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Abstract 
Non-monotonic reasoning constitutes an approach to rea-
soning with incomplete or changing information and is sig-
nificantly more powerful than standard reasoning, which 
simply deals with universal statements. Defeasible reason-
ing, a member of the non-monotonic reasoning family, of-
fers the extra capability of dealing with conflicting informa-
tion and can represent facts, rules and priorities among 
rules. The main advantages of defeasible reasoning, how-
ever, are not only limited to its enhanced representational 
capabilities, but also feature low computational complexity 
compared to mainstream non-monotonic reasoning. This 
paper presents a system for non-monotonic reasoning on the 
Semantic Web called VDR-Device, which is capable of rea-
soning about RDF metadata over multiple Web sources us-
ing defeasible logic rules. It is implemented on top of the 
CLIPS production rule system and features a RuleML com-
patible syntax. The operational semantics of defeasible 
logic are implemented through compilation into a generic 
deductive rule language. Since the RuleML syntax may ap-
pear complex for many users, we have also implemented a 
graphical authoring tool for defeasible logic rules that acts 
as a shell for the defeasible reasoning system. The tool con-
strains the allowed vocabulary through analysis of the input 
RDF documents, so that the user does not have to type-in 
class and property names.  

Introduction 
The development of the Semantic Web (Berners-Lee, 
Hendler and Lassila 2001) proceeds in a hierarchy of lay-
ers, with each layer being on top of other layers. At pre-
sent, the highest layer that has reached sufficient maturity 
is the ontology layer, where OWL (Dean and Schreiber 
2004), a description logic based language, is currently the 
dominant standard. 
 Above the ontology layer lie the logic and proof layers, 
towards which the next steps in the development of the 
Semantic Web will be directed. Rule systems can play a 
twofold role in the Semantic Web initiative: (a) they can 
serve as extensions of, or alternatives to, description logic 
based ontology languages, since rules are more expressive 
than description logic languages like OWL and (b) they 

can be used to develop declarative systems on top of (us-
ing) ontologies. 
 Non-monotonic reasoning (Antoniou 1997) constitutes 
an approach that allows reasoning with incomplete or 
changing information. More specifically, it provides 
mechanisms for taking back conclusions that, in the pres-
ence of new information, turn out to be wrong and for de-
riving new, alternative conclusions instead. Contrary to 
standard reasoning, which simply deals with universal 
statements, non-monotonic reasoning offers a significantly 
higher level of expressiveness. 
 Defeasible reasoning (Nute 1987), a member of the non-
monotonic reasoning family, represents a simple rule-
based approach to reasoning not only with incomplete or 
changing but also with conflicting information. When 
compared to mainstream non-monotonic reasoning, the 
main advantages of defeasible reasoning are enhanced rep-
resentational capabilities coupled with low computational 
complexity. 
 Defeasible reasoning can represent facts, rules and pri-
orities and conflicts among rules. Such conflicts arise, 
among others, from rules with exceptions, which are a 
natural representation for policies and business rules (An-
toniou, Billington and Maher 1999) and priority informa-
tion is often available to resolve conflicts among rules. 
Other application domains are described later on in this 
work. 
 In this paper we report on the implementation of VDR-
DEVICE which is a visual, integrated environment for the 
development and application of defeasible logic rule bases 
on top of RDF ontologies. VDR-Device consists of: (i) a 
visual RuleML-compliant rule editor and (ii) a defeasible 
reasoning system for the Semantic Web that processes 
RDF data and RDF Schema ontologies. 
 VDR-Device supports multiple rule types of defeasible 
logic (strict rules, defeasible rules and defeaters) as well as 
priorities among rules. It also supports two types of nega-
tion (strong negation and negation-as-failure) and conflict-
ing (mutually exclusive) literals. 
 The system has a RuleML-compatible (Boley et al. 
2001) syntax, which expresses the main standardization 
effort for rules in the Semantic Web. Input and output of 
data is performed through processing of RDF data and 
RDF Schema ontologies.  
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 The reasoning system of VDR-Device is built on-top of 
a CLIPS-based implementation of deductive rules, called 
R-Device (Bassiliades and Vlahavas 2006). The core 
mechanism of the system performs the translation of de-
feasible knowledge into a set of deductive rules, including 
derived and aggregate attributes.  
 The rest of the paper is organized as follows: Firstly, the 
motivation for utilizing defeasible reasoning in the Seman-
tic Web is more thoroughly examined. Then, a brief intro-
duction to defeasible logics is made, followed by the sec-
tion that presents the VDR-Device system. The presenta-
tion includes the architecture and functionality of the sys-
tem, the syntax of the defeasible logic rule language, the 
underlying core deductive rule language, the translation 
from the defeasible logic rules to the deductive rules and 
the graphical rule editor. Related work on defeasible rea-
soning systems is discussed, next. Finally, this paper sums 
up the conclusions and gives potential directions for future 
work. 

Conflicting Rules in the Semantic Web 
This section briefly describes the main cases, where con-
flicting rules might be applied in the Semantic Web. 

Reasoning with Incomplete Information 
In (Antoniou 2002) a scenario is described where business 
rules have to deal with incomplete information: in the ab-
sence of certain information some assumptions have to be 
made that lead to conclusions not supported by classical 
predicate logic. In many applications on the Web such 
assumptions must be made because other players may not 
be able (e.g. due to communication problems) or willing 
(e.g. because of privacy or security concerns) to provide 
information. This is the classical case for the use of non-
monotonic knowledge representation and reasoning 
(Marek and Truszczynski 1993). 

Rules with Exceptions 
As mentioned earlier, rules with exceptions are a natural 
way of representation for policies and business rules. And 
priority information is often implicitly or explicitly avail-
able to resolve conflicts among rules. Potential applica-
tions include security policies (Ashri et al. 2004), business 
rules (Antoniou and Arief 2002), e-contracting (Governa-
tori 2005), brokering (Antoniou et al. 2005) and agent ne-
gotiations (Governatori et al. 2001). 

Default Inheritance in Ontologies 
Default inheritance is a well-known feature of certain 
knowledge representation formalisms. Thus it may play a 
role in ontology languages, which currently do not support 
this feature. In (Grosof and Poon 2003) some ideas are 

presented for possible uses of default inheritance in on-
tologies. A natural way of representing default inheritance 
is rules with exceptions plus priority information. Thus, 
non-monotonic rule systems can be utilized in ontology 
languages. 

Ontology Merging 
When ontologies from different authors and/or sources are 
merged, contradictions arise naturally. Predicate logic 
based formalisms, including all current Semantic Web lan-
guages, cannot cope with inconsistencies. If rule-based 
ontology languages are used (e.g. DLP (Grosof et al. 
2003)) and if rules are interpreted as defeasible (that is, 
they may be prevented from being applied even if they can 
fire) then we arrive at non-monotonic rule systems. A 
skeptical approach, as adopted by defeasible reasoning, is 
sensible because it does not allow for contradictory con-
clusions to be drawn. Moreover, priorities may be used to 
resolve some conflicts among rules, based on knowledge 
about the reliability of sources or on user input). Thus, 
non-monotonic rule systems can support ontology integra-
tion. 

Defeasible Logics 
A defeasible theory D is a couple (R,>) where R a finite set 
of rules, and > a superiority relation on R. In expressing 
the proof theory we consider only propositional rules. 
Rules containing free variables are interpreted as the set of 
their variable-free instances. 
 There are three kinds of rules: Strict rules are denoted 
by A → p, and are interpreted in the classical sense: when-
ever the premises are indisputable then so is the conclu-
sion. An example of a strict rule is “Professors are faculty 
members”. Written formally:  

professor(X) → faculty(X). 
 Inference from strict rules only is called definite infer-
ence. Strict rules are intended to define relationships that 
are definitional in nature, for example ontological knowl-
edge.  
 Defeasible rules are denoted by A ⇒ p and can be de-
feated by contrary evidence. An example of such a rule is: 

professor(X) ⇒ tenured(X) 
which reads as follows: “Professors are typically tenured”. 
 Defeaters are denoted as A ~> p and cannot actively 
support conclusions, but are used only to prevent some of 
them. A defeater example is: 

assistantProf(X) ~> ¬tenured(X) 
which is interpreted as follows: “Assistant professors may 
be not tenured”. 
 A superiority relation on R is an acyclic relation > on R 
(that is, the transitive closure of > is irreflexive). When r1 
> r2, then r1 is called superior to r2, and r2 inferior to r1. 
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This expresses that r1 may override r2. For example, given 
the defeasible rules 
r1: professor(X) ⇒  tenured(X) 

r2: visiting(X)  ⇒ ¬tenured(X) 

which contradict one another, no conclusive decision can 
be made about whether a visiting professor is tenured. But 
if we introduce a superiority relation > with r2 > r1, then we 
can indeed conclude that a visiting professor is not ten-
ured. 

Another important element of defeasible reasoning is the 
notion of conflicting literals. In applications, literals are 
often considered to be conflicting and at most one of a 
certain set should be derived. An example of such an ap-
plication is price negotiation, where an offer should be 
made by the potential buyer. The offer can be determined 
by several rules, whose conditions may or may not be mu-
tually exclusive. All rules have offer(X) in their head, 
since an offer is usually a positive literal. However, only 
one offer should be made; therefore, only one of the rules 
should prevail, based on superiority relations among them. 
In this case, the conflict set is: 
C(offer(x,y)) = { ¬offer(x,y) } ∪  

{ offer(x,z) | z ≠ y } 

 For example, the following two rules make an offer for 
a given apartment, based on the buyer’s requirements. 
However, the second one is more specific and its conclu-
sion overrides the conclusion of the first one.
r5: size(X,Y),Y≥45,garden(X,Z) ⇒  

offer(X,250+2Z+5(Y−45)) 
r6: size(X,Y),Y≥45,garden(X,Z),central(X) ⇒  

offer(X,300+2Z+5(Y−45)) 
r6 > r5

The VDR-Device System 
The VDR-Device system consists of two primary compo-
nents:  
1. DR-Device, the reasoning system that performs the 

RDF processing and inference and produces the results, 
and 

2. DRREd (Defeasible Reasoning Rule Editor), the rule 
editor, which serves both as a rule authoring tool and as 
a graphical shell for the core reasoning system. 

 Although these two subsystems utilize different tech-
nologies and were developed independently, they inter-
communicate efficiently, forming a flexible and powerful 
integrated environment. 

The Non-Monotonic Reasoning System 
The core reasoning system of VDR-Device is DR-Device 
(Bassiliades, Antoniou and Vlahavas 2006) and consists of 
two primary components (Fig. 1): The RDF 
loader/translator and the rule loader/translator. The user 
can either develop a rule base (program, written in the 
RuleML-like syntax of VDR-Device) with the help of the 

rule editor described in a following section, or he/she can 
load an already existing one, probably developed manu-
ally. The rule base contains: (a) a set of rules, (b) the 
URL(s) of the RDF input document(s), which is forwarded 
to the RDF loader, (c) the names of the derived classes to 
be exported as results and (d) the name of the RDF output 
document. 
 The rule base is then submitted to the rule loader which 
transforms it into the native CLIPS-like syntax through an 
XSLT stylesheet and the resulting program is then for-
warded to the rule translator, where the defeasible logic 
rules are compiled into a set of CLIPS production rules 
(http://www.ghg.net/clips/CLIPS.html). This is a 
two-step process: First, the defeasible logic rules are trans-
lated into sets of deductive, derived attribute and aggregate 
attribute rules of the basic deductive rule language, using 
the translation scheme described in (Bassiliades, Antoniou 
and Vlahavas 2006). Then, all these deductive rules are 
translated into CLIPS production rules according to the 
rule translation scheme in (Bassiliades and Vlahavas 
2006). All compiled rule formats are also kept in local files 
(structured in project workspaces), so that the next time 
they are needed they can be directly loaded, improving 
speed considerably (running a compiled project is up to 10 
times faster). 
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Fig. 1. Architecture of the VDR-DEVICE system. 

 Meanwhile, the RDF loader downloads the input RDF 
documents, including their schemas, and translates RDF 
descriptions into CLIPS objects, according to the RDF-to-
object translation scheme in (Bassiliades and Vlahavas 
2006), which is briefly described below. 
 The inference engine of CLIPS performs the reasoning 
by running the production rules and generates the objects 
that constitute the result of the initial rule program. The 
compilation phase guarantees correctness of the reasoning 
process according to the operational semantics of defeasi-
ble logic. Finally, the result-objects are exported to the 
user as an RDF/XML document through the RDF extrac-
tor. The RDF document includes the instances of the ex-
ported derived classes, which have been proved. 
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Syntax of the Defeasible Logic Rule Language 
There are three types of rules in DR-DEVICE, closely re-
flecting defeasible logic: strict rules, defeasible rules, and 
defeaters. Each rule type is declared with a corresponding 
keyword (strictrule, defeasiblerule and defeater 
respectively). For example, the following rule construct 
represents the defeasible rule r1: professor(X) ⇒ 
tenured(X).  
(defeasiblerule r1  
 (professor (name ?X))  
⇒ 
 (tenured (name ?X))) 

 Predicates have named arguments, called slots, since 
they represent CLIPS objects. DR-DEVICE has also a 
RuleML-like syntax. The same rule is represented in 
RuleML notation (version 0.85) as follows: 
<imp> 
 <_rlab ruleID="r1" ruletype="defeasiblerule">  
  <ind>r1</ind></_rlab> 
 <_head>  
  <atom><_opr><rel>professor</rel></_opr> 
    <_slot name="name"/><var>X</var></_slot>
  </atom> </_head> 
 <_body>  
  <atom><_opr><rel href="tenured"/></_opr> 
    <_slot name="name"><var>X</var></_slot> 
  </atom> 
 </_body> 
</imp> 

 We have tried to re-use as many features of RuleML 
syntax as possible. However, several features of the DR-
DEVICE rule language could not be captured by the exist-
ing RuleML DTDs (version 0.9); therefore, we have de-
veloped a new DTD (Fig. 2), using the modularization 
scheme of RuleML, extending the Datalog with strong 
negation. For example, rules have a unique (ID) ruleID 
attribute in their _rlab element, so that superiority of one 
rule over the other can be expressed through an IDREF 
attribute of the superior rule. For example, the following 
rule r2 is superior to rule r, presented above. 
(defeasiblerule r2 
 (declare (superior r1)) (visiting (name ?X)) 
⇒  
 (not (tenured (name ?X)))) 

 In RuleML notation, there is a superiority attribute 
in the rule label.  
<imp> 
 <_rlab ruleID="r2" ruletype="defeasiblerule" 
superior="r1"> 
  <ind>r2</ind> 
 </_rlab> 
... 
</imp> 

 Classes and objects (facts) can also be declared in DR-
DEVICE; however, the focus in this paper is the use of 
RDF data as facts. The input RDF file(s) are declared in 
the rdf_import attribute of the rulebase (root) element of 
the RuleML document. There exist two more attributes in 
the rulebase element: the rdf_export attribute that 
declares the address of the RDF file with the results of the 

rule program to be exported, and the 
rdf_export_classes attribute that declares the derived 
classes whose instances will be exported in RDF/XML 
format.  
 Further extensions to the RuleML syntax, include func-
tion calls that are used either as constraints in the rule body 
or as new value calculators at the rule head. Multiple con-
straints in the rule body can be expressed through the logi-
cal operators: _not, _and, _or.  
<!ENTITY % LABELs "IDREFS"> 
<!ENTITY % CLASSes "NMTOKENS"> 
<!ATTLIST _rlab  
 ruleID ID #REQUIRED 
 ruletype (strictrule|defeasiblerule|defeater)  
     #REQUIRED 
 superior %LABELs; #IMPLIED> 
<!ENTITY % _calc.cont "(function+)"> 
<!ELEMENT calc %_calc.cont;> 
<!ENTITY % _head.content " (calc?, (atom | neg))"> 
<!ENTITY % _body.content "(atom | neg | and | or)"> 
<!ENTITY % _fname.cont "(#PCDATA)"> 
<!ELEMENT fname %_fname.cont;> 
<!ENTITY % pos_term "(ind | var | function)"> 
<!ELEMENT function (fname, (%pos_term;)*)> 
<!ENTITY % term "(_not | %pos_term;)"> 
<!ELEMENT _not (ind | var)> 
<!ELEMENT _or (%term;, (%term;)+)> 
<!ELEMENT _and (%term;, (%term;)+)> 
<!ENTITY % constraint "(_not | _or | _and)"> 
<!ENTITY % _slot.content "(ind | var | %constraint;)"> 
<!ENTITY % negurdatalog_include SYSTEM 
 "http://www.ruleml.org/0.85/dtd/neg/negurdatalog.dtd"> 

%negurdatalog_include; 
<!ATTLIST rulebase 
  rdf_import CDATA #IMPLIED 
  rdf_export_classes %CLASSes; #IMPLIED 
  rdf_export CDATA #IMPLIED> 

Fig. 2. RuleML syntax DTD of the VDR-DEVICE rule language. 

The Deductive Rule Language of R-DEVICE 
R-DEVICE has a powerful deductive rule language which 
includes features such as normal (ground), unground, and 
generalized path expressions over the objects, stratified 
negation, aggregate, grouping, and sorting, functions. The 
rule language supports a second-order syntax, where vari-
ables can range over classes and properties. However, sec-
ond-order variables are compiled away into sets of first-
order rules, using instantiations of the metaclasses. Users 
can define views which are materialized and, optionally, 
incrementally maintained by translating deductive rules 
into CLIPS production rules. Users can choose between an 
OPS5/CLIPS-like or a RuleML-like syntax. Finally, users 
can use and define functions using the CLIPS host lan-
guage. R-DEVICE belongs to a family of previous such 
deductive object-oriented rule languages (Bassiliades et al. 
2000). Examples of rules are given below. 
 R-DEVICE, like DR-DEVICE, has both a native 
CLIPS-like syntax and a RuleML-compatible syntax. Here 
we will present a few examples using the former, since it is 
more concise. For example, assume there is an RDF class 
carlo:owner that defines the owners of the apartments 
and a property carlo:has-owner that relates an apart-
ment to its owner. 
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 The following rule returns the names of all apartments 
owned by "Smith": 
(deductiverule test1 
 (carlo:apartment (carlo:name ?x)  
  ((carlo:lastName carlo:has-owner) "Smith")) 
 => 
 (result (apartment ?x))) 

 The above rule has a ground path expression 
(carlo:lastName carlo:has-owner) where the 
right-most slot name (carlo:has-owner) is a slot of the 
"departing" class carlo:apartment. Moving to the left, 
slots be-long to classes that represent the range of the 
predecessor slots. In this example, the range of 
carlo:has-owner is carlo:owner, so the next slot 
carlo:lastName has domain carlo:owner. The value 
expression in the above pattern (e.g. constant "Smith") 
actually describes a value of the left-most slot of the path 
(carlo:lastName). Notice that we have adopted a right-
to-left order of attributes, contrary to the left-to-right C-
like dot notation that is commonly assumed, because we 
consider path expressions as function compositions, if we 
assume that each property is a function that maps its do-
main to its range.  
 Another example that demonstrates aggregate function 
in R-DEVICE is the following rule, which returns the 
number of apartments owned by each owner: 
(deductiverule test2 
 (carlo:apartment (carlo:name ?x)  
    ((carlo:lastName carlo:has-owner) ?o)) 
 => 
 (result (owner ?o) (apartments (count ?x)))) 

 Function count is an aggregate function that returns the 
number of all the different instantiations of the variable ?x 
for each different instantiation of the variable ?o. There 
are several other aggregate functions, such as sum, avg, 
list, etc.  

Translating Defeasible Logic Rules into Deductive 
Rules 
The translation of defeasible rules into R-DEVICE rules is 
based on the translation of defeasible theories into logic 
programs through the well-studied meta-program of (An-
toniou et al. 2000). However, instead of directly using the 
meta-program at run-time, we have used it to guide defea-
sible rule compilation. Therefore, at run-time only first-
order rules exist. 

Before going into the details of the translation we briefly 
present the auxiliary system attributes (in addition to the 
user-defined attributes) that each defeasibly derived object 
in DR-DEVICE has, in order to support our translation 
scheme: 
• pos, neg: These numerical slots hold the proof status of 

the defeasible object. A value of 1 at the pos slot de-
notes that the object has been defeasibly proven; 
whereas a value of 2 denotes definite proof. Equivalent 
neg slot values denote an equivalent proof status for the 
negation of the defeasible object. A 0 value for both 

slots denotes that there has been no proof for either the 
positive or the negative conclusion. 

• pos-sup, neg-sup: These attributes hold the rule ids 
of the rules that can potentially prove the object posi-
tively or negatively. 

• pos-over, neg-over: These attributes hold the rule 
ids of the rules that have overruled the positive or the 
negative proof of the defeasible object. For example, in 
the rules r1 and r2 presented above, rule r2 has a nega-
tive conclusion that overrides the positive conclusion of 
rule r1. Therefore, if the condition of rule r2 is satisfied 
then its rule id is stored at the pos-over slot of the cor-
responding derived object. 

• pos-def, neg-def: These attributes hold the rule ids 
of the rules that can defeat overriding rules when the 
former are superior to the latter. For example, rule r2 is 
superior to rule r1. Therefore, if the condition of rule r2 
is satisfied then its rule id is stored at the neg-def slot 
of the corresponding derived object along with the rule 
id of the defeated rule r1. Then, even if the condition of 
rule r1 is satisfied, it cannot overrule the negative con-
clusion derived by rule r2 (as it is suggested by the pre-
vious paragraph) because it has been defeated by a su-
perior rule. 

 Each defeasible rule in DR-DEVICE is translated into a 
set of 5 R-DEVICE rules: 
• A deductive rule that generates the derived defeasible 

object when the condition of the defeasible rule is met. 
The proof status slots of the derived objects are initially 
set to 0. For example, for rule r2 the following deduc-
tive rule is generated: 

(deductiverule r2-deductive  
 (visiting (name ?X)) 
⇒ 
 (tenured (name ?X) (pos 0) (neg 0))) 

Rule r2-deductive states that if an object of class 
visiting with slot name equal to ?X exists, then create 
a new object of class tenured with a slot name with 
value ?X. The derivation status of the new object (ac-
cording to defeasible logic) is unknown since both its 
positive and negative truth status slots are set to 0. No-
tice that if a tenured object already exists with the 
same name, it is not created again. This is ensured by 
the value-based semantics of the R-DEVICE deductive 
rules. 

• An aggregate attribute “support” rule that stores in -
sup slots the rule ids of the rules that can potentially 
prove positively or negatively the object. For example, 
for rule r2 the following “support” rule is generated 
(list is an aggregate function that just collects values 
in a list): 

(aggregateattrule r2-sup  
 (visiting (name ?X)) 
 ?gen23 <- (tenured (name ?X)) 
 ⇒ 
 ?gen23 <- (tenured (neg-sup (list r5)))) 
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Rule r2-sup states that if there is a visiting object 
named ?X, and there is a tenured object with the same 
name, then derive that rule r2 could potentially support 
the defeasible negation of the tenured object (slot 
neg-sup). 

• A derived attribute “defeasibly” rule that defeasibly 
proves either positively or negatively an object by stor-
ing the value of 1 in the pos or neg slots, if the rule 
condition has been at least defeasibly proven, if the op-
posite conclusion has not been definitely proven and if 
the rule has not been overruled by another rule. For ex-
ample, for rule r2 the following “defeasibly” rule is 
generated: 

(derivedattrule r2-defeasibly  
(visiting (name ?X) (pos ?gen29&:(>= ?gen29 1))) 
 ?gen23 <- (tenured (name ?X) (pos ~2)  
 (neg-over $?gen25&:(not (member$ r5 $?gen25)))) 
 ⇒  
 ?gen23 <- (tenured (neg 1))) 

Rule r2-defeasibly states that if it has been defeasi-
bly proven that a visiting object named ?X exists, 
and there is a tenured object with the same name that 
is not already strictly-positively proven and rule r2 has 
not been overruled (check slot neg-over), then derive 
that the tenured object is defeasibly-negatively 
proven. 

• A derived attribute “overruled” rule that stores in -
over slots the rule id of the rule that has overruled the 
positive or the negative proof of the defeasible object, 
along with the ids of the rules that support the opposite 
conclusion, if the rule condition has been at least defea-
sibly proven, and if the rule has not been defeated by a 
superior rule. For example, for rule r1 the following 
“overruled” rule is generated (through calc expres-
sions, arbitrary user-defined calculations are per-
formed): 

(derivedattrule r1-over  
 (professor (name ?X)  
  (pos ?gen22&:(>= ?gen22 1))) 
 ?gen16 <- (tenured (name ?X) (neg-sup $?gen19) 
      (neg-over $?gen20)  
      (pos-def $?gen18& 
       :(not (member$ r4 $?gen18)))) 
 ⇒  
(calc (bind $?gen21  
 (create$ r1-over $?gen19 $?gen20))) 
  ?gen16 <- (tenured (neg-over $?gen21))) 

Rule r1-over actually overrules all rules that can sup-
port the negative derivation of tenured, including rule 
r2. Specifically, it states that if it has been defeasibly 
proven that a professor object named ?X exists, and 
there is a tenured object with the same name that its 
negation can be potentially supported by rules in the slot 
neg-sup, then derive that rule r1-over overruled 
those “negative supporters” (slot neg-over), unless it 
has been defeated (check slot pos-def). 

• A derived attribute “defeated” rule that stores in -def 
slots the rule id of the rule that has defeated overriding 
rules (along with the defeated rule ids) when the former 

is superior to the latter, if the rule condition has been at 
least defeasibly proven. A “defeated” rule is generated 
only for rules that have a superiority relation, i.e. they 
are superior to others. For example, for rule r5 the fol-
lowing “defeated” rule is generated: 

(derivedattrule r2-def  
 (visiting (name ?X)  
  (pos ?gen29&:(>= ?gen29 1))) 
 ?gen23 <- (tenured (name ?X) (pos-def $?gen26)) 
⇒  
(calc (bind $?gen25 (create$ r2-def r1 $?gen26))) 
 ?gen23 <- (tenured (pos-def $?gen25))) 

Rule r2-def actually defeats rule r1, since r2 is supe-
rior to r1. Specifically, it states that if it has been defea-
sibly proven that a visiting object named ?X exists, 
and there is a tenured object with the same name then 
derive that rule r2-def defeats rule r1 (slot pos-
def). 

 Strict rules are handled in the same way as defeasible 
rules, with an addition of a derived attribute rule (called 
definitely rule) that definitely proves either positively or 
negatively an object by storing the value of 2 in the pos or 
neg slots, if the condition of the strict rule has been defi-
nitely proven, and if the opposite conclusion has not been 
definitely proven. For example, for the strict rule r3: 
visiting(X) → professor(X), the following “defi-
nitely” rule is generated: 
(derivedattrule r3-definitely  
 (visiting (name ?X) (pos 2)) 
 ?gen9 <- (professor (name ?X) (pos ~2)) 
 ⇒  
 ?gen9 <- (professor (pos 2))) 

Defeaters are much weaker rules that can only overrule 
a conclusion. Therefore, for a defeater only the “over-
ruled” rule is created, along with a deductive rule to allow 
the creation of derived objects, even if their proof status 
cannot be supported by defeaters. 
Execution Order 
The order of execution of all the above rule types is as 
follows: “deductive”, “support”, “definitely”, “defeated”, 
“overruled”, “defeasibly”. Moreover, rule priority for 
stratified defeasible rule programs is determined by strati-
fication. Finally, for non-stratified rule programs rule exe-
cution order is not determined. However, in order to ensure 
the correct result according to the defeasible logic theory 
for each derived attribute rule of the rule types “defi-
nitely”, “defeated”, “overruled” and “defeasibly” there is 
an opposite “truth maintenance” derived attribute rule that 
undoes (retracts) the conclusion when the condition is no 
longer met. In this way, even if rules are not executed in 
the correct order, the correct result will be eventually de-
duced because conclusions of rules that should have not 
been executed can be later undone. For example, the fol-
lowing rule undoes the “defeasibly” rule of rule r2 when 
either the condition of the defeasible rule is no longer de-
feasibly satisfied, or the opposite conclusion has been defi-
nitely proven, or if rule r5 has been overruled. 
(derivedattrule r2-defeasibly-dot  
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 ?gen23 <- (tenured (name ?X) (neg 1)  
      (neg-sup $? r5 $?)) 
 (not (and (visiting (name ?X) (pos ?gen29& 
       :(>= ?gen29 1))) 
 ?gen23 <- (tenured (pos ~2) (neg-over $?g& 
      :(not (member$ r2 $?g)))))) 
 ⇒  
 ?gen23 <- (tenured (neg 0))) 

 DR-DEVICE has been tested for correctness using a 
tool that generates scalable test defeasible logic theories 
that comes with Deimos, a query answering defeasible 
logic system (Maher et al. 2001). 

The Rule Editor 
Writing rules in RuleML can often be a highly cumber-
some task. Thus, the need for authoring tools that assist 
end-users in writing and expressing rules is apparently 
imperative. 
 VDR-Device is equipped with DRREd, a Java-built vis-
ual rule editor that aims at enhancing user-friendliness and 
efficiency during the development of VDR-Device 
RuleML documents. Its implementation is oriented to-
wards simplicity of use and familiarity of interface. Other 
key features of the software include: (a) functional flexibil-
ity - program utilities can be triggered via a variety of 
overhead menu actions, keyboard shortcuts or popup 
menus, (b) improved development speed - rule bases can 
be developed in just a few steps and (c) powerful safety 
mechanisms – the correct syntax is ensured and the user is 
protected from syntactic or RDF Schema related semantic 
errors. 

 

Fig. 3. The graphical rule editor and the namespace dialog win-
dow. 

 More specifically, and as can be observed in Fig. 3, the 
main window of the program is composed of two major 
parts: a) the upper part includes the menu bar, which con-
tains the program menus, and the toolbar that includes 
icons, representing the most common utilities of the rule 
editor, and b) the central and more “bulky” part is the pri-
mary frame of the main window and is in turn divided in 
two panels. 

 The left panel displays the rule base in XML-tree for-
mat, which is the most intuitive means of displaying 
RuleML-like syntax, because of its hierarchical nature. 
The user has the option of navigating through the entire 
tree and can add to or remove elements from the tree. 
However, since each rule base is backed by a DTD docu-
ment, potential addition or removal of tree elements has to 
obey to the DTD limitations. Therefore, the rule editor 
allows a limited number of operations performed on each 
element, according to the element's meaning within the 
rule tree. 
 The right panel shows a table, which contains the attrib-
utes that correspond to the selected tree node in the left-
hand area. The user can also perform editing functions on 
the attributes, by altering the value for each attribute in the 
panel that appears below the attributes table on the right-
hand side. The values that the user can insert are obviously 
limited by the chosen attribute each time. 
 The development of a rule base using VDR-Device is a 
delicate process that depends heavily on the parameters 
around the node that is being edited each time. First of all, 
there is an underlying procedure behind tree expansion, 
which is “launched” each time the user is trying to add a 
new element to the rule base. Namely, when a new element 
is added to the tree, all the mandatory sub-elements that 
accompany it are also added. In the cases where there are 
multiple alternative sub-elements, none of them is added to 
the rule base and the final choice is left to the user to de-
termine which one of them has to be added. The user has 
to right-click on the parent element and choose the desired 
sub-element from the pop-up menu that appears (Fig. 3). 
 Another important component is the namespace dialog 
window (Fig. 3), where the user can determine which 
RDF/XML namespaces will be used by the rule base. Ac-
tually, we treat namespaces as addresses of input RDF 
Schema ontologies that contain the vocabulary for the in-
put RDF documents, over which the rules will be run. The 
namespaces entered by the user, as well as those contained 
in the input RDF documents (indicated by the 
rdf_import attribute of the rulebase root element), are 
analyzed in order to extract all the allowed class and prop-
erty names for the rule base being developed (see next 
section). These names are then used throughout the author-
ing phase of the RuleML rule base, constraining the corre-
sponding allowed names that can be applied and narrowing 
the possibility for errors on behalf of the user. 
 Moving on to more node-specific features of the rule 
editor, one of the rule base elements that are treated in a 
specific manner is the atom element, which can be either 
negated or not. The response of the editor to an atom nega-
tion is performed through the wrapping/unwrapping of the 
atom element within a neg element and it is performed via 
a toggle button, located on the overhead toolbar.  
 Some components that also need “special treatment” are 
the rule IDs, each of which uniquely represents a rule 
within the rule base. Thus, the rule editor has to collect all 
of the RuleIDs inserted, in order to prohibit the user from 
entering the same RuleID twice and also equipping other 
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IDREF attributes (e.g. superior attribute) with the list of 
RuleIDs, constraining the variety of possible values. 
 The names of the functions that appear inside a 
fun_call element are also partially constrained by the 
rule editor, since the user can either insert a custom-named 
function or a CLIPS built-in function. Through radio-
buttons the user determines whether he/she is using a cus-
tom or a CLIPS function. In the latter case, a list of all 
built-in functions is displayed, once again constraining 
possible entries. 
 Finally, users can examine all the exported results via an 
Internet Explorer window, launched by VDR-Device. 
Also, to improve reliability, the user can also observe the 
execution trace of compilation and running, both during 
run-time and also after the whole process has been termi-
nated. 

Related Work 
There exist several previous implementations of defeasible 
logics, although to the best of our knowledge none of them 
is supported by a user-friendly integrated development 
environment or a visual rule editor. Deimos (Maher et al. 
2001) is a flexible, query processing system based on Has-
kell. It implements several variants, but neither conflicting 
literals nor negation as failure in the object language. Also, 
the current implementation does not integrate with Seman-
tic Web, since it is solely a defeasible logic engine (for 
example, there is no way to treat RDF data and 
RDFS/OWL ontologies; nor does it use an XML-based or 
RDF-based syntax for syntactic interoperability). There-
fore, it is only an isolated solution, although external trans-
lation modules could provide such interoperability. Finally, 
it is propositional and does not support variables. 

Delores (Maher et al. 2001) is another implementation, 
which computes all conclusions from a defeasible theory. 
It is very efficient, exhibiting linear computational com-
plexity. Delores only supports ambiguity blocking proposi-
tional defeasible logic; so, it does not support ambiguity 
propagation, nor conflicting literals, variables and negation 
as failure in the object language. Also, it does not integrate 
with other Semantic Web languages and systems, and is, 
thus, an isolated solution as well. 

SweetJess (Grosof, Gandhe and Finin 2002) is yet an-
other implementation of a defeasible reasoning system 
based on Jess. It integrates well with RuleML. However, 
SweetJess rules can only express reasoning over ontologies 
expressed in DAMLRuleML (a DAML-OIL like syntax of 
RuleML) and not on arbitrary RDF data, like VDR-
DEVICE. Furthermore, SweetJess is restricted to simple 
terms (variables and atoms). This applies to VDR-
DEVICE to a large extent; however, the basic R-DEVICE 
language (Bassiliades and Vlahavas 2006) can support a 
limited form of functions in the following sense: (a) path 
expressions are allowed in the rule condition, which can be 
seen as complex functions, where allowed function names 
are object referencing slots; (b) aggregate and sorting func-

tions are allowed in the conclusion of aggregate rules. Fi-
nally, VDR-DEVICE can also support conclusions in non-
stratified rule programs due to the presence of truth-
maintenance rules (Bassiliades, Antoniou and Vlahavas 
2006). 

Mandarax (Dietrich et al. 2003) is a Java rule platform, 
which provides a rule mark-up language (compatible with 
RuleML) for expressing rules and facts that may refer to 
Java objects. It is based on derivation rules with negation-
as-failure, top-down rule evaluation, and generating an-
swers by logical term unification. RDF documents can be 
loaded into Mandarax as triplets. Furthermore, Mandarax 
is supported by the Oryx graphical rule management tool. 
Oryx includes a repository for managing the vocabulary, a 
formal-natural-language-based rule editor and a graphical 
user interface library. Contrasted, the rule authoring tool of 
DR-DEVICE lies closer to the XML nature of its rule syn-
tax and follows a more traditional object-oriented view of 
the RDF data model (Bassiliades and Vlahavas 2006). Fur-
thermore, DR-DEVICE supports both negation-as-failure 
and strong negation, and supports both deductive and de-
feasible logic rules. 

Conclusions and Future Work 
In this paper we have argued that defeasible reasoning is 

useful for many applications in the Semantic Web, mainly 
due to conflicting rules and rule priorities. We have also 
presented a system for defeasible reasoning on the Web, 
called VDR-Device. It is a visual environment for develop-
ing defeasible logic rule bases that, after analyzing the in-
put RDF ontologies, it constrains the allowed vocabulary. 
Furthermore, the system employs a user-friendly graphical 
shell and a powerful defeasible reasoning system that sup-
ports the following: 
• Multiple rule types of defeasible logic, such as strict 

rules, defeasible rules, and defeaters.  
• Priorities among rules. 
• Two types of negation (strong, negation-as-failure) and 

conflicting (mutually exclusive) literals. 
• Compatibility with RuleML, the main standardization 

effort for rules on the Semantic Web.  
• Direct import from the Web and processing of RDF data 

and RDF Schema ontologies. 
• Direct export to the Web of the results (conclusions) of 

the logic program as an RDF document. 
 The defeasible reasoning system is built on-top of a 
CLIPS-based implementation of deductive rules. The core 
of the system consists of a translation of defeasible knowl-
edge into a set of deductive rules, including derived and 
aggregate attributes. However, the implementation is de-
clarative because it interprets the not operator using Well-
Founded Semantics. 

In the future, we plan to delve into the proof layer of the 
Semantic Web architecture by enhancing further the 
graphical environment with rule execution tracing, expla-
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nation, proof exchange in an XML or RDF format, proof 
visualization and validation, etc. We will try to visualize 
the semantics of defeasible logic in an intuitive manner, by 
providing graphical representations of rule attacks, superi-
orities, conflicting literals, etc. These facilities would be 
useful for increasing the trust of users for the Semantic 
Web agents and for automating proof exchange and trust 
among agents in the Semantic Web. Furthermore, we will 
include a graphical RDF ontology and data editor that will 
comply with the user-interface of the RuleML editor. Fi-
nally, concerning the implementation of the graphical edi-
tor we will adhere to newer XML Schema-based versions 
of RuleML. 
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