α = β = λt = λd = 0.25, γ = 1.0, and r = 50.

The obtained results in terms of AUPR are displayed in Table 1, where the
best methods are highlighted in boldface, and the ones worse than the base
model are underlined. ELS is the best method in most cases and able to improve
the accuracy of the base models. This is because ELS emphasizes on difficult
drugs and targets. EGS comes next but is inferior to the base model in 3 cases,
indicating that choosing drugs and targets with more interactions to reduce the
global imbalance level only works for limited cases. ERS using a totally random
sampling strategy is the worst ensemble method.

Table 1. AUPR Results of ensemble methods along with their embedded base models

Base Model Dataset Base ERS EGS ELS

MLkNNSC

NR 0.1111(4) 0.1183(3) 0.1243(2) 0.1273(1)
IC 0.1559(4) 0.1594(3) 0.1663(1) 0.1596(2)

GPCR 0.0933(4) 0.1026(1) 0.1004(3) 0.1015(2)
E 0.1517(2) 0.1384(4) 0.1399(3) 0.1528(1)

NRLMF

NR 0.1544(3) 0.147(4) 0.1801(1) 0.1751(2)
IC 0.2209(2) 0.219(3) 0.2166(4) 0.2212(1)

GPCR 0.1358(2) 0.1246(4) 0.1348(3) 0.1362(1)
E 0.1948(4) 0.1985(3) 0.2036(2) 0.204(1)

Average Rank 3.13 3.13 2.38 1.38
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