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Abstract. A key challenge in information theoretic feature selection is
to estimate mutual information expressions that capture three desirable
terms: the relevancy of a feature with the output, the redundancy and the
complementarity between groups of features. The challenge becomes more
pronounced in multi-target problems, where the output space is multi-
dimensional. Our work presents a generic algorithm that captures these
three desirable terms and is suitable for the well-known multi-target pre-
diction settings of multi-label/dimensional classification and multivariate
regression. We achieve this by combining two ideas: deriving low-order
information theoretic approximations for the input space and using clus-
tering for deriving low-dimensional approximations of the output space.

1 Introduction

Many real world applications generate huge amounts of data that create various
new challenges, such as learning from high dimensional inputs (features). One
way of dealing with big dimensionality is to ignore the irrelevant and redundant
features by using a feature selection (FS) algorithm [1]. At the same time
more and more applications need to predict multiple outputs (targets), instead
of a single output. Depending of the type of the output variables there are
various categories of multi-target problems, such as multi-label classification,
multi-dimensional classification, and multivariate regression, when the outputs
are binary, categorical, and continuous respectively [2].

In this paper we will focus on deriving novel information theoretic feature
selection methods for multi-target problems. To do so we need to estimate
mutual information (MI) expressions from finite sample data sets. As the
number of selected features grows due to high dimensionality of the input space,
and as the number of targets is high due to high dimensionality of the output
space, the estimated MI expressions become less reliable. To overcome this
problem, low-order criteria have been suggested.

Sechidis et al. [3] introduced a framework for generating such low-order FS
criteria for multi-target problems by iteratively maximising different composite
likelihood expressions, which make various assumptions about the input and
output space. By exploring how the different assumptions compare, the authors
have found that the best trade-off appears to assume partial independence in the
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feature and full independence in the target space (a method known as Single-
JMI, details in Sec. 2). While the partial independence of the feature space
has been proven to be useful in deriving FS criteria for single-label data [1],
the full independence in the label space ignores the useful information that the
possible dependencies between the targets can provide. Our work introduces a
novel algorithm (Group-JMI, details in Sec. 3) that uses the principles of the
Single-JMI criterion but at the same time takes into account target dependencies.

2 Background on information theoretic multi-target FS

Let us assume that we have a multi-target problem where we observe N sam-
ples {xn,yn}Nn=1. The feature vector x = [x1 . . . xd] is a realisation of the joint
random variable X = X1 . . . Xd, while the output vector is a realisation of
Y = Y1 . . . Ym. When the variables of the output space are binary, i.e. the
alphabet Y is {0, 1}m, the problem is known as multi-label classification, when
they are categorical as multi-dimensional classification, while when they are con-
tinuous, i.e. Y is Rm, as multivariate regression [2].

The problem of FS can be phrased as selecting a subset of features Xθ ⊂ X
that contain as much useful information for our problem as possible. In filter
FS, we firstly rank the features according to a score measure and then select the
ones with the highest score. The score of each feature should be independent of
any classifier and any evaluation measure. For single-output problems, Brown et
al. [1] introduced a framework for generating information theoretic FS criteria
by phrasing a clearly specified optimisation problem; maximising the conditional
likelihood. A greedy forward selection to optimise this objective is: at each step
k select the feature Xk ∈ Xθ̃ that maximises the following conditional mutual
information (CMI): JCMI(Xk) = I(Xk;Y |Xθ), where Xθ is the set of the (k-1)
features already selected, Xθ̃ the unselected ones and Y the single-output target
variable. It can be shown that optimising this objective leads to a criterion that
assigns a score to each feature that increases if the relevancy of the feature with
the targets is high, the redundancy with the existing features is low, and the
complementarity with the existing features is high [1].

As the number of selected features grows, the dimensionality of Xθ also grows,
making the estimates less reliable. To overcome this issue a number of methods
have been proposed for deriving low-order criteria. A famous criterion that
controls relevancy, redundancy and complementarity, providing a good trade-off
between accuracy, stability and flexibility is the joint mutual information (JMI),
with scoring function [1]: JJMI(Xk) =

∑
Xj∈Xθ

I(XjXk;Y ).

Sechidis et al. [3] derived two versions of the JMI criterion suitable for multi-
output problems. Their approach was based on the idea of expressing multi-label
decomposition methods as composite likelihoods. The scoring functions for the
two multi-output criteria are the following:

JJoint
JMI (Xk) =

∑
Xj∈Xθ

I(XjXk;Y), JSingle
JMI (Xk) =

∑
Xj∈Xθ

∑
Yi∈Y

I(XjXk;Yi).



The superscripts denote the assumptions over the output space:
Joint-JMI does not make any assumptions and deals with the joint random

variable Y. This corresponds to the Label Powerset transformation in the
multi-label literature. The main limitation of this method is that Y is
high dimensional. For example, in multi-label problems we have up to
min(N, 2m) distinct labelsets [4], which makes it difficult to estimate MI
expressions reliably.

Single-JMI deals with each variable Yi, i = 1 . . .m, independently of the oth-
ers. This corresponds to the Binary Relevance (BR) transformation in the
multi-label literature. The main limitation of this method is that by mak-
ing the full independence assumption it ignores possible useful information
on how the targets interact with each other.

These two versions of the JMI criterion can be seen as the two extreme cases;
assuming no independence at all (Joint-JMI) and assuming every outcome is
independent from the rest (Single-JMI).

In their experimental study, Sechidis et al. [3] showed that Single-JMI, even
if it assumes full independence between the targets, outperforms Joint-JMI, the
variant that makes no assumptions about the targets. This is happening because
the low-dimensional MI expressions in Single-JMI are estimated more reliably
from small datasets than the high dimensional MI expressions in Joint-JMI. Next
section introduces a novel algorithm that accounts for target dependencies and
at the same time keeps the dimensionality of the MI expressions low.

3 Proposed methodology
The main idea behind our approach is to derive a novel representation of the
output space Ỹ = Ỹ1 . . . Ỹm, where each variable Ỹi captures the joint informa-
tion of some group of target variables. After deriving this representation, we
will use the following criterion, which we call Group-JMI:

JGroup
JMI (Xk) =

∑
Xj∈Xθ

∑
Ỹi∈Ỹ

I(XjXk; Ỹi),

Group-JMI can be seen as the modification of Single-JMI criterion using Ỹi
instead of the initial targets Yi. By doing this we keep estimating low dimensional
MI expressions, but at the same time we take into account target dependencies;
each Ỹi captures the information that is shared in a group of target variables.

The main challenge is to derive the projected space Ỹ from the initial space
Y. Here, we solve this challenge using the following two-step, clustering-based
strategy:

1st Step: Generate groups of target variables

In this step we create m groups of variables Z1, ...Zm, where each group is a
random subset of the targets, i.e. Zi ⊂ Y ∀ i = 1 . . .m. Each group is gener-
ated by sampling the set of target variables without replacement, but allowing
overlap between the groups. Randomly sampling groups of targets has been ex-
tensively used for deriving learning algorithms but not for FS. A famous example
is RAKEL [5], a state of the art method for learning from multi-label data.



Similarly to RAKEL, the number of targets in each group is controlled by a
parameter that specifies the Proportion of Targets (PoT) randomly sampled to
generate each group. Given, for example, a multi-target problem with m = 20
targets and PoT=0.30, 20 groups Z1, . . . ,Z20 will be generated, each one con-
sisting of 6 randomly selected target variables. Assuming binary targets the joint
variable in each group may take up to 26 = 64 distinct values, a dimensionality
that prevents reliable density estimation unless a very large amount of data is
available. To overcome this issue, we introduce a way to derive low-dimensional
approximations in the following step.

2nd Step: Low-dimensional approximations via clustering

To derive low dimensional representations for each group, we will use the idea of
clustering together examples with “similar” output vectors. In the most common
case we assume the Number of Clusters (NoC) is known a priori. For each group

Zi, we derive a novel categorical variable Ỹi, with the alphabet {1, ...,NoC}, that
describes the cluster indices of each observation:

ỹni = Clustering(zni ,NoC),∀ i = 1 . . .m , n = 1 . . . N,

where the inputs of the clustering algorithm are the target variables of the Zi
group and the parameter NoC.

In this work, we use the K-medoids clustering algorithm [6, Sec. 14.3.10] -
mainly due to its robustness to outliers - but any clustering algorithm that is
compatible with the target variables could be used instead. Furthermore, the
distance metric can be chosen according to the multi-target problem at hand
(e.g. Hamming distance for multi-label classification and Euclidean distance for
multivariate regression).

At this point, the problem of estimating the joint (high-dimensional) density
of the targets in each group becomes a problem of estimating a discrete distri-
bution of NoC categories. The trade-off is between making no approximations
and estimating high-dimensional densities, which leads to poor and unreliable
estimates of the MI, or deriving lower dimensional approximations through clus-
tering, which leads to more reliable estimates of the MI.

4 Experiments
In this work, we evaluate our multi-target feature selection approach on multi-
label classification problems1. We focus on three datasets with diverse charac-
teristics: emotions (N=593, d=72, m=6), image (N=2000, d=294, m=5) and
yeast (N=2417, d=103, m=14) [4]. To compare the performance of the differ-
ent FS methods, we train a multi-label classifier using the selected features and
evaluate its performance on the testing data using two measures: hamming and
ranking loss [4]. We used the ML-kNN classifier, setting the number of nearest
neighbours to 7 as suggested in [7] and the experimental protocol that we follow
is 50x2-fold cross-validation. To estimate MI we use the normalised maximum-
likelihood plug-in estimator, discretising continuous features into 5 bins by the
equal width strategy.

1A more extensive evaluation that includes multivariate regression is left for future work.



In the first set of experiments we analyse the sensitivity of the proposed
algorithm, with respect to the PoT and NoC parameters using the hamming
loss metric2 and for various numbers of selected features (k=10...40). Figure 1
shows the performance for different numbers of clusters (NoC) when PoT is fixed
to 0.50. We notice that the optimal number is 4 for image and yeast and 8 for
emotions. Figure 2 shows the performance for different proportions of targets
when NoC is fixed to 8. We notice that the best performance is achieved by
groups that contain 75% of the targets in image and by groups that contain
50% of the targets in emotions, while for yeast there is no clear winner. These
results highlight the importance of correct parametrisation, and the fact that
the optimal parameters depend on the intrinsic characteristics of each dataset.
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Fig. 1: Comparing Group-JMI for various values of NoC with PoT fixed to 0.50.
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Fig. 2: Comparing Group-JMI for various values of PoT with NoC fixed to 8.

We now compare Group-JMI against the methods presented in Sec. 02,
Joint-JMI and Single-JMI. To show the robustness of Group-JMI, we will create
two versions by randomly choosing the parameters for generating each Ỹi:
Group-JMI-Small (G-S): PoT chosen from (0-0.50] and NoC from {4,...,16},
Group-JMI-Large (G-L): PoT chosen from (0.50-1] and NoC from {4,...,16}.
By this parametrisation G-S uses a small number of targets to generate each
group (less than half), while G-L a large (more than half). Table 1 presents
the average ranking score of each FS method. We select various values of top-k
selected features, k=10, 15, 20, ...,40, for each k the method with the lowest
loss is assigned ranking score 1, the second best 2, etc., and at the end we
average the scores across all k. Overall, we see that our methods achieve the
best performance in five out of six settings, where each setting is a combination
of an evaluation loss measure and a particular dataset.

2Similar results hold for ranking loss, but we have omitted them due to space limitations.



Hamming loss Ranking loss
Dataset Single Joint G-S G-L Single Joint G-S G-L
emotions 2.00 4.00 2.43 1.57 X 1.86 4.00 2.29 1.86 X

image 2.14 3.29 3.43 1.14 X 2.29 3.71 3.00 1.00 X
yeast 1.57 4.00 1.71 2.71 1.86 4.00 1.43 2.71 X

Table 1: The average ranking score with two losses and three datasets. The best
method for each loss is highlighted in bold and X indicates a setting (a combina-
tion of evaluation loss and dataset) where our methods outperform competitors.

5 Conclusions and future work
In this work we presented a generic FS algorithm suitable for multi-label clas-
sification and multivariate regression problems. Our method is using the JMI
principle to derive low-order approximations of the input space, and it clusters
similar targets to derive low-order approximations of the output space. Group-
JMI has two parameters: the PoT that controls the number of targets that
interact in each group, and the NoC that controls the dimensionality of the
density that we will try to estimate.

Our future work will focus on providing methods for optimising these param-
eters. One approach is to use a validation set and minimise a loss of a particular
classifier, but this violates the filter assumption: selecting the features indepen-
dently of any classifier or evaluation measure. To overcome this issue our current
line of work splits in two directions. For PoT we explore ways of automatically
grouping the targets that share some minimum amount of information measured
by multi-variate MI. For optimising NoC we explore ways to determine the max-
imum number of clusters we can have to estimate reliably MI from the available
data. This can be done by performing sample size determination for observing
given MI quantities with a particular statistical power [8]. Lastly, a more exten-
sive evaluation that includes multi-label and multivariate regression with large
output spaces is left for future work.
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