
NMR Systems and Applications

3.5 A Non-Monotonic Reasoning System for RDF Metadata

A Non-Monotonic Reasoning System for RDF Metadata
Efstratios Kontopoulos1, Nick Bassiliades1, Grigoris Antoniou2

1Department of Informatics, Aristotle University of Thessaloniki

GR-54124 Thessaloniki, Greece
{ skontopo,nbassili}@csd.auth.gr

2Institute of Computer Science, FO.R.T.H.
P.O. Box 1385, GR-71110, Heraklion, Greece

antoniou@ics.forth.gr

Abstract
Non-monotonic reasoning constitutes an approach to rea-
soning with incomplete or changing information and is sig-
nificantly more powerful than standard reasoning, which
simply deals with universal statements. Defeasible reason-
ing, a member of the non-monotonic reasoning family, of-
fers the extra capability of dealing with conflicting informa-
tion and can represent facts, rules and priorities among
rules. The main advantages of defeasible reasoning, how-
ever, are not only limited to its enhanced representational
capabilities, but also feature low computational complexity
compared to mainstream non-monotonic reasoning. This
paper presents a system for non-monotonic reasoning on the
Semantic Web called VDR-Device, which is capable of rea-
soning about RDF metadata over multiple Web sources us-
ing defeasible logic rules. It is implemented on top of the
CLIPS production rule system and features a RuleML com-
patible syntax. The operational semantics of defeasible
logic are implemented through compilation into a generic
deductive rule language. Since the RuleML syntax may ap-
pear complex for many users, we have also implemented a
graphical authoring tool for defeasible logic rules that acts
as a shell for the defeasible reasoning system. The tool con-
strains the allowed vocabulary through analysis of the input
RDF documents, so that the user does not have to type-in
class and property names.

Introduction
The development of the Semantic Web (Berners-Lee,
Hendler and Lassila 2001) proceeds in a hierarchy of lay-
ers, with each layer being on top of other layers. At pre-
sent, the highest layer that has reached sufficient maturity
is the ontology layer, where OWL (Dean and Schreiber
2004), a description logic based language, is currently the
dominant standard.
 Above the ontology layer lie the logic and proof layers,
towards which the next steps in the development of the
Semantic Web will be directed. Rule systems can play a
twofold role in the Semantic Web initiative: (a) they can
serve as extensions of, or alternatives to, description logic
based ontology languages, since rules are more expressive
than description logic languages like OWL and (b) they

can be used to develop declarative systems on top of (us-
ing) ontologies.
 Non-monotonic reasoning (Antoniou 1997) constitutes
an approach that allows reasoning with incomplete or
changing information. More specifically, it provides
mechanisms for taking back conclusions that, in the pres-
ence of new information, turn out to be wrong and for de-
riving new, alternative conclusions instead. Contrary to
standard reasoning, which simply deals with universal
statements, non-monotonic reasoning offers a significantly
higher level of expressiveness.
 Defeasible reasoning (Nute 1987), a member of the non-
monotonic reasoning family, represents a simple rule-
based approach to reasoning not only with incomplete or
changing but also with conflicting information. When
compared to mainstream non-monotonic reasoning, the
main advantages of defeasible reasoning are enhanced rep-
resentational capabilities coupled with low computational
complexity.
 Defeasible reasoning can represent facts, rules and pri-
orities and conflicts among rules. Such conflicts arise,
among others, from rules with exceptions, which are a
natural representation for policies and business rules (An-
toniou, Billington and Maher 1999) and priority informa-
tion is often available to resolve conflicts among rules.
Other application domains are described later on in this
work.
 In this paper we report on the implementation of VDR-
DEVICE which is a visual, integrated environment for the
development and application of defeasible logic rule bases
on top of RDF ontologies. VDR-Device consists of: (i) a
visual RuleML-compliant rule editor and (ii) a defeasible
reasoning system for the Semantic Web that processes
RDF data and RDF Schema ontologies.
 VDR-Device supports multiple rule types of defeasible
logic (strict rules, defeasible rules and defeaters) as well as
priorities among rules. It also supports two types of nega-
tion (strong negation and negation-as-failure) and conflict-
ing (mutually exclusive) literals.
 The system has a RuleML-compatible (Boley et al.
2001) syntax, which expresses the main standardization
effort for rules in the Semantic Web. Input and output of
data is performed through processing of RDF data and
RDF Schema ontologies.

DEPARTMENT OF INFORMATICS 285

11TH NMR WORKSHOP

 The reasoning system of VDR-Device is built on-top of
a CLIPS-based implementation of deductive rules, called
R-Device (Bassiliades and Vlahavas 2006). The core
mechanism of the system performs the translation of de-
feasible knowledge into a set of deductive rules, including
derived and aggregate attributes.
 The rest of the paper is organized as follows: Firstly, the
motivation for utilizing defeasible reasoning in the Seman-
tic Web is more thoroughly examined. Then, a brief intro-
duction to defeasible logics is made, followed by the sec-
tion that presents the VDR-Device system. The presenta-
tion includes the architecture and functionality of the sys-
tem, the syntax of the defeasible logic rule language, the
underlying core deductive rule language, the translation
from the defeasible logic rules to the deductive rules and
the graphical rule editor. Related work on defeasible rea-
soning systems is discussed, next. Finally, this paper sums
up the conclusions and gives potential directions for future
work.

Conflicting Rules in the Semantic Web
This section briefly describes the main cases, where con-
flicting rules might be applied in the Semantic Web.

Reasoning with Incomplete Information
In (Antoniou 2002) a scenario is described where business
rules have to deal with incomplete information: in the ab-
sence of certain information some assumptions have to be
made that lead to conclusions not supported by classical
predicate logic. In many applications on the Web such
assumptions must be made because other players may not
be able (e.g. due to communication problems) or willing
(e.g. because of privacy or security concerns) to provide
information. This is the classical case for the use of non-
monotonic knowledge representation and reasoning
(Marek and Truszczynski 1993).

Rules with Exceptions
As mentioned earlier, rules with exceptions are a natural
way of representation for policies and business rules. And
priority information is often implicitly or explicitly avail-
able to resolve conflicts among rules. Potential applica-
tions include security policies (Ashri et al. 2004), business
rules (Antoniou and Arief 2002), e-contracting (Governa-
tori 2005), brokering (Antoniou et al. 2005) and agent ne-
gotiations (Governatori et al. 2001).

Default Inheritance in Ontologies
Default inheritance is a well-known feature of certain
knowledge representation formalisms. Thus it may play a
role in ontology languages, which currently do not support
this feature. In (Grosof and Poon 2003) some ideas are

presented for possible uses of default inheritance in on-
tologies. A natural way of representing default inheritance
is rules with exceptions plus priority information. Thus,
non-monotonic rule systems can be utilized in ontology
languages.

Ontology Merging
When ontologies from different authors and/or sources are
merged, contradictions arise naturally. Predicate logic
based formalisms, including all current Semantic Web lan-
guages, cannot cope with inconsistencies. If rule-based
ontology languages are used (e.g. DLP (Grosof et al.
2003)) and if rules are interpreted as defeasible (that is,
they may be prevented from being applied even if they can
fire) then we arrive at non-monotonic rule systems. A
skeptical approach, as adopted by defeasible reasoning, is
sensible because it does not allow for contradictory con-
clusions to be drawn. Moreover, priorities may be used to
resolve some conflicts among rules, based on knowledge
about the reliability of sources or on user input). Thus,
non-monotonic rule systems can support ontology integra-
tion.

Defeasible Logics
A defeasible theory D is a couple (R,>) where R a finite set
of rules, and > a superiority relation on R. In expressing
the proof theory we consider only propositional rules.
Rules containing free variables are interpreted as the set of
their variable-free instances.
 There are three kinds of rules: Strict rules are denoted
by A → p, and are interpreted in the classical sense: when-
ever the premises are indisputable then so is the conclu-
sion. An example of a strict rule is “Professors are faculty
members”. Written formally:

professor(X) → faculty(X).
 Inference from strict rules only is called definite infer-
ence. Strict rules are intended to define relationships that
are definitional in nature, for example ontological knowl-
edge.
 Defeasible rules are denoted by A ⇒ p and can be de-
feated by contrary evidence. An example of such a rule is:

professor(X) ⇒ tenured(X)
which reads as follows: “Professors are typically tenured”.
 Defeaters are denoted as A ~> p and cannot actively
support conclusions, but are used only to prevent some of
them. A defeater example is:

assistantProf(X) ~> ¬tenured(X)
which is interpreted as follows: “Assistant professors may
be not tenured”.
 A superiority relation on R is an acyclic relation > on R
(that is, the transitive closure of > is irreflexive). When r1
> r2, then r1 is called superior to r2, and r2 inferior to r1.

286 Technical Report IfI-06-04

NMR Systems and Applications

This expresses that r1 may override r2. For example, given
the defeasible rules
r1: professor(X) ⇒ tenured(X)

r2: visiting(X) ⇒ ¬tenured(X)

which contradict one another, no conclusive decision can
be made about whether a visiting professor is tenured. But
if we introduce a superiority relation > with r2 > r1, then we
can indeed conclude that a visiting professor is not ten-
ured.

Another important element of defeasible reasoning is the
notion of conflicting literals. In applications, literals are
often considered to be conflicting and at most one of a
certain set should be derived. An example of such an ap-
plication is price negotiation, where an offer should be
made by the potential buyer. The offer can be determined
by several rules, whose conditions may or may not be mu-
tually exclusive. All rules have offer(X) in their head,
since an offer is usually a positive literal. However, only
one offer should be made; therefore, only one of the rules
should prevail, based on superiority relations among them.
In this case, the conflict set is:
C(offer(x,y)) = { ¬offer(x,y) } ∪

{ offer(x,z) | z ≠ y }

 For example, the following two rules make an offer for
a given apartment, based on the buyer’s requirements.
However, the second one is more specific and its conclu-
sion overrides the conclusion of the first one.
r5: size(X,Y),Y≥45,garden(X,Z) ⇒

offer(X,250+2Z+5(Y−45))
r6: size(X,Y),Y≥45,garden(X,Z),central(X) ⇒

offer(X,300+2Z+5(Y−45))
r6 > r5

The VDR-Device System
The VDR-Device system consists of two primary compo-
nents:
1. DR-Device, the reasoning system that performs the

RDF processing and inference and produces the results,
and

2. DRREd (Defeasible Reasoning Rule Editor), the rule
editor, which serves both as a rule authoring tool and as
a graphical shell for the core reasoning system.

 Although these two subsystems utilize different tech-
nologies and were developed independently, they inter-
communicate efficiently, forming a flexible and powerful
integrated environment.

The Non-Monotonic Reasoning System
The core reasoning system of VDR-Device is DR-Device
(Bassiliades, Antoniou and Vlahavas 2006) and consists of
two primary components (Fig. 1): The RDF
loader/translator and the rule loader/translator. The user
can either develop a rule base (program, written in the
RuleML-like syntax of VDR-Device) with the help of the

rule editor described in a following section, or he/she can
load an already existing one, probably developed manu-
ally. The rule base contains: (a) a set of rules, (b) the
URL(s) of the RDF input document(s), which is forwarded
to the RDF loader, (c) the names of the derived classes to
be exported as results and (d) the name of the RDF output
document.
 The rule base is then submitted to the rule loader which
transforms it into the native CLIPS-like syntax through an
XSLT stylesheet and the resulting program is then for-
warded to the rule translator, where the defeasible logic
rules are compiled into a set of CLIPS production rules
(http://www.ghg.net/clips/CLIPS.html). This is a
two-step process: First, the defeasible logic rules are trans-
lated into sets of deductive, derived attribute and aggregate
attribute rules of the basic deductive rule language, using
the translation scheme described in (Bassiliades, Antoniou
and Vlahavas 2006). Then, all these deductive rules are
translated into CLIPS production rules according to the
rule translation scheme in (Bassiliades and Vlahavas
2006). All compiled rule formats are also kept in local files
(structured in project workspaces), so that the next time
they are needed they can be directly loaded, improving
speed considerably (running a compiled project is up to 10
times faster).

RDF triple
Loader

RDF triple
Translator

Local Disk

Input RDF
document URI

ARP

RuleML/DR-DEVICE
Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents RDF

Extractor

Results - Objects CLIPS Rules

Logic Program

Loader

Xalan
XSLT

Processor

Local Disk

RuleML
documents

RuleML document

RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

DRREd USER

Fig. 1. Architecture of the VDR-DEVICE system.

 Meanwhile, the RDF loader downloads the input RDF
documents, including their schemas, and translates RDF
descriptions into CLIPS objects, according to the RDF-to-
object translation scheme in (Bassiliades and Vlahavas
2006), which is briefly described below.
 The inference engine of CLIPS performs the reasoning
by running the production rules and generates the objects
that constitute the result of the initial rule program. The
compilation phase guarantees correctness of the reasoning
process according to the operational semantics of defeasi-
ble logic. Finally, the result-objects are exported to the
user as an RDF/XML document through the RDF extrac-
tor. The RDF document includes the instances of the ex-
ported derived classes, which have been proved.

DEPARTMENT OF INFORMATICS 287

11TH NMR WORKSHOP

Syntax of the Defeasible Logic Rule Language
There are three types of rules in DR-DEVICE, closely re-
flecting defeasible logic: strict rules, defeasible rules, and
defeaters. Each rule type is declared with a corresponding
keyword (strictrule, defeasiblerule and defeater
respectively). For example, the following rule construct
represents the defeasible rule r1: professor(X) ⇒
tenured(X).
(defeasiblerule r1
 (professor (name ?X))
⇒
 (tenured (name ?X)))

 Predicates have named arguments, called slots, since
they represent CLIPS objects. DR-DEVICE has also a
RuleML-like syntax. The same rule is represented in
RuleML notation (version 0.85) as follows:
<imp>
 <_rlab ruleID="r1" ruletype="defeasiblerule">
 <ind>r1</ind></_rlab>
 <_head>
 <atom><_opr><rel>professor</rel></_opr>
 <_slot name="name"/><var>X</var></_slot>
 </atom> </_head>
 <_body>
 <atom><_opr><rel href="tenured"/></_opr>
 <_slot name="name"><var>X</var></_slot>
 </atom>
 </_body>
</imp>

 We have tried to re-use as many features of RuleML
syntax as possible. However, several features of the DR-
DEVICE rule language could not be captured by the exist-
ing RuleML DTDs (version 0.9); therefore, we have de-
veloped a new DTD (Fig. 2), using the modularization
scheme of RuleML, extending the Datalog with strong
negation. For example, rules have a unique (ID) ruleID
attribute in their _rlab element, so that superiority of one
rule over the other can be expressed through an IDREF
attribute of the superior rule. For example, the following
rule r2 is superior to rule r, presented above.
(defeasiblerule r2
 (declare (superior r1)) (visiting (name ?X))
⇒
 (not (tenured (name ?X))))

 In RuleML notation, there is a superiority attribute
in the rule label.
<imp>
 <_rlab ruleID="r2" ruletype="defeasiblerule"
superior="r1">
 <ind>r2</ind>
 </_rlab>
...
</imp>

 Classes and objects (facts) can also be declared in DR-
DEVICE; however, the focus in this paper is the use of
RDF data as facts. The input RDF file(s) are declared in
the rdf_import attribute of the rulebase (root) element of
the RuleML document. There exist two more attributes in
the rulebase element: the rdf_export attribute that
declares the address of the RDF file with the results of the

rule program to be exported, and the
rdf_export_classes attribute that declares the derived
classes whose instances will be exported in RDF/XML
format.
 Further extensions to the RuleML syntax, include func-
tion calls that are used either as constraints in the rule body
or as new value calculators at the rule head. Multiple con-
straints in the rule body can be expressed through the logi-
cal operators: _not, _and, _or.
<!ENTITY % LABELs "IDREFS">
<!ENTITY % CLASSes "NMTOKENS">
<!ATTLIST _rlab
 ruleID ID #REQUIRED
 ruletype (strictrule|defeasiblerule|defeater)
 #REQUIRED
 superior %LABELs; #IMPLIED>
<!ENTITY % _calc.cont "(function+)">
<!ELEMENT calc %_calc.cont;>
<!ENTITY % _head.content " (calc?, (atom | neg))">
<!ENTITY % _body.content "(atom | neg | and | or)">
<!ENTITY % _fname.cont "(#PCDATA)">
<!ELEMENT fname %_fname.cont;>
<!ENTITY % pos_term "(ind | var | function)">
<!ELEMENT function (fname, (%pos_term;)*)>
<!ENTITY % term "(_not | %pos_term;)">
<!ELEMENT _not (ind | var)>
<!ELEMENT _or (%term;, (%term;)+)>
<!ELEMENT _and (%term;, (%term;)+)>
<!ENTITY % constraint "(_not | _or | _and)">
<!ENTITY % _slot.content "(ind | var | %constraint;)">
<!ENTITY % negurdatalog_include SYSTEM
 "http://www.ruleml.org/0.85/dtd/neg/negurdatalog.dtd">

%negurdatalog_include;
<!ATTLIST rulebase
 rdf_import CDATA #IMPLIED
 rdf_export_classes %CLASSes; #IMPLIED
 rdf_export CDATA #IMPLIED>

Fig. 2. RuleML syntax DTD of the VDR-DEVICE rule language.

The Deductive Rule Language of R-DEVICE
R-DEVICE has a powerful deductive rule language which
includes features such as normal (ground), unground, and
generalized path expressions over the objects, stratified
negation, aggregate, grouping, and sorting, functions. The
rule language supports a second-order syntax, where vari-
ables can range over classes and properties. However, sec-
ond-order variables are compiled away into sets of first-
order rules, using instantiations of the metaclasses. Users
can define views which are materialized and, optionally,
incrementally maintained by translating deductive rules
into CLIPS production rules. Users can choose between an
OPS5/CLIPS-like or a RuleML-like syntax. Finally, users
can use and define functions using the CLIPS host lan-
guage. R-DEVICE belongs to a family of previous such
deductive object-oriented rule languages (Bassiliades et al.
2000). Examples of rules are given below.
 R-DEVICE, like DR-DEVICE, has both a native
CLIPS-like syntax and a RuleML-compatible syntax. Here
we will present a few examples using the former, since it is
more concise. For example, assume there is an RDF class
carlo:owner that defines the owners of the apartments
and a property carlo:has-owner that relates an apart-
ment to its owner.

288 Technical Report IfI-06-04

NMR Systems and Applications

 The following rule returns the names of all apartments
owned by "Smith":
(deductiverule test1
 (carlo:apartment (carlo:name ?x)
 ((carlo:lastName carlo:has-owner) "Smith"))
 =>
 (result (apartment ?x)))

 The above rule has a ground path expression
(carlo:lastName carlo:has-owner) where the
right-most slot name (carlo:has-owner) is a slot of the
"departing" class carlo:apartment. Moving to the left,
slots be-long to classes that represent the range of the
predecessor slots. In this example, the range of
carlo:has-owner is carlo:owner, so the next slot
carlo:lastName has domain carlo:owner. The value
expression in the above pattern (e.g. constant "Smith")
actually describes a value of the left-most slot of the path
(carlo:lastName). Notice that we have adopted a right-
to-left order of attributes, contrary to the left-to-right C-
like dot notation that is commonly assumed, because we
consider path expressions as function compositions, if we
assume that each property is a function that maps its do-
main to its range.
 Another example that demonstrates aggregate function
in R-DEVICE is the following rule, which returns the
number of apartments owned by each owner:
(deductiverule test2
 (carlo:apartment (carlo:name ?x)
 ((carlo:lastName carlo:has-owner) ?o))
 =>
 (result (owner ?o) (apartments (count ?x))))

 Function count is an aggregate function that returns the
number of all the different instantiations of the variable ?x
for each different instantiation of the variable ?o. There
are several other aggregate functions, such as sum, avg,
list, etc.

Translating Defeasible Logic Rules into Deductive
Rules
The translation of defeasible rules into R-DEVICE rules is
based on the translation of defeasible theories into logic
programs through the well-studied meta-program of (An-
toniou et al. 2000). However, instead of directly using the
meta-program at run-time, we have used it to guide defea-
sible rule compilation. Therefore, at run-time only first-
order rules exist.

Before going into the details of the translation we briefly
present the auxiliary system attributes (in addition to the
user-defined attributes) that each defeasibly derived object
in DR-DEVICE has, in order to support our translation
scheme:
• pos, neg: These numerical slots hold the proof status of

the defeasible object. A value of 1 at the pos slot de-
notes that the object has been defeasibly proven;
whereas a value of 2 denotes definite proof. Equivalent
neg slot values denote an equivalent proof status for the
negation of the defeasible object. A 0 value for both

slots denotes that there has been no proof for either the
positive or the negative conclusion.

• pos-sup, neg-sup: These attributes hold the rule ids
of the rules that can potentially prove the object posi-
tively or negatively.

• pos-over, neg-over: These attributes hold the rule
ids of the rules that have overruled the positive or the
negative proof of the defeasible object. For example, in
the rules r1 and r2 presented above, rule r2 has a nega-
tive conclusion that overrides the positive conclusion of
rule r1. Therefore, if the condition of rule r2 is satisfied
then its rule id is stored at the pos-over slot of the cor-
responding derived object.

• pos-def, neg-def: These attributes hold the rule ids
of the rules that can defeat overriding rules when the
former are superior to the latter. For example, rule r2 is
superior to rule r1. Therefore, if the condition of rule r2
is satisfied then its rule id is stored at the neg-def slot
of the corresponding derived object along with the rule
id of the defeated rule r1. Then, even if the condition of
rule r1 is satisfied, it cannot overrule the negative con-
clusion derived by rule r2 (as it is suggested by the pre-
vious paragraph) because it has been defeated by a su-
perior rule.

 Each defeasible rule in DR-DEVICE is translated into a
set of 5 R-DEVICE rules:
• A deductive rule that generates the derived defeasible

object when the condition of the defeasible rule is met.
The proof status slots of the derived objects are initially
set to 0. For example, for rule r2 the following deduc-
tive rule is generated:

(deductiverule r2-deductive
 (visiting (name ?X))
⇒
 (tenured (name ?X) (pos 0) (neg 0)))

Rule r2-deductive states that if an object of class
visiting with slot name equal to ?X exists, then create
a new object of class tenured with a slot name with
value ?X. The derivation status of the new object (ac-
cording to defeasible logic) is unknown since both its
positive and negative truth status slots are set to 0. No-
tice that if a tenured object already exists with the
same name, it is not created again. This is ensured by
the value-based semantics of the R-DEVICE deductive
rules.

• An aggregate attribute “support” rule that stores in -
sup slots the rule ids of the rules that can potentially
prove positively or negatively the object. For example,
for rule r2 the following “support” rule is generated
(list is an aggregate function that just collects values
in a list):

(aggregateattrule r2-sup
 (visiting (name ?X))
 ?gen23 <- (tenured (name ?X))
 ⇒
 ?gen23 <- (tenured (neg-sup (list r5))))

DEPARTMENT OF INFORMATICS 289

11TH NMR WORKSHOP

Rule r2-sup states that if there is a visiting object
named ?X, and there is a tenured object with the same
name, then derive that rule r2 could potentially support
the defeasible negation of the tenured object (slot
neg-sup).

• A derived attribute “defeasibly” rule that defeasibly
proves either positively or negatively an object by stor-
ing the value of 1 in the pos or neg slots, if the rule
condition has been at least defeasibly proven, if the op-
posite conclusion has not been definitely proven and if
the rule has not been overruled by another rule. For ex-
ample, for rule r2 the following “defeasibly” rule is
generated:

(derivedattrule r2-defeasibly
(visiting (name ?X) (pos ?gen29&:(>= ?gen29 1)))
 ?gen23 <- (tenured (name ?X) (pos ~2)
 (neg-over $?gen25&:(not (member$ r5 $?gen25))))
 ⇒
 ?gen23 <- (tenured (neg 1)))

Rule r2-defeasibly states that if it has been defeasi-
bly proven that a visiting object named ?X exists,
and there is a tenured object with the same name that
is not already strictly-positively proven and rule r2 has
not been overruled (check slot neg-over), then derive
that the tenured object is defeasibly-negatively
proven.

• A derived attribute “overruled” rule that stores in -
over slots the rule id of the rule that has overruled the
positive or the negative proof of the defeasible object,
along with the ids of the rules that support the opposite
conclusion, if the rule condition has been at least defea-
sibly proven, and if the rule has not been defeated by a
superior rule. For example, for rule r1 the following
“overruled” rule is generated (through calc expres-
sions, arbitrary user-defined calculations are per-
formed):

(derivedattrule r1-over
 (professor (name ?X)
 (pos ?gen22&:(>= ?gen22 1)))
 ?gen16 <- (tenured (name ?X) (neg-sup $?gen19)
 (neg-over $?gen20)
 (pos-def $?gen18&
 :(not (member$ r4 $?gen18))))
 ⇒
(calc (bind $?gen21
 (create$ r1-over $?gen19 $?gen20)))
 ?gen16 <- (tenured (neg-over $?gen21)))

Rule r1-over actually overrules all rules that can sup-
port the negative derivation of tenured, including rule
r2. Specifically, it states that if it has been defeasibly
proven that a professor object named ?X exists, and
there is a tenured object with the same name that its
negation can be potentially supported by rules in the slot
neg-sup, then derive that rule r1-over overruled
those “negative supporters” (slot neg-over), unless it
has been defeated (check slot pos-def).

• A derived attribute “defeated” rule that stores in -def
slots the rule id of the rule that has defeated overriding
rules (along with the defeated rule ids) when the former

is superior to the latter, if the rule condition has been at
least defeasibly proven. A “defeated” rule is generated
only for rules that have a superiority relation, i.e. they
are superior to others. For example, for rule r5 the fol-
lowing “defeated” rule is generated:

(derivedattrule r2-def
 (visiting (name ?X)
 (pos ?gen29&:(>= ?gen29 1)))
 ?gen23 <- (tenured (name ?X) (pos-def $?gen26))
⇒
(calc (bind $?gen25 (create$ r2-def r1 $?gen26)))
 ?gen23 <- (tenured (pos-def $?gen25)))

Rule r2-def actually defeats rule r1, since r2 is supe-
rior to r1. Specifically, it states that if it has been defea-
sibly proven that a visiting object named ?X exists,
and there is a tenured object with the same name then
derive that rule r2-def defeats rule r1 (slot pos-
def).

 Strict rules are handled in the same way as defeasible
rules, with an addition of a derived attribute rule (called
definitely rule) that definitely proves either positively or
negatively an object by storing the value of 2 in the pos or
neg slots, if the condition of the strict rule has been defi-
nitely proven, and if the opposite conclusion has not been
definitely proven. For example, for the strict rule r3:
visiting(X) → professor(X), the following “defi-
nitely” rule is generated:
(derivedattrule r3-definitely
 (visiting (name ?X) (pos 2))
 ?gen9 <- (professor (name ?X) (pos ~2))
 ⇒
 ?gen9 <- (professor (pos 2)))

Defeaters are much weaker rules that can only overrule
a conclusion. Therefore, for a defeater only the “over-
ruled” rule is created, along with a deductive rule to allow
the creation of derived objects, even if their proof status
cannot be supported by defeaters.
Execution Order
The order of execution of all the above rule types is as
follows: “deductive”, “support”, “definitely”, “defeated”,
“overruled”, “defeasibly”. Moreover, rule priority for
stratified defeasible rule programs is determined by strati-
fication. Finally, for non-stratified rule programs rule exe-
cution order is not determined. However, in order to ensure
the correct result according to the defeasible logic theory
for each derived attribute rule of the rule types “defi-
nitely”, “defeated”, “overruled” and “defeasibly” there is
an opposite “truth maintenance” derived attribute rule that
undoes (retracts) the conclusion when the condition is no
longer met. In this way, even if rules are not executed in
the correct order, the correct result will be eventually de-
duced because conclusions of rules that should have not
been executed can be later undone. For example, the fol-
lowing rule undoes the “defeasibly” rule of rule r2 when
either the condition of the defeasible rule is no longer de-
feasibly satisfied, or the opposite conclusion has been defi-
nitely proven, or if rule r5 has been overruled.
(derivedattrule r2-defeasibly-dot

290 Technical Report IfI-06-04

NMR Systems and Applications

 ?gen23 <- (tenured (name ?X) (neg 1)
 (neg-sup $? r5 $?))
 (not (and (visiting (name ?X) (pos ?gen29&
 :(>= ?gen29 1)))
 ?gen23 <- (tenured (pos ~2) (neg-over $?g&
 :(not (member$ r2 $?g))))))
 ⇒
 ?gen23 <- (tenured (neg 0)))

 DR-DEVICE has been tested for correctness using a
tool that generates scalable test defeasible logic theories
that comes with Deimos, a query answering defeasible
logic system (Maher et al. 2001).

The Rule Editor
Writing rules in RuleML can often be a highly cumber-
some task. Thus, the need for authoring tools that assist
end-users in writing and expressing rules is apparently
imperative.
 VDR-Device is equipped with DRREd, a Java-built vis-
ual rule editor that aims at enhancing user-friendliness and
efficiency during the development of VDR-Device
RuleML documents. Its implementation is oriented to-
wards simplicity of use and familiarity of interface. Other
key features of the software include: (a) functional flexibil-
ity - program utilities can be triggered via a variety of
overhead menu actions, keyboard shortcuts or popup
menus, (b) improved development speed - rule bases can
be developed in just a few steps and (c) powerful safety
mechanisms – the correct syntax is ensured and the user is
protected from syntactic or RDF Schema related semantic
errors.

Fig. 3. The graphical rule editor and the namespace dialog win-
dow.

 More specifically, and as can be observed in Fig. 3, the
main window of the program is composed of two major
parts: a) the upper part includes the menu bar, which con-
tains the program menus, and the toolbar that includes
icons, representing the most common utilities of the rule
editor, and b) the central and more “bulky” part is the pri-
mary frame of the main window and is in turn divided in
two panels.

 The left panel displays the rule base in XML-tree for-
mat, which is the most intuitive means of displaying
RuleML-like syntax, because of its hierarchical nature.
The user has the option of navigating through the entire
tree and can add to or remove elements from the tree.
However, since each rule base is backed by a DTD docu-
ment, potential addition or removal of tree elements has to
obey to the DTD limitations. Therefore, the rule editor
allows a limited number of operations performed on each
element, according to the element's meaning within the
rule tree.
 The right panel shows a table, which contains the attrib-
utes that correspond to the selected tree node in the left-
hand area. The user can also perform editing functions on
the attributes, by altering the value for each attribute in the
panel that appears below the attributes table on the right-
hand side. The values that the user can insert are obviously
limited by the chosen attribute each time.
 The development of a rule base using VDR-Device is a
delicate process that depends heavily on the parameters
around the node that is being edited each time. First of all,
there is an underlying procedure behind tree expansion,
which is “launched” each time the user is trying to add a
new element to the rule base. Namely, when a new element
is added to the tree, all the mandatory sub-elements that
accompany it are also added. In the cases where there are
multiple alternative sub-elements, none of them is added to
the rule base and the final choice is left to the user to de-
termine which one of them has to be added. The user has
to right-click on the parent element and choose the desired
sub-element from the pop-up menu that appears (Fig. 3).
 Another important component is the namespace dialog
window (Fig. 3), where the user can determine which
RDF/XML namespaces will be used by the rule base. Ac-
tually, we treat namespaces as addresses of input RDF
Schema ontologies that contain the vocabulary for the in-
put RDF documents, over which the rules will be run. The
namespaces entered by the user, as well as those contained
in the input RDF documents (indicated by the
rdf_import attribute of the rulebase root element), are
analyzed in order to extract all the allowed class and prop-
erty names for the rule base being developed (see next
section). These names are then used throughout the author-
ing phase of the RuleML rule base, constraining the corre-
sponding allowed names that can be applied and narrowing
the possibility for errors on behalf of the user.
 Moving on to more node-specific features of the rule
editor, one of the rule base elements that are treated in a
specific manner is the atom element, which can be either
negated or not. The response of the editor to an atom nega-
tion is performed through the wrapping/unwrapping of the
atom element within a neg element and it is performed via
a toggle button, located on the overhead toolbar.
 Some components that also need “special treatment” are
the rule IDs, each of which uniquely represents a rule
within the rule base. Thus, the rule editor has to collect all
of the RuleIDs inserted, in order to prohibit the user from
entering the same RuleID twice and also equipping other

DEPARTMENT OF INFORMATICS 291

11TH NMR WORKSHOP

IDREF attributes (e.g. superior attribute) with the list of
RuleIDs, constraining the variety of possible values.
 The names of the functions that appear inside a
fun_call element are also partially constrained by the
rule editor, since the user can either insert a custom-named
function or a CLIPS built-in function. Through radio-
buttons the user determines whether he/she is using a cus-
tom or a CLIPS function. In the latter case, a list of all
built-in functions is displayed, once again constraining
possible entries.
 Finally, users can examine all the exported results via an
Internet Explorer window, launched by VDR-Device.
Also, to improve reliability, the user can also observe the
execution trace of compilation and running, both during
run-time and also after the whole process has been termi-
nated.

Related Work
There exist several previous implementations of defeasible
logics, although to the best of our knowledge none of them
is supported by a user-friendly integrated development
environment or a visual rule editor. Deimos (Maher et al.
2001) is a flexible, query processing system based on Has-
kell. It implements several variants, but neither conflicting
literals nor negation as failure in the object language. Also,
the current implementation does not integrate with Seman-
tic Web, since it is solely a defeasible logic engine (for
example, there is no way to treat RDF data and
RDFS/OWL ontologies; nor does it use an XML-based or
RDF-based syntax for syntactic interoperability). There-
fore, it is only an isolated solution, although external trans-
lation modules could provide such interoperability. Finally,
it is propositional and does not support variables.

Delores (Maher et al. 2001) is another implementation,
which computes all conclusions from a defeasible theory.
It is very efficient, exhibiting linear computational com-
plexity. Delores only supports ambiguity blocking proposi-
tional defeasible logic; so, it does not support ambiguity
propagation, nor conflicting literals, variables and negation
as failure in the object language. Also, it does not integrate
with other Semantic Web languages and systems, and is,
thus, an isolated solution as well.

SweetJess (Grosof, Gandhe and Finin 2002) is yet an-
other implementation of a defeasible reasoning system
based on Jess. It integrates well with RuleML. However,
SweetJess rules can only express reasoning over ontologies
expressed in DAMLRuleML (a DAML-OIL like syntax of
RuleML) and not on arbitrary RDF data, like VDR-
DEVICE. Furthermore, SweetJess is restricted to simple
terms (variables and atoms). This applies to VDR-
DEVICE to a large extent; however, the basic R-DEVICE
language (Bassiliades and Vlahavas 2006) can support a
limited form of functions in the following sense: (a) path
expressions are allowed in the rule condition, which can be
seen as complex functions, where allowed function names
are object referencing slots; (b) aggregate and sorting func-

tions are allowed in the conclusion of aggregate rules. Fi-
nally, VDR-DEVICE can also support conclusions in non-
stratified rule programs due to the presence of truth-
maintenance rules (Bassiliades, Antoniou and Vlahavas
2006).

Mandarax (Dietrich et al. 2003) is a Java rule platform,
which provides a rule mark-up language (compatible with
RuleML) for expressing rules and facts that may refer to
Java objects. It is based on derivation rules with negation-
as-failure, top-down rule evaluation, and generating an-
swers by logical term unification. RDF documents can be
loaded into Mandarax as triplets. Furthermore, Mandarax
is supported by the Oryx graphical rule management tool.
Oryx includes a repository for managing the vocabulary, a
formal-natural-language-based rule editor and a graphical
user interface library. Contrasted, the rule authoring tool of
DR-DEVICE lies closer to the XML nature of its rule syn-
tax and follows a more traditional object-oriented view of
the RDF data model (Bassiliades and Vlahavas 2006). Fur-
thermore, DR-DEVICE supports both negation-as-failure
and strong negation, and supports both deductive and de-
feasible logic rules.

Conclusions and Future Work
In this paper we have argued that defeasible reasoning is

useful for many applications in the Semantic Web, mainly
due to conflicting rules and rule priorities. We have also
presented a system for defeasible reasoning on the Web,
called VDR-Device. It is a visual environment for develop-
ing defeasible logic rule bases that, after analyzing the in-
put RDF ontologies, it constrains the allowed vocabulary.
Furthermore, the system employs a user-friendly graphical
shell and a powerful defeasible reasoning system that sup-
ports the following:
• Multiple rule types of defeasible logic, such as strict

rules, defeasible rules, and defeaters.
• Priorities among rules.
• Two types of negation (strong, negation-as-failure) and

conflicting (mutually exclusive) literals.
• Compatibility with RuleML, the main standardization

effort for rules on the Semantic Web.
• Direct import from the Web and processing of RDF data

and RDF Schema ontologies.
• Direct export to the Web of the results (conclusions) of

the logic program as an RDF document.
 The defeasible reasoning system is built on-top of a
CLIPS-based implementation of deductive rules. The core
of the system consists of a translation of defeasible knowl-
edge into a set of deductive rules, including derived and
aggregate attributes. However, the implementation is de-
clarative because it interprets the not operator using Well-
Founded Semantics.

In the future, we plan to delve into the proof layer of the
Semantic Web architecture by enhancing further the
graphical environment with rule execution tracing, expla-

292 Technical Report IfI-06-04

NMR Systems and Applications

nation, proof exchange in an XML or RDF format, proof
visualization and validation, etc. We will try to visualize
the semantics of defeasible logic in an intuitive manner, by
providing graphical representations of rule attacks, superi-
orities, conflicting literals, etc. These facilities would be
useful for increasing the trust of users for the Semantic
Web agents and for automating proof exchange and trust
among agents in the Semantic Web. Furthermore, we will
include a graphical RDF ontology and data editor that will
comply with the user-interface of the RuleML editor. Fi-
nally, concerning the implementation of the graphical edi-
tor we will adhere to newer XML Schema-based versions
of RuleML.

References
Antoniou, G. 1997. Nonmonotonic Reasoning. MIT Press.
Antoniou G. 2002. Nonmonotonic Rule Systems on Top of
Ontology Layers. In Proceedings of the 1st Int. Semantic
Web Conference. 394-398. LNCS 2342. Springer-Verlag.
Antoniou, G., and Arief, M. 2002. Executable Declarative
Business Rules and their Use in Electronic Commerce. In
Proceedings of ACM Symposium on Applied Computing.
6-10. ACM Press.
Antoniou, G., Billington, D., Governatori, G., Maher M.J.
2000. A Flexible Framework for Defeasible Logics. In
Proceedings of the 17 National Conference on Artificial
Intelligence and 12 Conference on Innovative Applica-
tions of Artificial Intelligence.

th

th

405-410. AAAI/MIT Press.
Antoniou, G., Billington, D., and Maher, M.J. 1999. On
the Analysis of Regulations using Defeasible Rules. In
Proceedings of the 32nd Hawaii Int. Conference on Systems
Science, 7 pages (no page numbers). IEEE Press.
Antoniou G., Billington D., Governatori G. and Maher
M.J., “Representation results for defeasible logic”, ACM
Trans. on Computational Logic, 2(2), 2001, pp. 255-287
Antoniou, G., Skylogiannis, T., Bikakis, A., Bassiliades,
N. 2005. DR-BROKERING – A Defeasible Logic-Based
System for Semantic Brokering. In Proceedings of IEEE
Int. Conf. on E-Technology, E-Commerce and E-Service.
414-417. IEEE Computer Society.
Ashri, R., Payne, T., Marvin, D., Surridge, M., and Taylor,
S. 2004. Towards a Semantic Web Security Infrastructure.
In Proceedings of Semantic Web Services 2004 Spring
Symposium Series. Stanford University, Stanford Califor-
nia.
Bassiliades, N., Antoniou, G., Vlahavas I. 2006. A Defea-
sible Logic Reasoner for the Semantic Web. International
Journal on Semantic Web and Information Systems, 2(1):
1-41.
Bassiliades, N., and Vlahavas, I. 2006. R-DEVICE: An
Object-Oriented Knowledge Base System for RDF Meta-

data, International Journal on Semantic Web and Informa-
tion Systems, 2(2) (to appear).
Bassiliades, N., Vlahavas, and I., Elmagarmid, A.K. 2000.
E DEVICE: An extensible active knowledge base system
with multiple rule type support. IEEE TKDE. 12(5): 824-
844.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web. Scientific American 284(5):34-43.
Boley, H., Tabet, S., and Wagner, G. 2001. Design Ration-
ale for RuleML: A Markup Language for Semantic Web
Rules. SWWS 2001: 381-401.
Dean, M., and Schreiber, G. eds. 2004. OWL Web Ontol-
ogy Language Reference. www.w3.org/TR/2004/REC-
owl-ref-20040210/

Dietrich, J.; Kozlenkov A.; Schroeder, M.; Wagner, G.
2003. Rule-based agents for the semantic web. Electronic
Commerce Research and Applications. 2(4):323–338.
Governatori, G. 2005. Representing business contracts in
RuleML, International Journal of Cooperative Informa-
tion Systems, 14(2-3):181-216.
Governatori, G., Dumas, M., Hofstede, A. ter and Oaks P.
2001. A formal approach to protocols and strategies for
(legal) negotiation, In Proceedings of the 8th International
Conference of Artificial Intelligence and Law. 168-177.
ACM Press.
Grosof, B.N., Gandhe, M.D., Finin, T.W. 2002. SweetJess:
Translating DAMLRuleML to JESS. In Proceedings of Int.
Workshop on Rule Markup Languages for Business Rules
on the Semantic Web. Held at 1st Int. Semantic Web Con-
ference.
Grosof, B. N. and Poon T. C. 2003. SweetDeal: represent-
ing agent contracts with exceptions using XML rules, on-
tologies, and process descriptions. In Proceedings of the
12th Int. Conference on World Wide Web. 340-349. ACM
Press.
Hayes, P., “RDF Semantics”, W3C Recommendation, Feb.
2004, http://www.w3c.org/TR/rdf-mt/
Maher, M.J.; Rock, A.; Antoniou, G.; Billington, D.;
Miller T. 2001. Efficient Defeasible Reasoning Systems.
Int. Journal of Tools with Artificial Intelligence.
10(4):483-501.
Marek, V.W., Truszczynski, M. 1993. Nonmonotonic Lo-
gics; Context Dependent Reasoning. Springer-Verlag.
McBride, B. 2001. Jena: Implementing the RDF Model
and Syntax Specification. In Proceedings of the 2nd Int.
Workshop on the Semantic Web, CEUR Workshop Pro-
ceedings, Vol. 40.
Nute, D. 1987. Defeasible Reasoning. In Proceedings of
the 20th Int. Conference on Systems Science, 470-477.
IEEE Press.

DEPARTMENT OF INFORMATICS 293

