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Abstract 

Platform as a service (PaaS) is one of the Cloud computing services that provides a computing platform in the Cloud, 

allowing customers to develop, run, and manage web applications without the complexity of building and maintaining 

the infrastructure. The primary disadvantage for an SME to enter the emerging PaaS market is the possibility of being 

locked in to a certain platform, mostly provided by the market’s giants. The PaaSport project focuses on facilitating 

SMEs to deploy business applications on the best-matching Cloud PaaS offering and to seamlessly migrate these ap-

plications on demand, via a thin, non-intrusive Cloud-broker, in the form of a Cloud PaaS Marketplace. PaaSport 

enables PaaS provider SMEs to roll out semantically interoperable PaaS offerings, by annotating them using a unified 

PaaS semantic model that has been defined as an OWL ontology. In this paper we focus on the recommendation 

algorithm that has been developed on top of the ontology, for providing the application developer with recommenda-

tions about the best-matching Cloud PaaS offering. The algorithm consists of: a) a matchmaking part, where the func-

tional parameters of the application are taken into account to rule out inconsistent offerings, and b) a ranking part, 

where the non-functional parameters of the application are considered to score and rank offerings. Τhe algorithm is 

extensively evaluated showing linear scalability to the number of offerings and application requirements. Furthermore, 

it is extensible upon future semantic model extensions, because it is agnostic to domain specific concepts and param-

eters, using SPARQL template queries. 
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1 Introduction 

Platform as a service (PaaS) is a cloud computing model that delivers applications over the Internet. A cloud 

PaaS provider delivers hardware and software tools, usually those needed for application development, to 

its users as a service. As a result, PaaS frees users from having to install in-house hardware and software to 

develop or run a new application. It, thus, helps save on the cost incurred for buying and managing the 

underlying hardware and software. The PaaS model minimizes the incremental cost required for scaling the 

system with growth in the service usage, while allowing for resource sharing, reuse, life-cycle management, 

and automated deployment. For these benefits, PaaS is preferred over other solutions for application and 

service development. 

There are many market forecasts, e.g. (Carvalho, Mahowald, McGrath, Fleming, & Hilwa, 2015; Columbus, 

2013), indicating that PaaS has a very positive economic outlook for the Cloud market. Although giant 

vendors occupy this emerging space, including Microsoft, Amazon, Google, and Salesforce.com, many 

startups and SMEs try to enter the market. The major problem is that the big vendors battle for dominance 

and they are reluctant to agree on widely accepted standards promoting their own, mutually incompatible 

Cloud standards and formats (Gagliardi & Muscella, 2010). This dominance increases the lock-in of cus-

tomers in a single Cloud platform, preventing the portability of data or software created by them. But even 

if portability is supported, the high complexity and the additional switching costs discourage users from 

doing so (Androcec, Vrcek, & Kungas, 2015). Cloud specialists argue that in the years to come both large 

and small Cloud PaaS providers will grow through partnerships (Gardner, 2010). The formation of partner-

ships and federations between heterogeneous Cloud PaaS Providers involves interoperability. Cloud com-

munity and the EC (European Commission, 2012) have realized the significance of interoperability and has 

initiated several approaches to tackle this challenging issue. The first efforts to explore interoperability in 

PaaS are also well on track, e.g. CAMP (OASIS CAMP TC, 2014). 

In order to raise the barriers that prevent the small-medium Cloud PaaS vendors (existing and potential 

ones) and software SMEs from entering the PaaS market, companies developing applications should be able 

to choose between different Cloud PaaS offerings, e.g. selecting the most reliable, the most well-reputed, 

the most cost-efficient or simply the one that meets their technical requirements, and should also be able to 

switch easily and transparently between Cloud providers whenever needed, e.g. when an SLA is breached 

or when the cost is too high, without setting data and applications at risk, e.g. loss of data or inability to run 

the application on a different platform. Moreover, they should be able to compare Cloud offerings with 

different characteristics, such as resource, pricing or Quality of Service (QoS) model, and to choose the one 

that best matches their computing needs of their services and applications (Borenstein & Blake, 2011). 
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Having the above in mind, the PaaSport project (PaaSPort FP7 project, 2016) aims to resolve the application 

and data portability issues of the Cloud PaaS market through a flexible and efficient deployment and migra-

tion approach. These include, but are not limited to: image conversion to be suitable for target hypervisor, 

compression to aid, speed of transfer, image encryption, secure protocols, QoS guarantees, trust issues and 

cost sharing models. To this end, PaaSport combines Cloud PaaS technologies with lightweight semantics 

in order to specify and deliver a thin, non-intrusive Cloud-broker (in the form of a Cloud PaaS Marketplace), 

to implement the enabling tools and technologies, and to deploy fully operational prototypes and large-scale 

demonstrators. 

PaaSport’s scope is Cloud vendors (in particular SMEs) to be able to roll out semantically interoperable 

PaaS offerings leveraging their competitive advantage, the quality of service and value delivered to their 

customers, and improving their outreach to potential customers, particularly the software industry. Seman-

tically Interoperable PaaS Solutions constitute Cloud PaaS systems and offerings with the ability to over-

come the semantic incompatibilities and communicate, referring to the ability of applications and their data 

to seamlessly be deployed on and/or migrated between Cloud PaaS offerings that are using the same tech-

nological background but different data models and APIs. PaaSport will also enable Software SMEs to 

deploy business applications on the best-matching Cloud PaaS and to seamlessly migrate these applications 

on demand. PaaSport contributes to aligning and interconnecting heterogeneous PaaS offerings, overcoming 

the vendor lock-in problem and lowering switching costs. 

To tackle the above, the PaaSport project has, among others, a) developed an open, generic, thin Cloud-

broker for a marketplace of semantically-interconnected, interoperable PaaS offerings, resolving the main 

PaaS interoperability and application portability issues, b) defined a unified semantic model for PaaS offer-

ings and business applications, c) developed a Unified PaaS API that allows the deployment and migration 

of business applications transparently to the user and independent of the specificities of a PaaS offering, 

d) defined a unified service-level agreement model addressing the complex characteristics and dynamic 

environment of the Cloud PaaS marketplace, and e) defined a Cloud PaaS offerings discovery, short-listing 

and recommendation algorithm for providing the user with the best-matching PaaS offering. In this paper, 

we focus on few of the above; we initially briefly present the marketplace architecture (a) and the unified 

semantic model (b) and we extensively report on the recommendation algorithm (e). Furthermore, we also 

present how the algorithm has been integrated into the Persistence Layer of the PaaSport marketplace.  

Specifically, in order to support the PaaSport marketplace, a unified semantic model has been defined as an 

OWL ontology, for representing the necessary concepts and attributes for the definition of PaaS offerings 

and the business applications to be deployed through the proposed Cloud Marketplace (PaaSport Consor-

tium, 2014c). The PaaSport ontology has been defined as an extension of the DOLCE+DnS ontology design 
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pattern (DUL) (Gangemi & Mika, 2003), offering extensibility, since both PaaS concepts and parameters 

are defined as classes, so extending the ontology with new concepts requires just to extend class hierarchies 

without adding ontology properties. 

On top of the ontology, a semantic matchmaking and ranking algorithm has been developed for providing 

the application developer recommendations about the best-matching Cloud PaaS offering, using SPARQL 

queries for retrieving relevant data from the semantic repository. The algorithm consists of two parts: a) the 

matchmaking part, where the functional parameters of the application profile are taken into account to rule 

out inconsistent offerings, and b) the ranking part, where the non-functional parameters of the application 

profile are taken into account to score offerings and rank them according to this score. Due to the fact that 

application requirements and PaaS offering share the same vocabulary for PaaS concepts and parameters, 

the recommendation algorithm seamlessly matches application requirements to PaaS offerings both syntac-

tically and semantically. The matchmaking and recommendation algorithm has complexity that is linear to 

the number of instances and the number of concepts and parameters. Furthermore, the algorithm is extensi-

ble because it is agnostic to domain specific concepts and parameters.  

In the rest of this paper, we initially review related work in Section 2 on matchmaking / recommendation 

algorithms for cloud / service computing. We then briefly present the PaaSport marketplace architecture in 

Section 3, including the PaaSport Semantic Models, and we briefly discuss the requirements for the 

PaaSport recommendation algorithm. In Section 4, we present in detail the recommendation algorithm, its 

implementation using SPARQL query templates, as well as how it has been integrated with the persistence 

layer of the PaaSport marketplace. Finally, Section 5 presents the evaluation of the scalability of the recom-

mendation algorithm, whereas Section 6 concludes the paper with a discussion on future work. 

2 Related Work 

Since very few related work can be found on the exact topic of matchmaking cloud applications to PaaS 

offerings, this section presents indicative examples of the state-of-the-art in various matchmaking algo-

rithms, focusing mainly on (semantic) web service matchmaking algorithms, which are the most popular 

cases of matchmaking, highlighting the underlying principles and techniques. Existing matchmaking tech-

niques can be classified as logic-based, syntactic or text-similarity-based, while structural similarity and 

learning are less common. Logic-based techniques range from straightforward series of few class-relation-

ship rules to large lists of semantic conditions through ontologies. Text-similarity mostly uses textbook 

algorithms from the field of Information Retrieval.  
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SAWSDL-MX (Klusch & Kapahnke, 2008) provides all the standard matching strategies, namely logic-

based, syntactic (text-similarity) and hybrid (logic-based and syntactic similarity). The strategies target ser-

vice input, output and their underlying components (e.g. ComplexType), trying to find a match between a 

requested service (i.e. query) and all services offered in a set. Each offered service’s operation is matched 

with every requested operation and rated with the maximum observed match. An offered service’s overall 

rating is the worst (minimum) rating of all requested operations. However, SAWSDL-TC contains single-

operation services only. Hence, operation-match rating is equal to the overall service-match rating. 

SAWSDL-MX2 (Klusch, Kapahnke, & Zinnikus, 2009), in addition to logic-based and text-similarity, 

measures structural similarity between WSDL (Web Services Description Language) file schema infor-

mation (e.g. element names, data types and structural properties), using WSDL-Analyzer. It also introduces 

an adaptive, learning layer where SVM (Support Vector Machine) training vectors consist of values for 

logic-based, textual and structural criteria. Finally, iSeM (Klusch & Kapahnke, 2010) is an evolution of the 

MX series. In principle, it applies SVM learning for the weighted aggregation of underlying algorithm rank-

ings. The learning vectors are an extended version of the ones in –MX2, containing logic, structural and text 

similarity in similar fashion to –MX algorithms. However, approximate logic matching was added, which 

captures more matches than the existing one, using more relaxed criteria for subsumption. 

XAM4SWS is a common framework, from which two algorithms were derived, LOG4SWS and COV4SWS 

(Lampe & Schulte, 2012). Both algorithms perform operation-centric matching, targeting service interfaces, 

operations and I/O. LOG4SWS performs logic-based matching, in an –MX fashion, mapping ratings to 

numbers using linear regression. Meanwhile, COV4SWS rating measures are inspired by the field of se-

mantic relatedness. It then performs regression to find weights for the aggregation of ratings (from under-

lying service elements to an overall service rating). 

iMatcher (Wei, T. Wang, J. Wang, & Bernstein, 2011) integrates interesting variations of well-known strat-

egies. The first strategy includes three sub-strategies. It performs text-similarity aimed at either the WSDL 

service name field, service description field or semantic annotations. The second strategy selects the maxi-

mum rating between two sub-strategies. The first is a hybrid variant, where the logic-based part rates inputs 

and outputs of operations with 1 if the requested concept is a parent of the offered concept. If logic-based 

matching fails, syntactic matching is performed. The second sub-strategy examines the distance of two con-

cepts originating from different ontologies using ontology alignment similarity. On top of that, iMatcher 

also implements an Adaptive Matching method. The user selects multiple strategies, the results of which 

form vectors of the training set. Learning is performed by selecting an algorithm from the Weka library 

(Hall et al., 2009). 
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Most of the logic-based / ontology-based works on semantic web service matching have been more or less 

influenced by the seminal work by (Paolucci, Kawamura, Payne, & Sycara, 2002), which proposed a se-

mantic matchmaking algorithm of web service capabilities based on the use of DAML-S ontology. In this 

algorithm a match between an advertisement and a service request, consists of a similarity degree obtained 

by matching all the input / output parameters of the request with those of the advertisement. A parameter 

from the provider matches with one from the request profile if there is a conceptual relation in the ontology. 

Four different measures are defined with a matching degree organized along the scale exact > plugin > 

subsumed > fail.  

Later on the above algorithm has been extended by various researchers, such as (Meditskos & Bassiliades, 

2010), (Zapater, Escrivá, García, & Durá, 2015), introducing new similarity measures (e.g. sibling), to im-

prove recall, or using pre-process filtering steps based on web service categorization, to reduce the set of 

potentially useful web services, improving the scalability of the semantic matching algorithm. Furthermore, 

the Skyline system (Skoutas, Sacharidis, Simitsis, & Sellis, 2008) used an interesting strategy worth men-

tioning. Its target components are IOPEs, namely Inputs together with Preconditions and Outputs with Ef-

fects. The strategy is logic-based and classifies cases, such as Exact, Direct_Subclass, Subclass, Direct_Su-

perclass, Superclass, Sibling and Fail. To find the optimal trade-off of input versus output significance, the 

homonymous algorithm, Skyline, is used. Hence, services with an optimal combination of input and output 

ratings are returned.  

Compared to all the above web service matchmaking algorithms, our algorithm uses a more straightforward 

semantic matchmaking degree, based only on exact and plugin matching, which are both considered equiv-

alent. However, we offer a much richer similarity measure on non-functional or QoS parameters, which 

allows for better ranking of the advertisements. 

In the following we also discuss the relevance of various European research projects that deal with match-

making issues for cloud computing. Cloud4SOA (Cloud4SOA FP7 project, 2012; Kamateri et al., 2013) is 

a scalable solution to semantically interconnect heterogeneous PaaS offerings across different cloud provid-

ers that share the same technology. The design of Cloud4SOA comprises of a set of interlinked software 

components and models to provide developers and platform providers with a number of core capabilities: 

matchmaking, management, monitoring and migration of applications. As far as the semantic matchmaking 

is concerned, the objective is to resolve semantic conflicts between diverse PaaS offerings. To this end, it 

aligns the application model requirements and the PaaS offerings even if they are expressed in different 

terms, resolving semantic conflicts and allowing the matching of concepts between different PaaS providers. 

The outcome is a list of PaaS offerings that satisfy developer’s needs, ranked according to the number of 
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satisfied user preferences. The matchmaking algorithm of Cloud4SOA returns a ranked list of PaaS Offer-

ings that satisfy the requirements described by the Application Instance (Bosi, Ravagli, Laudizio, Porwol, 

& Zeginis, 2012). The ranking is calculated as a percentage of the Application’s preferences satisfied by the 

PaaS Instance against all the Application’s preferences. 

In PaaSport the focus has been given on defining a lightweight semantic matchmaking algorithm (see Sec-

tion 4). To this end, we have defined a SPARQL-centric algorithm, using SPARQL queries to: 

a. retrieve data from the underlying semantic repository, and  

b. to implement the scoring functions.  

In addition, the semantic representation of offerings, application models and SLAs follow the Descriptions 

and Situations pattern of DUL (see Section 3.1), in contrast to the majority of existing frameworks that use 

the OWL-S and SAWSDL models. Although OWL-S and SAWSDL provide a quite rich set of knowledge 

constructs for modelling various aspects of services, they have limited expressivity, since the modelling is 

based on defining instances instead of concepts (e.g. instances of the owls:Profile class). By following the 

DnS pattern, services are represented as complex concepts, mapping them in domain ontologies as a whole, 

and the matchmaking examines the subsumption relationships. 

Our matchmaking and ranking algorithm has a similar workflow to the corresponding algorithm of 

Cloud4SOA; however, there are many differences in the implementations of the workflow. First of all, we 

do not use a single SPARQL query for checking all the functional parameters, as explained and justified in 

section 4. Secondly, our scoring function is much more elaborate than that of Cloud4SOA, including user 

guidance on the weight of each non-functional parameter, as well as a guide on how to interpret differences. 

Finally, since our semantic model offers a rich selection of data types, including measurement units, we 

offer far more complicated SPARQL queries to calculate conformance and scoring. 

The MODAClouds project (MODAClouds FP7 project, 2016) provides: i) a Decision Support System 

(DDS); ii) an Integrated Development Environment (IDE); iii) a run-time environment for the high-level 

design, early prototyping, semi-automatic code generation, and; iv) automatic deployment of applications 

on Multi-Clouds with guaranteed QoS. In particular, MODAClouds uses a Model-Driven Engineering ap-

proach for Clouds for semi-automatic code deployment using decision support systems on multiple Cloud 

providers hiding the proprietary technology stack. Target environments for the MODAClouds framework 

cover IaaS, PaaS and SaaS solutions spanning across all abstraction layers, supporting public, private, and 

hybrid Clouds. MODAClouds targets Cloud application developers and administrators while PaaSport tar-

gets Software DevOps Engineers and PaaS providers. However, both projects aim at delivering methods for 

the platform-neutral description of cloud services, as well as capabilities for the run-time monitoring. The 

decision support aspects of MODAClouds are based on a recommendation system that provides the end user 
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with an overview of cloud services from multiple providers meeting their requirements. Its key features 

include: 

 multiple stakeholder participation in specification of requirements, 

 risk analysis based approach to generate cloud service characteristics meeting the requirements, 

 a three dimensional (risk, cost and quality) assessment of offered cloud services to allow users 

choose based on the prime properties of interest to them, 

 ensuring the multi-clouds related characteristics are accounted for in set of services obtained for 

different entities to be cloudified, 

 easy visualization and comprehension of the elaborate process of decision making. 

The decision support aspects of MODAClouds are similar to that of the recommendation layer of PaaSport. 

The matchmaking technique used in MODAClouds (Gupta et al., 2015) is quite different from that of 

PaaSport, based on the risk assessment method of (Lund, Solhaug, & Stolen, 2011), whereas PaaSPort is 

based on a multi-criteria approach. Both systems end up with a shortlist of recommended services; the dif-

ference being that PaaSport is aimed towards a single cloud provider, whereas MODAClouds can end up 

with multiple vendors for different services. Furthermore, our approach is much simpler for the DevOps 

engineer and the PaaS provider regarding data gathering for the application requirements and the PaaS of-

fering characteristics. Finally, we extensively evaluate the PaaSport recommendation algorithm for scala-

bility, whereas the risk-based decision making tool of MODAClouds has been evaluated in a much smaller 

scale, regarding scalability. 

The 4CaaSt project (4CaaSt FP7 project, 2013) (developed a PaaS framework for enabling flexible defini-

tion, marketing, deployment and management of Cloud-based services and applications. The project intro-

duced the concept of blueprint, a technical description of an application or a service that decouples the 

various dependencies along the Cloud layers. Using these 4CaaSt blueprints, application providers can 

choose across different platform layers and services to run their applications, including different infrastruc-

ture, middleware, and applications components/services. Once the selection is done, 4CaaSt generates au-

tomatically the deployment designs and automatically provisions the necessary resources required for the 

deployment. 

The offering selection mechanism of 4CaaSt (Andrikopoulos, Zhe, & Leymann, 2013) is based on a decision 

support system that incorporates both offering matching and cost calculation. The offering matching algo-

rithm is based on a fixed offering model that supports only a subset of the offering concepts and parameters 

that PaaSport supports; furthermore, PaaSport is an extensible semantic model based on an OWL ontology 

that extends the DUL upper ontology, without the need to reconfigure neither the database schema nor the 

ontology itself. The matchmaking algorithm itself considers every required QoS parameter as a functional 
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parameter, whereas in PaaSport we follow a more flexible approach, leaving this decision to the DevOps 

Engineer. The ranking scheme of 4CaaSt is not as elaborate as PaaSport’s and ranking is based always on a 

single parameter, not a combination of all parameters as in PaaSport. Finally, there is no evidence that 

4CaaSt has been evaluated for scalability as PaaSport. 

The main objective of the PaaSage project (PaaSage FP7 project, 2016) was to assist the developer with 

difficult deployment scenarios through autonomic cloud deployment, including orchestration of simultane-

ous deployment of various application parts to many different Clouds. The scope of PaaSage is to extend 

the application model with platform annotations and user’s goals and preference using a domain specific 

language model, which is then transformed by PaaSage to a deployed application in one or more Clouds. 

To support the developer, PaaSage needs also models of the features of the available Cloud platforms, and 

goals and preferences to be satisfied by the deployment like response times or deployment cost budgets. 

The application’s model is used to derive a specific deployment configuration satisfying all the constraints 

and goals for the deployment set by the user. This implies selecting one or more Cloud providers and gen-

erating the necessary deployment scripts. These scripts are then passed to the PaaSage execution ware re-

sponsible for instantiating the different parts of the application on the selected Cloud providers and monitor 

a set of defined metrics in order to make autonomous scalability decisions within the boundaries of the 

deployment configuration.  

In order to select the appropriate cloud environments to deploy the application, PaaSage uses a Software 

Product Lines-based platform (SALOON) (Quinton, Romero, & Duchien, 2016), which relies on feature 

models combined with a domain model (ontology) used to select among cloud environments a well-suited 

one. Feature models are used to model a specific cloud environment, from a single cloud vendor. Then, all 

these feature models are manually mapped by domain experts to the single domain model (ontology) of 

PaaSage. Once the application developer defines the application requirements, SALOON searches for a 

cloud environment that fulfill these requirements. This search is automated by relying on feature models 

with attributes and cardinalities. Once a configuration is defined for each feature model using the mapping 

relationships, SALOON provides a reasoning engine to (i) check whether the configuration is valid or not 

and (ii) estimate the cost of such a configuration. Once FMs are configured, SALOON translates the FM 

into a Constraint Satisfaction Problem (CSP) and solves the latter using a CSP Solver to check whether the 

configuration is valid.  

Compared to PaaSport, PaaSage / SALOON do not provide ranking of multiple cloud providers, but rather 

they are used to check whether a given cloud provider is compliant with a given application and to guide 

the developer in order to configure the application in a possibly multi-cloud setting. SALOON supports 
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stakeholders while configuring the selected cloud environment in a consistent way, and automates the de-

ployment of such configurations through the generation of executable configuration scripts. This paper also 

reports on some experiments showing that using SALOON significantly reduces time to configure a cloud 

environment compared to a manual approach and provides a reliable way to find a correct and suitable 

configuration. Moreover, our empirical evaluation shows that our approach is effective and scalable to 

properly deal with a significant number of cloud environments. Furthermore, the performance of SALOON 

was proved to be scalable and affordable to reasonable settings, but superlinear, compared to PaaSport that 

its performance is linear. 

3 Overview of the PaaSport Marketplace 

The PaaSport Marketplace is an infrastructure that facilitates the publication and advertisement of semanti-

cally-interconnected available Cloud PaaS offerings, the identification and recommendation of the best-

matching PaaS offering, and the seamless business application deployment and migration. The architecture 

of the PaaSport Marketplace (Figure 1) constitutes a thin, non-intrusive broker that mediates between com-

peting or even collaborating PaaS offerings (PaaSport Consortium, 2014b). It relies on open standards and 

introduces a scalable, reusable, modular, extendable and transferable approach for facilitating the deploy-

ment and execution of resource intensive business services on top of semantically-enhanced Cloud PaaS 

offerings. Notice that the scope of PaaSport mainly involves a) PaaS offerings that originally support high 

degree of portability, which is classified to category 1 according to (Walraven, Truyen, & Joosen, 2014), 

and b) applications that are fully migrated to the cloud, either as complete software stacks in a VM or as a 

composition of services running on the Cloud, which are classified to types III and IV according to (An-

drikopoulos, Binz, Leymann, & Strauch, 2013). PaaSport comprises of the following five artefacts: 

 Adaptive Front-ends that support seamless interaction between the users and the PaaSport function-

alities, through a set of configurable utilities that are adapted to the user’s context; 

 PaaSport Semantic Models that serve as the conceptual and modelling pillars of the marketplace 

infrastructure, for the annotation of registered PaaS offerings and deployed applications profiles; 

 PaaS Offering Recommendation Layer that implements the core functionalities offered by the 

PaaSport Marketplace Infrastructure, such as PaaS offering discovery, recommendation and rating; 

 Monitoring and SLA Enforcement Layer that realizes the monitoring of the deployed business ap-

plications and the corresponding Service Level agreement; 

 Persistence, Execution and Coordination Layer that puts in place the technical infrastructure, e.g. 

repositories, on top of which the PaaSport marketplace is built. 
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Figure 1. High-level view of the PaaSport Cloud-broker Architecture. 

Our focus in this paper is to present thoroughly how semantics are used in the PaaSport marketplace in order 

to implement effective semantic matchmaking between the PaaS offerings and an application requirement 

profile, combining the Semantic Models, the Offering Recommendation layer and the persistence layer. The 

PaaSport Semantic Models are the conceptual and modelling pillars of the marketplace infrastructure and 

they are used in order to provide a semantic annotation means for the registered PaaS offerings and the 

deployed applications profiles (see Section 3.1).  

Concerning the Offering Recommendation layer, the Semantic Models bridge the gap between business 

application requirements and PaaS offerings capabilities, thus, facilitating the matchmaking and the identi-

fication of the specific PaaS that fulfills the business and technical requirements of a particular application. 

This is achieved by using a common conceptual framework for describing both the platform offering and 

the application model, so that application requests can be matched conceptually, structurally and quantita-

tively to platform offerings, as explained in section 4. 

Concerning the Persistence layer, the database schema follows exactly the conceptual model of the ontolo-

gies, in order to avoid syntactic/semantic mismatch between tables/concepts and attributes/properties when 

the Offering Recommendation layer retrieves PaaS offerings from the database, based on the Semantic 

Models. This is achieved by mapping the PaaS Offering profiles stored in the database onto the Semantic 

Model layer (RDF graph) using a relational-to-ontology mapping tool (see section 4.4). 
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The main stakeholders of the PaaSport Marketplace, identified in PaaSport project deliverable D1.1 

(PaaSport Consortium, 2014a), that concern the semantic models and the recommendation algorithm are: 

 DevOps Engineer: A solution architect seeking an optimal PaaS platform to develop, deploy or 

migrate to a complex cloud application. The most important optimization criteria for the search and 

decision-making process are the technical requirements for the platform. 

 PaaS Provider: An enterprise whose business model includes the delivery and operation of one or 

more PaaS solutions. A PaaS provider defines the technical aspects, the pricing models, reference 

values for quality of service parameters, and terms and conditions that apply to their offerings.  

PaaS providers supply the Cloud-based application developers with the available PaaS offerings. The 

DevOps Engineers build applications that will be deployed and executed on PaaS offerings (platform ser-

vices). The DevOps Engineers search for PaaS offerings that satisfy their applications’ requirements. After 

a successful negotiation with a PaaS provider the applications are deployed on the PaaS offering by the 

service consumer for whom the DevOps Engineers built the applications. An application can vary from a 

relational DBMS or a lightweight Web application to a heavy software system, e.g. an ERP or a CRM.  

The recommendation algorithm is mainly used by the DevOps Engineer for searching PaaS offerings that 

meet the functional and non-functional requirements an application imposes on its platform. The DevOps 

Engineer engages this functionality when he/she wants to search for a platform to deploy its application 

(through the PaaSport broker), or to migrate its application, in case of SLA violation. The DevOps Engineer 

(in the full-fledged PaaSport platform) is using a GUI to enter the requirements for his/her application (ap-

plication profile). There are two types of requirements: a) functional requirements, which are absolutely 

needed by the application and cannot be negotiated (e.g. the application needs a MySQL DBMS instance), 

and b) non-functional requirements, which are preferable but negotiable (e.g. storage capacity 10GB). 

After the DevOps Engineer enters the above requirements, the presented algorithm will run on the PaaS 

Offering Recommendation Layer and it will return to the DevOps Engineer a list of PaaS platforms that 

meet his/her functional requirements, along with a score, based on his/her non-functional requirements. The 

list will be sorted in descending order of score (highest first). 

The most important requirements for the PaaSport Recommendation Algorithm are: 

 The recommendation algorithm should be efficient and scalable. As we show in Sections 4.1 and 5, 

the recommendation algorithm has complexity that is linear to the number of PaaS offerings and 

application requirements. 

 The recommendation algorithm should be easily extensible, i.e. when the semantic model is ex-

tended with new offering instances, concepts and parameters, the algorithm should be minimally 
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changed. Ideally the algorithm should not change at all. As we show in Section 4.1, the recommen-

dation algorithm is extensible because it is agnostic to domain specific concepts and parameters. 

3.1 Overview of PaaSport Semantic Models 

In this sub-section, we give a brief overview of the PaaSport Semantic Models to help comprehension of 

the recommendation algorithm fully described in the next section (Section 4), since the algorithm runs on 

top of the PaaSport ontology, using SPARQL queries for retrieving relevant data from the semantic reposi-

tory. More details about the ontology development can be found at (PaaSport Consortium, 2014c). The 

PaaSport ontology is divided into three models: 

1. Offering Model: facilitates the semantic annotation of the available PaaS offerings in terms of 

functionalities, resources and business characteristics offered.  

2. Application model: enables the semantic annotation of the application to be deployed at the 

PaaSport marketplace, in terms of functionalities, resource and requirements in business character-

istics.  

3. SLA Model: allows the annotation of the service-level agreements provided and supported by the 

registered Cloud PaaS offerings. Since it is not required for the algorithm, it is not discussed further. 

Notice that the Offering and Application models are not very different. Only the top-level classes are dif-

ferent, since Offerings and Applications stand conceptually for two very different types of entities: cloud 

platforms and cloud applications, respectively. However, both use the same vocabulary for describing ser-

vices (PaaS concepts) and their parameters, as shown in Figure 2. This allows the recommendation algo-

rithm to seamlessly match application requirements to PaaS offerings both syntactically and semantically. 

In the PaaSport project we have decided to use the DOLCE+DnS Ultralite (DUL) ontology, which is a 

simplification and an improvement of some parts of DOLCE Lite-Plus library and Descriptions and Situa-

tions ontology (Gangemi & Mika, 2003). The main reasons we have followed this approach are interopera-

bility and extensibility. The use of DUL (i.e. an upper ontology) ensures better semantic interoperability 

with other similar projects and research efforts. Furthermore, the DUL ontology is very easy to be extended 

by adding e.g. new concepts and parameters related to PaaSport offerings and applications. Properties (i.e. 

parameters) are defined as new classes and not as OWL properties. In this way, the introduction of new 

properties/parameters does not require the disturbance of the schema of existing tables of the persistence 

layer of the PaaSport broker, which is built using a relational database, but merely the introduction of new 

tables. Furthermore, this representation of properties also favors the generality and extensibility of the rec-

ommendation algorithm between application requirements and platform offerings. Τhis type of extensibility 

is analyzed in section 4. 
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The core modeling pattern of DnS allows the representation of the following conceptualizations (Figure 2): 

 Situations. A situation defines a set of domain entities that are involved in a specific pattern instan-

tiation (isSettingFor property) and they are interpreted on the basis of a description (satisfies prop-

erty). Each situation is also correlated with one user/agent (dul:includesAgent property). 

 Descriptions. An activity description serves as the descriptive context of a situation, defining the 

concepts (defines property) that classify the domain entities of a specific pattern instantiation, cre-

ating views on situations.  

 Concepts. The DUL concepts classify domain entities describing the way they should be interpreted 

in a particular situation. Each concept may refer to one or more parameters, allowing the enrichment 

of concepts with additional descriptive context.   

PaaSSituation

DUL:Satisfies
[allValuesFrom]

PaaSConcept

muo:QualityValue

PaaS
Parameter

dul:hasParameter
[allValuesFrom]

rdfs:Literal

PaaSDescription

DUL:Defines
[allValuesFrom]

DUL:Situation DUL:Description DUL:Concept DUL:Parameter

dul:hasParameter
DataValue

[allValuesFrom]

dul:Parametrizes
[allValuesFrom]

ApplicationRequirement OfferingModel

SLATemplate

GroundOfferingrdfs:subClassOf

property restriction

 

Figure 2. Abstract PaaSport design pattern. 

The PaasPort semantic models have been defined as extensions to the core DnS pattern (Figure 3, Figure 

4). More specifically, the situation concept is used as a container for defining the higher level conceptuali-

zations of the PaaSport domain, such as PaaS offerings, application models and SLAs. The extensibility of 

our model depends on the parameters’ definition. The specialized situations (offering, application, SLA 

agreement) are further correlated with specializations of the description concept, allowing the correlation 

of the situations with additional descriptive context, namely a set of one or more concepts, which define 

matchmaking dimensions for PaaS. A concept (for example QoS) could have one or more parameters (e.g. 

latency). Every parameter has a value (through dul:hasParameterDataValue property) and a “quality” 

(through dul:parametrizes property), which is the “physical” or “logical” dimension of the parameter (e.g. 

storage, duration, etc) and it is usually (not always) accompanied by measurement units. The abstract pattern 

associating DUL and PaaSport models is presented in Figure 2 and constitutes a rich, dynamic and flexible 

modelling pattern able to fully address the PaaS domain. Notice that PaaS concepts and parameters are 

defined once and are used both by the offering and application models, since the restrictions on the dul:de-

fines property are inherited by all subclasses of PaaSDescription. 
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The Offering Model provides the vocabulary for semantically describing PaaS offerings. It contains all 

available characteristics of a PaaS platform, such as technical, performance-related, geographical etc., and 

it can be used for describing common attributes of a specific instantiation, such as programming language, 

databases, server etc. The extension of the abstract PaaSport model is presented in Figure 3. 

 

Figure 3. PaaSport Offering model. 

The application model enables the semantic annotation of developers’ applications.  Developers can define 

functional (programming language, servers, database etc.) and non-functional (performance, capacity etc.) 

characteristics that the deployment environment should satisfy. These characteristics are used by the match-

making algorithms to match PaaS Offerings that are the most relevant to their application requirements. The 

extension of the abstract PaaSport model is presented in Figure 4. 

 

Figure 4. PaaSport Application model. 

If we want to add a new parameter to a concept we have only to declare the quality value of this parameter. 

Moreover, we could do the same for concepts. The application example in Figure 5 describes the logic 

underlying the PaaSport semantic models. Specifically, we zoom into the defintion of a QoS parameter, 

namely the network latency, whose value is interpreted as a numerical range value with an upper value 

(Max) and it is measured in milliseconds. 
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One of the most important classes in the ontology is PaaSConcept, which is a basic unit of an offering (or 

application requirement) and represents an abstract concept of a service. For the application developer it 

represents a requirement for the application and for the PaaS provider it is a part of an offering. Each 

PaaSConcept is associated with one or more PaaS parameters, through the DUL:hasParameter property. 

Concepts can be backwards compatible with other concepts (through the isCompatibleWith property). This 

is mainly needed for concepts such as versions of offered programming languages or services/software. 

 

Figure 5. An Application example. 

A parameter is a property of a concept. Specifically, a parameter classifies a concept, specifying the way it 

should be interpreted. For example, the value “0.09 seconds” refers to the Latency of the provided service. 

The value of the parameter is defined using the hasParameterDataValue property. Through OWL re-

strictions we associate parameters with specific PaaSConcepts. A PaaSParameter can be: 

 a MatchmakingParameter that represents a parameter participating in matchmaking and ranking; 

 an InformationalParameter used only for informational reasons and can be inspected manually 

by the application developer in order to select an offering. 

Moreover, the matchmaking parameters are divided into functional and non-functional ones. This is 

achieved via the FunctionalParameter class: its subclasess are parameters that can only be used as func-

tional requirements; otherwise, they can be used both as functional and non-functional ones. When func-

tional requirements are not met by an offering, then it cannot be considered as a candidate for deploying an 

application. Non-functional parameters usually measure the quality of a service and are used to rank the 

order of preference of the selected services. Notice that a non-functional parameter can also be used as a 

functional one if the user wishes to. For example, if “latency less than 10ms” is absolutely required, offerings 

that do not satisfy this criterion are not considered at all. This can be declared by the user through the GUI. 

ApplicationRequirement

dul:satisfies
[allValuesFrom]

rdfs:subClassOf

property restriction

rdfs:subPropertyOf

Application

Service

ProgrammingEnvironment

Certificates

Resource

Location
requires

[allValuesFrom]

QoS

QoSParameter

MaxCPULoad

Latency

MaxMemoryLoad

ResponseTime

Uptime

Max

dul:hasDataValue
[allValuesFrom]

xsd:double

Millisecond

measuredIn
[allValuesFrom]

requires
[allValuesFrom]

requires
[allValuesFrom]

requires
[allValuesFrom]

MinCPULoad

MinMemoryLoad

dul:parametrizes
[allValuesFrom]

dul:hasParameter
[allValuesFrom]
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The Measurement Unit Ontology1 has been used for semantically representing the various measurements 

and units in PaaSport. The ontology can be used for modelling physical properties or qualities. Every unit 

is related to a particular kind of property. For instance, the Hz unit is uniquely related to the frequency 

property. Under the provided ontological approach, units are abstract spaces used as a reference metrics for 

quality spaces, such as physical qualia, and they are counted by some number. For instance, weight-units 

define some quality spaces for the weight-quality where specific weights of objects, like devices or persons, 

are located by means of comparisons with the proper weight-value of the selected weight-unit. 

 

Figure 6. Hierarchy of quality values. 

In MUO, the class muo:QualityValue is used for representing the values of qualities, for instance, the 

amount of available memory. Instances of this class are related with 1) exactly one unit, suitable for meas-

uring the physical quality (meters for length, grams for weight, etc), by means of the property muo:meas-

uredIn, 2) a number, which express the relationship between the value and the unit by means of the rdf:value 

property; 3) a time, which expresses the quality value along the line of time. In PaaSport, we use MUO to 

represent the units as well as qualitative attributes, whereas values are represented using the DUL vocabu-

lary (dul:hasParameterDataValue). More specifically, there are the following quality values (Figure 6): 

 Single Values, either symbolic or numeric, that require an exact match. 

 Nominal Values, which are enumerated data types and require an exact match. 

 Ordinal Values, namely ordered enumerated data types which also require exact match, but order 

can be established for better or worse. 

 Range Values, which are numeric values that requires range match, e.g. “less than” or “equal”. 

There are 4 subclasses of this class, according to the matchmaking profile of each parameter. 

o Max: Range Value with a Max upper limit. Matches less than or equal. 

                                                      
1 http://idi.fundacionctic.org/muo/  

http://idi.fundacionctic.org/muo/
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o Min: Range Value with a Min upper limit. Matches “greater than” or “equal”. 

o MaxMin: Range Value with a limit that is Max for the Offering and Min for the Application. 

Matches “less than” or “equal”. 

o MinMax: Range Value with a limit that is Min for the Offering and Max for the Application. 

Matches greater than or equal. 

4 PaaSport Recommendation Algorithm  

The Recommendation Layer of the PaaSport Reference Architecture (Section 3) involves the development 

of algorithms and software for supporting the selection of the most appropriate PaaS offering that best 

matches the requirements of the application a developer wants to deploy. Under this context, the PaaSport 

recommendation algorithms and models are aimed at providing the necessary semantic layer on top of the 

offering and application model descriptions, solving interoperability issues and improving the quality of the 

recommendations. To this end, standard vocabularies and ontology languages are used for capturing the 

structural and semantic characteristics of the various entities involved in the PaaSport domain, whereas the 

underlying conceptual models facilitate the use of lightweight reasoning during the matchmaking process.  

This section describes the algorithms for PaaS Offering Matchmaking. More specifically, capitalizing on 

the Semantic Models presented in Section 3.1, we describe the capabilities of the matchmaking algorithms 

in terms of the supported semantics and filtering mechanisms that are used for selecting PaaSport Offerings. 

We also describe the implementation of the matchmaking procedure, elaborating on the SPARQL queries 

we have developed for querying the semantic repository, and we present matchmaking examples. The 

PaaSport Recommendation Algorithm has been developed in Java using the Apache Jena (Apache Jena, 

2016) framework for parsing ontologies, processing data and executing SPARQL queries. Finally, we de-

scribe how the algorithm and the semantic models are interoperating with the persistence layer of the 

PaaSport marketplace. 

Notice that the recommendation algorithm searches for any (single) platform offering of a (single) cloud 

provider, among multiple cloud providers, that offers all the compatible requested services. The restriction 

to a single platform offering / cloud provider is not inherent in our algorithm, but is imposed by the business 

model of the PaaSport Marketplace and the technical solution for interoperability / portability implemented 

by the PaaSport Broker. Usually PaaS providers charge for a platform as a whole and not as single provided 

services. Therefore, when a DevOps engineer wants to deploy / migrate his / her application from one cloud 

provider to another, usually searches for a better (more cost efficient) platform. This offers a cleaner de-

ployment and maintenance solution. However, the recommendation algorithm can be easily extended to 
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multiple cloud providers at the service level. This extensibility is also indicated in various places in this 

section. 

4.1 Matchmaking and Ranking Algorithm 

At the heart of the PaaS Offering Recommendation Layer there is a recommendation algorithm that selects 

and scores-ranks the most appropriate PaaS offerings that best match the requirements of the application a 

developer wants to deploy. The matchmaking and ranking algorithm consists of two steps (Figure 7): 

1. Selection of those offerings that satisfy the functional parameters. 

2. Scoring of the remaining (from step 1) offerings using an aggregation scoring function on all the 

non-functional parameters. 

 

Figure 7. Overview of The PaaSport Matchmaking and Recommendation algorithm 

Note that when talking about functional and non-functional parameters, we refer to the parameters that the 

DevOps Engineer has set as application requirements through the corresponding GUI. Also note that pa-

rameters are classified as either functional or non-functional from the PaaS Semantic Model (Section 3.1). 

So, the GUI can be constrained by the Model on which parameters can be used as functional or non-func-

tional. However, non-functional parameters can be used both as non-functional and functional. For example, 

one might require that the storage capacity of the offering should be no less than 10GB and that he/she is 

not willing to consider offerings in the final ranked list with less storage, even with a lower score than the 

others. In this case, the parameter will be included twice in the list of parameters retrieved by the GUI, once 
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in the functional parameters list and once in the non-functional parameters list. However, the opposite is not 

allowed, i.e. a functional parameter (set by the Semantic Model, e.g. the Programming Language) can never 

be treated as non-functional. 

The algorithm implemented in the PaaS Offering Recommendation Layer accesses the PaaS Offerings pro-

files stored in the Persistence and Execution Layer. Regardless of the implementation choices, the best way 

to do this is through SPARQL queries, which preserve the semantics of the conceptual RDF graph model. 

Thus, the algorithm was designed in such a way, that it uses predefined SPARQL templates in order to query 

the offering profiles, according to the parameter type. 

Another design decision we followed is to use many “compact” (i.e. small) SPARQL queries instead of 

using a few “big ones”. This decision has to do with the ignorance of the underlying persistence layer and 

the optimizations they provide for large SPARQL queries. Another reason for this decision is to be able to 

make fewer iterations and therefore queries, when there are offerings that violate one functional parameter 

early in the process. In order to have a better insight, imagine that the general logic behind checking the 

functional parameters is that "selectable" offerings are the ones that satisfy all functional parameters: 

∀𝑂𝑓𝑓, ∀𝑃𝑎𝑟 ∈ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙(𝐴𝑝𝑝)  →  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠(𝑂𝑓𝑓, 𝑃𝑎𝑟) 

If the above logical expression is naively turned into an algorithm, then it could be implemented as either: 

1. N*R SPARQL queries for checking satisfaction of one parameter for each offering (N is the number 

of offerings, R is the number of functional parameters); 

2. N big intersection SPARQL queries for checking satisfaction of all R parameters for each offering; 

3. one very big intersection SPARQL query for retrieving all offerings that satisfy all R functional 

parameters. 

Intuitively, options 2 and 3 above would provide very complex queries that could be difficult to run effi-

ciently on RDF triplestores, and even more difficult to run on relational database systems (in case the option 

of mapping the relational database schema to a virtual RDF graph is chosen for the semantic layer). How-

ever, option 1 also runs unnecessarily many SPARQL queries, whereas our algorithm tries to run fewer 

SPARQL queries by pruning early offerings that do not satisfy one functional parameter. 

The developed algorithm, in summary, iterates over functional parameters and offerings and, whenever an 

offering violates a functional parameter, it is excluded from the rest of the iterations. This means that, if (as 

a best case) an offering violates the first functional parameter that is examined, then the rest R-1 parameters 

will not be checked; therefore, R-1 less SPARQL queries of type 1 will be executed. As an average case we 

may consider that half the offerings will be excluded midway (e.g. checking half the parameters); therefore 

N*R/4 less SPARQL queries will be executed. If we consider specific values N=1000 and R=10, then this 
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would result in 2500 fewer SPARQL queries. Another extreme case is when no offering exists that satisfies 

all the functional parameters. Using the naive approach, N*R queries would be needed, whereas with our 

approach (as a best case) only N queries suffice (suppose the first parameter is violated by all offerings). 

4.1.1 Description of the Algorithm 

Our algorithm, shown as function getRecommendations in Algorithm 1, takes as input the application re-

quirements instance as defined by the DevOps Engineer from the GUI (?GUI.AppInst) and returns as output 

the list of offerings that are compatible with the functional requirements (?results), sorted in descending 

order according to the scoring function, which is based on the non-functional requirements. 

The algorithm initially retrieves the IDs of all offerings stored in the Persistence Layer and stores them in-

memory into the offerings list (?offerings - line 2). Next, we create a candidate list (?candidates) consisting 

of pairs <?o,?r_type_list> that represent all candidate offerings and all required concept types for each of-

fering (lines 4-8). The first loop iterates every offering, initializes the concept list to null, and then iterates 

over all concepts ?r of the application requirement (GUI.AppInst.satisfies.requires), keeping their types 

(?r.type) in the ?r_type_list. Note that each member of ?r_type_list is also a pair <?r.type,?concept-list>; 

?concept-list is a list of concept instances of the same type for the same offering. For example, imagine that 

there might be several database options offered by a PaaS offering. This, according to the PaaS Semantic 

Model (described in deliverable 1.3), means that the concept type paas:Database will have many instances 

attached to the offering instance; each Database concept instance stands for a different database offering 

(e.g. MySQL, PostgreSQL, etc.). Initially, the concept list is empty; it will be filled later with concept in-

stances that do not violate the functional requirements. 

Then, there are two main loops in the algorithm that implement the two steps mentioned above: 

1. Matchmaking using Functional Parameters (lines 9-24), and 

2. Ranking using Non-Functional Parameters (lines 31-62 and 63-79),  

with some housekeeping lines in between. The following subsections describe both of these steps in detail. 

Algorithm 1. The main algorithm for matchmaking and ranking offerings. 

 

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

Function getRecommendations(?GUI.AppInst) : ?results:ListOfOfferings 

?K = 5 

?offerings = getPaaSOfferings() 

?candidates =  

For each ?o in ?offerings 

?r_type_list =  

For each ?r in GUI.AppInst.satisfies.requires 

?r_type_list = ?r_type_list  <?r.type, > 

?candidates = ?candidates  { <?o, ?r_type_list> } 

For each ?r in GUI.AppInst.satisfies.requires 

For each < ?o, ?r_type_list > in ?candidates 
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11.  

12.  

13.  

14.  

15.  

16.  

17.  

18.  

19.  

20.  

21.  

22.  

23.  

24.  

25.  

26.  

27.  

28.  

29.  

30.  

31.  

32.  

33.  

34.  

35.  

36.  

37.  

38.  

39.  

40.  

41.  

42.  

43.  

44.  

45.  

46.  

47.  

48.  

49.  

50.  

51.  

52.  

53.  

54.  

55.  

56.  

57.  

58.  

59.  

60.  

61.  

62.  

63.  

64.  

Find <?r.type, ?concept-list>  ?r_type_list 

For each ?p in ?r.hasParameter such that ?p  GUI.FunctionalParameters 

?sparql-templ = retr-functional-sparql-templ(?p.parametrizes.type) 

?result = Run-functional-sparql-templ(?sparql-templ, ?o, ?r.type, ?p.type, ?p.Value, ?p.qualityValue, 

?p.qualityValue.MeasureUnit) 

?candidates = ?candidates \ { <?o, ?r_type_list > } 

If ?concept-list= 

Then ?new-concept-list = ?result 

Else ?new-concept-list = ?concept-list  ?result 

If ?new-concept-list ==   

Then Break 

Else ?r_type_list = ?r_type_list \ { <?r.type,?concept-list> }  { <?r.type, ?new-concept-list }; 

?candidates = ?candidates  { <?o, ?r_type_list> } 

If ?candidates ==  Then Break 

If ?candidates ==  Then Return  

?results =?values = ?minmax =  

For each ?p in ?r.hasParameter such that ?p  GUI.NonFunctionalParameters 

?min = unbounded 

?max = ?prevmax = 0 

?minmax = ?minmax  <?p, ?min, ?prevmax, ?max> 

For each ?r in GUI.AppInst.satisfies.requires 

For each <?o,?r_type_list> in ?candidates 

Find <?r.type, ?concept-list>  ?r_type_list 

?sparql-templ = retr-non-functional-sparql-templ(?concept-list) 

For each ?p in ?r.hasParameter such that ?p  GUI.NonFunctionalParameters 

?ValueSet = Run-nonfunctional-sparql-templ(?sparql-templ, ?o, ?concept-list, ?r.type, ?p.type, 

?p.qualityValue, ?p.qualityValue.MeasureUnit) 

?temp-Values =  

?temp-Concept-Values =  

For each <?v,?c> in ?ValueSet 

?temp-Values = ?temp-Values  {?v} 

If <?c,?Vals>  ?temp-Concept-Values 

Then ?temp-Concept-Values = ?temp-Concept-Values \ <?c,?Vals>  {<?c,?Vals{?v}>} 

Else ?temp-Concept-Values = ?temp-Concept-Values  {<?c, {?v}>} 

?Concept-Values =  

For each <?c,?c-vals> in ?temp-Concept-Values 

?v = Find_best(?c-vals, ?p.parametrizes.type, ?p.Value) 

If <?c,?p-values>  ?Concept-Values 

Then ?Concept-Values = ?Concept-Values \ {<?c,?p-values> }  {<?c, ?p-val-

ues{<?p,?v>}> } 

Else ?Concept-Values = ?Concept-Values  {<?c, {<?p,?v>}> } 

?values = ?values  <?o, ?Concept-Values > 

?v_min = Find_min(?temp-Values, ?p.parametrizes.type, ?p.Value) 

?v_max = Find_max(?temp-Values, ?p.parametrizes.type, ?p.Value) 

Find <?p, ?min, ?prevmax, ?max>  ?minmax 

If (?v_max == unbounded OR (?max !== unbounded AND compare_greater(?v_max, ?max, ?p.para-

metrizes.type, ?p.Value))) 

Then ?prevmax = ?max; ?max = ?v_max 

Else If (?min == unbounded OR (?v_min !== unbounded AND compare_greater(?min, ?v_min, 

?p.parametrizes.type, ?p.Value))) 

Then ?min = ?v_min 

?minmax = ?minmax \ { <?p, ?min, ?prevmax, ?max> }  <?p, ?min, ?prevmax, ?max> 

For each <?o,?r_type_list>  in ?candidates 

Find <?o, ?Concept-Values >  ?values  
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65.  

66.  

67.  

68.  

69.  

70.  

71.  

72.  

73.  

74.  

75.  

76.  

77.  

78.  

79.  

80.  

81.  

For each ?r in GUI.AppInst.satisfies.requires 

Find <?r.type, ?concept-list>  ?r_type_list 

?MaxConceptScore = 0 

For each <?c, ?p-values>  ?Concept-Values such that ?c  ?concept-list 

?conceptScore = 0 

For each <?p,?v>  ?p-values 

Find <?p, ?min, ?prevmax, ?max>  ?minmax 

?score = Score-offering(?v, ?p.Value, ?p.parametrizes.type, ?min, ?prevmax, ?max, 

?p.coefficient, ?p.differenceFunction, ?K) 

?conceptScore = ?conceptScore + ?score 

If ?conceptScore > ?MaxConceptScore 

Then ?MaxConceptScore = ?conceptScore 

If <?o, ?oldScore>  ?results  

Then ?results = ?results \ <?o, ?oldScore>  <?o,?oldScore+?MaxConceptScore> 

Else ?results = ?results  <?o, ?MaxConceptScore>  

Sort ?results on Descending ?score  

Return ( ?results ) 

 

Notice that the above algorithm can be easily tweaked to return (the best) services of multiple cloud provid-

ers, instead of returning an offering of a single cloud provider, as a whole. This can be achieved by elimi-

nating all lines that have to do with offerings, such as lines 2-8, the second loop of the matchmaking in line 

10, the second loop in the scoring gathering part (line 32), the first loop in scoring calculation part (line 63), 

and so on, so forth. Of course, the SPARQL templates described in the remaining of this section should also 

be tweaked, as explained later. 

Matchmaking using Functional Parameters 

The first step of the algorithm, where offerings are filtered according to whether they satisfy the functional 

parameters or not (lines 9-24), consists of three nested loops. The first loop iterates over all PaaS concepts 

?r of the Application Requirement (retrieved by the GUI) (line 9), whereas the second loop iterates over all 

offering entries in the candidate offerings set (or list) (line 10). Note, that since offerings might be removed 

later on, inside the third loop, the candidate offerings set may be smaller at each iteration of the first loop.  

The third loop (line 12) iterates over all functional parameters ?p of the currently examined application’s 

concept ?r. We retrieve the appropriate SPARQL template for checking a functional parameter, according 

to the type of the Quality Value (Single, Range, Nominal, or Ordinal) that parameterizes the property 

(?p.parametrizes.type) and then we execute the retrieved SPARQL template, grounding placeholders with 

values from the corresponding parameter of the application requirement (lines 13-15). More details about 

the SPARQL templates are given later in section 4.2. 

The result of the SPARQL query is a set of concept instances of the offering that satisfy the functional 

parameter. The concept list of the current offering ?o and the current concept type ?r.type is updated (lines 

16-23), considering that the offering might violate this functional parameter or that the conjunction of the 
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functional parameters for the current concept type is not satisfied by any concept instance of the offering. 

First, the previous entry for the offering is deleted from the candidate list (line 16) and it will be re-added if 

the offering is still valid. Note that initially, when the concept list is empty, the updated concept list is set to 

the result returned by the query (lines 17-18). Otherwise, the updated concept list is constructed as the 

intersection of the previous list and the new set of results, meaning that the remaining concept instances 

should satisfy all functional parameters of the concept type (line 19). Intersection though may produce 

empty sets, either because ?result is empty or because the concept instances already existing in the list do 

not coincide with the concept instances that satisfy this functional parameter, i.e. there are no concept in-

stances that conjunctively satisfy all the functional parameters of the current concept type. In either case, 

the offering is not re-added to the candidate offerings list and it will not be checked any more in future 

iterations. In this case there is also an exit from the current (third) loop, because there is no need to check 

more functional parameters for this offering (lines 20-21). If the updated concept instance list is not empty, 

then the offering is added back to the candidate list, along with the updated concept list (lines 22-23). 

Upon the termination of the middle (second) loop, there might be the case that there are no more candidates 

left. Then the outermost loop is exited prematurely (line 24). When the outer loop terminates, we should 

have all offerings/concepts that satisfy all the functional parameters of the application profile. In case there 

are no more candidates left, then the getRecommendations function just returns an empty list and does not 

continue with ranking (line 25).  

Ranking using Non-Functional Parameters 

The second step of the algorithm, which scores and ranks the offerings that satisfy the functional parameters, 

using the non-functional parameters, consists of four sub-steps: 

1. Initialization of the auxiliary data structures used in the main algorithm (lines 26-30). 

2. Retrieval of the values of non-functional parameters in the auxiliary data structures (lines 31-62). 

3. Calculation of the score of each offering using the auxiliary data structures (lines 63-79). 

4. Sorting of the offerings in descending order of their score (lines 80-81). 

Initialization of auxiliary data structures  

The auxiliary data structures are the following: 

 The variable ?results is a set of <?o, ?Score> pairs, where ?o is an offering and ?Score is its score. 

 The variable ?values is a set of <?o, ?Concept-Values > pairs, where ?o is an offering and ?Concept-

Values is a set of concept instances and the values of non-functional parameters that each instance 

contains. So, ?Concept-Values consists of pairs <?c,?p-values>, where ?c is a concept instance of 

?o and ,?p-values is a set of parameter values, in the form of <?p,?v>, where ?p is a non-functional 
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parameter of ?c and ?v is its value. Notice that we keep only one value for each parameter in this 

structure. In case there is more than one value, we keep the “best” (explained later). 

 The variable ?minmax is a set of tuples of the form <?p, ?min, ?prevmax, ?max>, where ?p is a non-

functional parameter, ?min / ?max are the minimum / maximum values for this parameter, along 

with all the offerings that satisfy the functional parameters, and ?prevmax is the second to maximum 

value, which is needed in the scoring function in case the maximum value is “unbounded”. 

During the initialization sub-step (lines 26-30), ?results and ?values are set to empty, while ?minmax is 

initialized with tuples for all non-functional parameters. The initial values are “unbounded” for ?min and 0 

for ?max and ?prevmax. 

Retrieval of non-functional parameter values  

The second sub-step of the ranking step (lines 31-62), consists of three main nested loops, and two smaller 

consecutive loops, nested inside the third loop. The first loop iterates over all PaaS concepts ?r of the Ap-

plication Requirement (line 31), while the second loop iterates over all offerings that “satisfy” the functional 

requirements (line 32). For each offering we retrieve the appropriate set of concept instances (?concept_list) 

that corresponds to the same concept type (?r.type) with the application profile (line 33). We retrieve the 

appropriate SPARQL template for retrieving a non-functional parameter (line 34). There is only one tem-

plate (see section 3.4.2); however, if the concept list is empty, then this indicates that concept ?r of the 

application profile has only non-functional parameters attached to it and no functional parameters, therefore 

the VALUES construct will not appear at all in the SPARQL template (explained also in section 4.2.2).  

The third loop (line 35) iterates over all non-functional parameters of the concept ?r. We run the SPARQL 

template in order to retrieve the values of each parameter of the offering (lines 36-37), along with the con-

cept instance they belong to. Placeholders are grounded with values from the corresponding parameter of 

the application requirement. Note that, since an offering can contain alternative options for the same concept 

(e.g. several storage options, based on different pricing policies), or alternative concept instances for the 

same concept type, the returned result could be a set (?ValueSet) of value-concept-instance (<?v,?c>) pairs 

of the same concept type. Also, note that the concept list of compatible concepts (of the same concept type) 

with the functional parameters is given, in order to avoid retrieving parameter values of non-functional 

parameters of concepts that violate the functional parameters. The concept list can be empty in cases when 

the requirement contains only non-functional parameters. In this case, the ?concept-list parameter is ignored 

(the SPARQL template retrieved previously does not contain the VALUES construct). 

We construct two new temporary auxiliary data structures (?temp-Values, ?temp-Concept-Values, lines 38-

39) in order to find the minimum / maximum values for each parameter and in order to construct the <?p,?v> 

pairs for each offering and concept instance (see above), respectively. For each <?v,?c> element of the result 
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we store the values in ?temp-Values and we store (and update) a <?c,?Vals> pair for each concept instance 

?c in ?temp-Concept-Values (lines 40-44). If many alternative values (?c-vals) for the same parameter (?p) 

and for the same concept instance (?c) are offered by the offering, we only keep the “best” (?v) of them (for 

scoring purposes), in lines 46-51. The “best” is defined according to the type of the quality value that para-

metrizes the non-functional parameter (line 47). The definition for the find_best function is displayed in 

Algorithm 3. Eventually, the ?Concept-Values set (discussed above) is constructed for all non-functional 

parameters of every concept that “satisfies” the functional requirements (lines 48-51) and the ?values set is 

updated (line 52). Lines 53 and 54 calculate the minimum and maximum value in ?temp-Values, according 

to the type of the quality value that parameterizes the non-functional parameter; these functions are defined 

similarly to find_best (Algorithm 3). Lines 55-62 update this maximum/minimum values. Things are com-

plicated because a) the comparison is performed according to the type of the quality value that parameterizes 

the non-functional parameter (lines 56 and 59-60), using Algorithm 5, and b) even for numerical values we 

have to cater for the case when the value is “unbounded” (lines 56 and 59). 

Score and Sort all offerings 

The third sub-step is to calculate the score of each offering using the auxiliary data structures (lines 63-79). 

There are 4 nested loops. The outer loop iterates over all offerings in the candidate list (line 63). For each 

offering (?o) its ?Concept-Values set is retrieved (line 64). The second loop iterates over all PaaS concepts 

(?r) of the Application Requirement (line 65) and retrieves the appropriate concept list (line 66) for the 

current concept type (?r.type). The third loop (line 68) iterates over all concept instances (?c) of the offering 

found in ?Concept-Values that match the ones found in the concept list of the appropriate concept type. The 

fourth loop (line 70) iterates over all property-value (<?p,?v>) pairs for each concept instance (?c) and cal-

culates the score for each parameter of the concept, using the scoring function (lines 72-74) analyzed in 

Section 4.1.2. The features that play role in scoring are: a) the value of the parameter, b) the minimum/max-

imum parameter values, c) the parameter value of the application requirement, d) the coefficient of the pa-

rameter as defined by the user (through the GUI), e) the difference function as defined by the user (through 

the GUI), which defines how important the differences are between the value of the offering and the value 

of the requirement (linear, sublinear, superlinear, etc), f) the type of the quality value that parametrizes the 

non-functional parameter (e.g. max or min) and, finally, g) how steep the sub- and super- linear curves are 

(factor ?K). Note that in line 74 we calculate the score per concept instance, and then, outside the fourth 

loop but inside the third (lines 75-76) we keep track of the concept instance with the maximum score (per 

concept type), which is used to calculate the offering score outside the third loop (but inside the second) in 

lines 77-79. Finally, when the above procedure ends, all offerings have been scored. Line 80 sorts the of-

ferings in descending order according to the score and line 81 returns the results. 
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4.1.2 Scoring Function 

The scoring function for each non-functional parameter actually tries to measure how far the value of the 

current offering is from the worst offering (for this parameter), so that offerings can be compared in a fair 

manner according to this parameter. Furthermore, in order for the comparison to be fair across all parame-

ters, this function always returns a value between 0 and 1. Of course, since each parameter counts differently 

according to the DevOps engineer, the value of this scoring function is multiplied by a weighing factor. The 

sum of all weights for all parameters equals to 1. 

 

Figure 8. The difference functions supported by scoring function. 

The scoring function for each non-functional parameter takes as input: 

 the Minimum (?min) / Maximum (?max) / Previous of Maximum (?prevmax) values for the offer-

ings parameters that satisfy the functional requirements,  

 the type (?parametrizes_type) of the Quality Value (Single, Nominal, Ordinal, Range) that para-

metrizes the non-functional parameter,  

 the coefficient (?coefficient) of the parameter as defined by the user (through the GUI),  

 the name of the difference function (?differenceFunction) as defined by the user (through the GUI), 

which defines how important the differences are between the value of the parameter, the current 

offering and the corresponding value of the worst offering (linear, sublinear, superlinear, etc.), and  

 a configuration parameter (?K) that defines how steep the sublinear and superlinear curves are, 

which could be adjusted by the admin or even the user from the GUI. 

The score of an offering for a parameter is given by the following function: 
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𝑃𝑎𝑟𝑆𝑐𝑜𝑟𝑒𝑝𝑎𝑟(𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙) = {

1, 𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙 = ∞
0,   𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙 < 𝐴𝑝𝑝𝑅𝑒𝑞𝑃𝑎𝑟𝑉𝑎𝑙

𝑤𝑝𝑎𝑟𝑓𝑑𝑓𝑝𝑎𝑟
(𝑥𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  Eq. 1 

where, OffParVal is the value of the parameter for the offering, AppReqParVal is the required value for the 

parameter by the application, wpar is the coefficient of the parameter, and fdfpar is the difference function 

selected for the parameter. In case the value of the parameter for the offering is unbounded () it means that 

it should be assigned the maximum scoring value (1). On the other hand, if the value of the offering param-

eter is less than what the application requires, then it is assigned the minimum scoring value (0). In any 

other case, the score of the difference function is multiplied by the corresponding weight. 

We support the following difference functions, which are better illustrated in Figure 8: 

 Flat Scoring Function: 𝑓𝑓𝑙(𝑥) = 0, meaning that no matter what the value of the input is, the output 

is always zero. This behavior could be equally well produced by zero weight or just by eliminating 

the parameter from the GUI. We provide it for the sake of completeness. 

 Linear Scoring Function: 𝑓𝑙𝑖𝑛(𝑥) = 𝑥. The most usual case; the output is analogous to the input, 

meaning that doubling the input, the output also doubles. 

 Super-linear Scoring Function: 𝑓𝑠𝑢𝑝(𝑥) = 1 − 𝑒−𝑘𝑥. In this case, the output initially grows expo-

nentially with the growth of the input. This means that small differences in this parameter should 

be scored highly. An example of this could be for scarce and expensive resources, as e.g. memory 

capacity. A double memory capacity could mean 10 times better offering (according to this criterion 

alone). The evolution of this super-linear function is controlled by a constant k, which could be 

selected by the PaaSport administrator or even the DevOps engineer. In the latter case, it should be 

the same for all parameters, for the sake of fairness. In Figure 8 the factor k was set to 5. Note, that 

since f(x) can never exceed 1, this function rises quickly and then saturates to 1, meaning that beyond 

a certain point there is no added value to increase this parameter. 

 Sub-linear Scoring Function: 𝑓𝑠𝑢𝑏(𝑥) = 𝑓𝑠𝑢𝑝
−1 (𝑥) = −

ln (1−𝑥)

𝑘
. This case is symmetrical to the super-

linear function, using the linear function as the symmetry axis. This literary means that this function 

is the inverse of the super-linear one. The output initially grows very slowly (logarithmically) with 

the growth of the input. This means that big differences in this parameter should not be assigned a 

high scoring value. An example of this could be for abundant and cheap resources, as e.g. HDD 

storage capacity. Ten times the storage could mean just 2 times better offering (according to this 

criterion alone). The evolution of this sub-linear function is also controlled by the constant k. Note, 

that since this function is symmetrical to the super-linear one, it rises quickly near x=1 to reach 

f(1)=1 at the end. 
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 Spike Scoring Function: 𝑓𝑠𝑝(𝑥) = {
0, 𝑥 = 0
1, 𝑥 > 0

. In this case, when the input is minimum, so is the out-

put (0), whereas at all other cases the output is maximum (1). Actually it is the step function that 

indicates that whatever better than the minimum is scored highly. 

The input value x of the difference function is related, of course, to the value of the non-functional parameter 

of the offering. It also depends on the type of the quality value that parametrizes the nonfunctional property. 

𝑥 = {
𝑎,     𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. 𝑡𝑦𝑝𝑒 =  𝑀𝑖𝑛  𝑀𝑎𝑥𝑀𝑖𝑛 

1 − 𝑎,   𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. 𝑡𝑦𝑝𝑒 =  𝑀𝑎𝑥  𝑀𝑖𝑛𝑀𝑎𝑥
 Eq. 2 

The first case is when the greater the value of the offering, the better the score should be, as in e.g. storage 

capacity. The second case corresponds to the opposite situation: the lesser the value of the offering, the 

better the score should be, as in e.g. network latency.  

Quantity a is always in the range of 0-1 (as it is also the case for x). In order to be so, it must be defined via 

a ratio whose denominator is greater or equal to the nominator.  

𝑎 = {

(𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙−𝑀𝑖𝑛𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙)(1−
1

𝑀𝑎𝑥𝐷𝑖𝑓𝑓
)

𝑀𝑎𝑥𝐷𝑖𝑓𝑓
, 𝑀𝑎𝑥𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙 = ∞

𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙−𝑀𝑖𝑛𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙

𝑀𝑎𝑥𝐷𝑖𝑓𝑓
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. 3 

The second case is the typical one, where the difference between the parameter value of the offering and the 

minimum parameter value of all offerings is divided by the maximum difference of this specific parameter 

domain (only the offerings that satisfy the functional parameters are members of the domain). The first case 

is a special case where the maximum value of the domain is unbounded (). In this case, we use the second 

greatest value of the domain; however, we also subtract a small quantity (that depends on the values of the 

domain) from the difference in the nominator, so that score 1 can only be assigned to the actual maximum 

value for the domain, i.e. the value unbounded. MaxDiff is calculated (for these two cases) as shown below: 

𝑀𝑎𝑥𝐷𝑖𝑓𝑓 = {
𝑃𝑟𝑒𝑣𝑀𝑎𝑥𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙 − 𝑀𝑖𝑛𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙, 𝑀𝑎𝑥𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙 = ∞

𝑀𝑎𝑥𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙 − 𝑀𝑖𝑛𝑂𝑓𝑓𝑃𝑎𝑟𝑉𝑎𝑙, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Eq. 4 

Moving to the description of the actual algorithm for the scoring function, illustrated in Algorithm 2, we 

first find the “appropriate” operator for comparison (line 1), according to the type of the Quality Value that 

parametrizes the non-functional parameter. Then we calculate the appropriate ?maxdix (lines 2-4) according 

to a) if the ?max value is unbounded, then so is ?maxdif, or b) using the appropriate operator, as shown in 

Algorithm 7. Similarly, the ?prevmaxdif (see first case of Eq. 4, above) is calculated in line 5. 
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Algorithm 2. The scoring function for each parameter. 

 

 

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

11.  

12.  

13.  

14.  

15.  

16.  

17.  

18.  

19.  

20.  

21.  

22.  

23.  

Function Score-offering(?offering-value, ?app-value, ?parametrizes_type, ?min, ?prevmax, ?max, ?coefficient, ?dif-

ferenceFunction, ?K) : ?Score:float 

?Op = find-operator(?parametrizes_type) 

If ?max == unbounded Then ?maxdif = unbounded Else ?maxdif = difference(?op, ?max, ?min) 

?prevmaxdif = difference(?op, ?prevmax, ?min) 

If ?offering-value == unbounded 

Then ?y = 1 

Else If !check-op(?op, ?offering-value, ?app-value) 

Then ?y = 0 

Else If ?op == “==” 

Then ?y = 1 

Else 

If ?maxdif == unbounded  

Then ?a = abs( difference(?op, ?offering-value, ?min)) *  

(1-1/?prevmaxdif) / ?prevmaxdif 

Else ?a = abs( difference(?op, ?offering-value, ?min)) / ?maxdif 

If ?Op == “<=” Then ?x = 1 – ?a 

Switch ?differenceFunction 

Case flat:  ?y = 0 

Case sublinear: If ?x == 1 Then ?y = 1 Else ?y = -ln(1 - ?x)/?K  

Case linear:  ?y = ?x 

Case superlinear: ?y = 1-exp(-?K * ?x) 

Case spike:  If ?x == 0 Then ?y = 0 Else ?y = 1 

?Score = ?coefficient * ?y 

Return (?Score) 

 

Then, if the offering features an unbounded value for the parameter (line 6), then the difference function 

scores 1 (the maximum – see Eq. 1, first case). Else, if the offering value is no better than the application 

requirement (line 9), which is determined using Algorithm 6, then the difference function scores 0 (the 

minimum – see Eq. 1, second case). If it is “better” (or equal), then check if the comparison is “pure” 

equality; if yes, then the difference function scores 1 (the maximum), else calculate quantity ?a (lines 13-

16), according to Eq. 3, and then the actual input ?x to the difference function (lines 17-18), according to 

Eq. 2. Lines 19-31 implement the 5 different difference functions, presented above. The only thing to note 

is the case for the sub-linear function, which is not defined (log0) when ?x equals 1. In this case the function 

value is set to 1 (lines 23-24). Finally, the Score is calculated by multiplying the result of the difference 

function by the parameter’s coefficient (user’s weight factor) (line 32) and the score is returned. 

4.1.3 Auxiliary Functions 

In this section we present the algorithms for the most important auxiliary functions that are used in the 

recommendation algorithm. A full description of all auxiliary algorithms can be found at (PaaSport Consor-

tium, 2014d). Algorithm 3 defines the best of a set of values for a parameter according to the type of the 

quality value. It takes as input the set of values, the type of the parameter and the corresponding application 
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value. For numerical ranges (Min, MaxMin, Max, MaxMin) the “best” value is either the maximum numer-

ical value (Min, MaxMin) or the minimum numerical value (Max, MaxMin), which can be found using 

trivial algorithms (not shown here for brevity). In case of ordinal values, a special function, shown in Algo-

rithm 4, is used to find the maximum ordinal value. Note here that in the PaaSport semantic model, ordinal 

values are sorted in ascending order. Finally, Single and Nominal Values are treated alike: the “best” value 

is the value that equals the application value. If such a value does not exist in the set, then an arbitrary one 

is assigned. 

Algorithm 3. Function that defines the best value according to the type of the quality value. 

 

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

11.  

Find_best(?ValueSet, ?parametrizes_type, ?app-value) : ?Value : anyType 

Switch ?parametrizes_type 

Case Min or MaxMin: ?Value = Find_numerical_max(?ValueSet) 

Case Max or MinMax:  ?Value = Find_numerical_min(?ValueSet) 

Case Ordinal:  ?Value = Find_ord_max(?ValueSet) 

Otherwise:  ?Value = ?ValueSet[1] 

  ?n = 2 

  ?last = |?ValueSet| 

  While (?Value !== ?app-value and ?n <= ?last) do 

   ?Value = ?ValueSet[?n] 

   ?n = ?n + 1 

Return (?Value) 

 

Algorithm 4 retrieves the maximum of ordinal values. Actually, it does not differ from a trivial maximum-

finding algorithm for numerical values. The only difference is the comparison operator in line 5, which is 

implemented by function check_op, shown in Algorithm 6. The minimum is defined similarly. 

Algorithm 4. Function that finds the maximum value of ordinal values. 

 

1.  

2.  

3.  

4.  

5.  

6.  

7.  

Find_ord_max(?ValueSet) : ?MaxValue:anyType 

?MaxValue = ?ValueSet[1] 

?n = 2 

?last = |?ValueSet| 

While (?n <= ?last) do 

If check_op(ord_max,?ValueSet[?n],?MaxValue) Then ?MaxValue = ?ValueSet[?n] 

?n = ?n + 1 

Return (?MaxValue) 

 

Algorithm 5 compares two values according to the type of the quality value. It takes as input the two values, 

the type of the parameter and the application value. For numerical ranges (Min, MaxMin, Max, MaxMin) 

the comparison if performed using the numerical “greater-than” operator. In case of ordinal values, the 

comparison operator in line 6 is implemented by function check_op, shown in Algorithm 6. Finally, Single 



31 

and Nominal Values are treated alike: if the first value equals the application value while the second value 

does not, then the first value is greater than the second. In all other cases, the comparison is false. 

Algorithm 5. Function that compares two values according to the type of the quality value. 

 

1.  

2.  

3.  

4.  

5.  

6.  

compare_greater(?v1, ?v2, ?parametrizes_type, ?app_value) : ?check:Boolean 

?check = false 

Switch ?parametrizes_type 

Case Min or MaxMin or Max or MinMax: If ?v1 > ?v2 Then ?check = true 

Case Ordinal:    If check_op(ord_max,?v1,?v2) Then ?check = true 

Otherwise:    If ( ?v1 == ?app_value AND ?v2 !== ?app_value) Then ?check = true 

Return (?check) 

 

Algorithm 6 checks whether the comparison between two values, using a certain comparison operator, is 

true. It takes as input the two values and the comparison operator. If the operator is a usual numerical com-

parison operator, then values are compared using this operator. If the operator is ord_max, meaning that the 

two values are ordinal and it should be checked if the first is greater than or equal to the second, then the 

SPARQL query of Algorithm 15 is executed. In essence, this query checks if the first value follows the 

second in the directed graph of ordinal values. If the operator is the “equals” operator, the check is true if 

the two values are equal. 

Algorithm 6. Check if comparison between two values using a comparison operator is true. 

 

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

check-op(?op, ?offering-value, ?app-value) : ?check:Boolean 

?check = false 

Switch ?op 

Case “>=”: If ?offering-value >= ?app-value Then ?check = true 

Case “<=”: If ?offering-value <= ?app-value Then ?check = true 

Case ord_max: If ( ?offering-value == ?app-value OR Run-check-ordinal-values-sparql(?offering-value, 

?app-value) ) Then ?check = true 

Otherwise: If ?offering-value == ?app-value Then ?check = true 

Return (?check) 

 

Algorithm 7 calculates the difference between two values based on the comparison operator. It takes as 

input the two values and the comparison operator. If the operator is a usual numerical comparison operator, 

the difference is calculated using subtraction. If the operator is ord_max, meaning that the two values are 

ordinal, then if the two values are equal the difference is 0, otherwise we execute the SPARQL query of 

Algorithm 16 that counts how many edges exist in the graph between the two ordinal values. If the operator 

is the “equals” operator, the difference is 0 if the two values are equal; otherwise difference is 1. 
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Algorithm 7. Calculate the difference between two values based on the comparison operator. 

 

1.  

2.  

3.  

4.  

5.  

difference(?op, ?v1, ?v2) : ?diff:numerical 

Switch ?op 

Case “>=” or “<=”: ?diff is ?v1 – v2 

Case ord_max: If ?v1 == ?v2 Then ?diff = 0 Else ?diff = run-calc-ordinal-difference-sparql(?v1, ?v2) 

Otherwise:  If ?v1 == ?v2 Then ?diff = 0 Else ?diff = 1 

Return (?diff) 

4.2 SPARQL templates  

In this section we present the SPARQL templates that either check the functional parameters or retrieve the 

non-functional parameters. Finally, there is also a subsection that presents SPARQL queries needed for 

Ordinal values. Note that we suppose that there exists a function that returns the corresponding template, 

given the type of the quality value that parameterizes the parameters. Since this function is trivial to build, 

we do not present it here. Furthermore note that these templates have several placeholders (as e.g. <offer-

ing.ID>, <concept.type>, etc.), which are instantiated by the calling function before the SPARQL template 

is executed. Again, the function is trivial to build, so we do not present it here. 

4.2.1 Checking Functional Parameters 

All templates have a similar structure, returning the concept instances (?concept) that satisfy the functional 

parameter. If the offering does not satisfy the functional parameter, then such a query will return a NULL 

result set. This will be recognized by the matchmaking algorithm. The concepts that pass the functional 

parameters are registered by the calling algorithm. 

No Quality Value 

This is the simplest case, where no quality value exists for all. This could be for cases where a single value 

with no units is needed. Of course, the best way to deal with this would be through nominal values, but 

nevertheless we cover this case also for completeness (Algorithm 8). From the initial offering (<offer-

ing.ID>) the query navigates to its concepts (?concept) that share the same concept type (<concept.type>) 

with the application profile (lines 2-4). Then we retrieve all the parameters (?par) of the concept of the 

concept instance that share the same parameter type (<par.type>) with the application profile (lines 5-13). 

Note that we do not restrict the search only to parameters of the current concept instances, but also to pa-

rameters of compatible concepts, through the paas:hasCompatibilityWith transitive property (line 10). This 

could be used for cases e.g. of different programming language versions that are backwards compatible. 

Finally, in line 14 the value of the parameter is retrieved and in line 15 it is checked for equality against the 

corresponding value of application profile (<par.value>). 
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Algorithm 8. SPARQL template for checking a functional parameter without a quality value 

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

11.  

12.  

13.  

14.  

SELECT ?concept WHERE { 

 <offering.ID> DUL:satisfies ?groundDescription . 

 ?groundDescription paas:offers ?concept . 

 ?concept rdf:type <concept.type> . 

 { ?concept DUL:hasParameter ?par . 

 } 

 UNION 

 { ?concept paas:hasCompatibilityWith+ ?concept1 . 

  ?concept1 DUL:hasParameter ?par . 

 } 

 ?par rdf:type <par.type> . 

 ?par DUL:hasParameterDataValue ?Value . 

 FILTER(?Value = <par.value> ) 

} 

 

Notice that the above (and all consequent) SPARQL queries return offering concepts and parameters that 

have both exact and plugin conceptual relationships with the corresponding application concepts and pa-

rameters. This is due to the fact that triple patterns like “?concept rdf:type <concept.type> .” and “?par 

rdf:type <par.type> .” are interpreted under OWL semantics. However, there is no difference in scoring 

regarding either exact or plugin matching of concepts / parameters; plugin matching is considered as good 

as exact matching. Furthermore, the above (and all consequent) SPARQL queries can be easily tweaked to 

return services of multiple cloud providers by just eliminating lines 2 and 3, allowing thus for any concept 

(service) to be matched regardless of the offering that it belongs too. 

Nominal Value 

The nominal value case is similar to the previous one; the only difference being the addition of lines 13-14 

(Algorithm 9) that checks if the quality value of the parameter of the application profile is indeed a nominal 

value and that it coincides with the quality value that parametrizes the parameter of the offering. 

Algorithm 9. SPARQL template for checking a functional parameter with a nominal value 

12.  

13.  

14.  

15.  

 ?par DUL:hasParameterDataValue ?Value . 

 <par.qualityValue> rdf:type paas:NominalValue . 

 ?par DUL:parametrizes <par.qualityValue> . 

 FILTER(?Value = <par.value> ) 

Ordinal Value 

The case of ordinal values differs from nominal values from line 14 onwards (Algorithm 10), since the 

compliance of an ordinal value parameter is that the offering has the same or better value than the one 

requested by the application. Lines 14-16 implement the check for the same value (similarly to nominal 

values), whereas lines 18-26 implement the “better value” case. For ordinal values, “better” means that the 
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offering value is an ontology instance that is either backward connected to the application request instance 

through the DUL:precedes property or that the application request instance is forward connected with the 

offering value instance through the DUL:follows property. 

Algorithm 10. SPARQL template for checking a functional parameter with an ordinal value 

14.  

15.  

16.  

17.  

18.  

19.  

20.  

21.  

22.  

23.  

24.  

25.  

26.  

27.  

 { ?par DUL:parametrizes <par.qualityValue> . 

  FILTER (?Value = <par.value> ) 

 } 

 UNION 

 { ?par DUL:parametrizes ?QualityValue . 

  ?QualityValue rdf:type paas:OrdinalValue . 

  <par.qualityValue> DUL:precedes+ ?QualityValue . 

 } 

 UNION 

 { ?par DUL:parametrizes ?QualityValue . 

  ?QualityValue rdf:type paas:OrdinalValue . 

  ?QualityValue DUL:follows+ <par.qualityValue> . 

 } 

} 

Single Value 

Single values are arithmetic values that may be characterized by measurement units (e.g. 1 GB of memory). 

So, when comparing two values for equality, this should also include equality of units. But simply compar-

ing both values and units is still not enough because two values can be different literally but equal concep-

tually if their units are convertible to each other. For example, 1024MB is exactly the same as 1GB, although 

neither the value nor the measurement unit is identical on the first sight. Hence the complexity of this 

SPARQL query (Algorithm 11). There are several alternative cases for equality; each one of them is one 

of the 5 graph patterns that are connected through the UNION operator. 

The first case (lines 14-17) is where the quality value of the offering parameter is identical to the one of the 

application profile. This means that both values have identical units. Similar is the second case (lines 19-

23) where the quality values are not identical but they are both measured with the same measurement unit 

(<par.qualityValue.MeasureUnit>). In both these cases, the values of the offering and the application will 

be compared directly, without conversions; this is reflected by the fact that variables ?Factor1 and ?Factor2 

are both set to 1. 
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Algorithm 11. SPARQL template for checking a functional parameter with a single numerical value 

14.  

15.  

16.  

17.  

18.  

19.  

20.  

21.  

22.  

23.  

24.  

25.  

26.  

27.  

28.  

29.  

30.  

31.  

32.  

33.  

34.  

35.  

36.  

37.  

38.  

39.  

40.  

41.  

42.  

43.  

44.  

45.  

46.  

47.  

48.  

49.  

50.  

51.  

52.  

53.  

54.  

55.  

56.  

57.  

58.  

59.  

60.  

61.  

62.  

63.  

 { ?par DUL:parametrizes <par.qualityValue> . 

  BIND (1 AS ?Factor1) 

  BIND (1 AS ?Factor2) 

 } 

 UNION 

 { ?par DUL:parametrizes ?qualityValue . 

  ?qualityValue uomvocab:measuredIn <par.qualityValue.MeasureUnit> . 

  BIND (1 AS ?Factor1) 

  BIND (1 AS ?Factor2) 

 } 

 UNION 

 { ?par DUL:parametrizes ?qualityValue . 

  ?qualityValue uomvocab:measuredIn ?Units . 

  <par.qualityValue.MeasureUnit> rdf:type ?AppParMeasureUnitType . 

  ?Units rdf:type ?AppParMeasureUnitType. 

  <par.qualityValue.MeasureUnit> rdf:type uomvocab:BaseUnit . 

  ?Units rdf:type uomvocab:SimpleDerivedUnit . 

  ?Units uomvocab:derivesFrom <par.qualityValue.MeasureUnit> . 

  ?Units uomvocab:modifierPrefix ?prefix2 . 

  ?prefix2 uomvocab:factor ?Factor2 . 

  BIND (1 AS ?Factor1) 

 } 

 UNION 

 { ?par DUL:parametrizes ?qualityValue . 

  ?qualityValue uomvocab:measuredIn ?Units . 

  <par.qualityValue.MeasureUnit> rdf:type ?AppParMeasureUnitType . 

  ?Units rdf:type ?AppParMeasureUnitType. 

  <par.qualityValue.MeasureUnit> rdf:type uomvocab:SimpleDerivedUnit . 

  ?Units rdf:type uomvocab:BaseUnit . 

  <par.qualityValue.MeasureUnit> uomvocab:derivesFrom ?Units . 

  <par.qualityValue.MeasureUnit> uomvocab:modifierPrefix ?prefix1 . 

  ?prefix1 uomvocab:factor ?Factor1 . 

  BIND (1 AS ?Factor2) 

 } 

 UNION 

 { ?par DUL:parametrizes ?qualityValue . 

  ?qualityValue uomvocab:measuredIn ?Units . 

  <par.qualityValue.MeasureUnit> rdf:type ?AppParMeasureUnitType . 

  ?Units rdf:type ?AppParMeasureUnitType. 

  <par.qualityValue.MeasureUnit> rdf:type uomvocab:SimpleDerivedUnit . 

  ?Units rdf:type uomvocab:SimpleDerivedUnit . 

  <par.qualityValue.MeasureUnit> uomvocab:derivesFrom ?BasicUnit . 

  ?Units uomvocab:derivesFrom ?BasicUnit . 

  <par.qualityValue.MeasureUnit> uomvocab:modifierPrefix ?prefix1 . 

  ?Units uomvocab:modifierPrefix ?prefix2 . 

  ?prefix1 uomvocab:factor ?Factor1 . 

  ?prefix2 uomvocab:factor ?Factor2 . 

 } 

 FILTER( xsd:double(?Factor2)*?Value = xsd:double(?Factor1)*<par.value>) 

} 
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In the third case (lines 25-35), the measurement unit of the parameter of the application profile is a basic 

unit (line 29), so it cannot be converted (?Factor1 set to 1), whereas the measurement unit of the parameter 

of the offering is a derived unit (line 30) that can be converted to the basic unit (line 32) using a modifier 

?Factor2 (e.g. Giga) (lines 32-33). For example, 20KB will be converted to 20*1024=20480 bytes. The 

fourth case (lines 37-47) is the exact symmetrical one; the measurement unit of the parameter of the offering 

is a basic unit (line 42), whereas the measurement unit of the parameter of the application profile is a derived 

unit (line 41). Finally, the fifth case (lines 49-61) is when both the offering and the application profile have 

parameters of derived units (lines 53-54). Instead of converting the one unit to the other, we convert both of 

them (lines 57-58) to the basic unit they originate from (lines 55-56), so that they become comparable. Line 

62 at the end is the filtering expression that compares the two converted (or not) values, using the alternative 

?Factori multipliers. 

Max or MinMax Value 

Actually the SPARQL template is almost the same with the one presented above for the “Single Value” 

case. The only difference is the comparison operator in the last FILTER expression (line 68), which now 

becomes as in Algorithm 12. 

Algorithm 12. SPARQL template for checking a functional parameter with a max numerical value 

62.  FILTER( xsd:double(?Factor2)*?Value <= xsd:double(?Factor1)*<par.value>) 

Min or MaxMin Value 

In this case, the upper limit can also be “unbounded”. This value is always better than the limit set by the 

application. If we allow the application requirement to set an “unbounded” limit, then this would only match 

the “unbounded” value of the offering parameter, nothing else. Therefore, we have to reflect this case on 

the last FILTER expression (line 68), which is replaced by lines 62-67 in Algorithm 13. 

Algorithm 13. SPARQL template for checking a functional parameter with a min numerical value 

62. 

63. 

64. 

65. 

66. 

67. 

FILTER( IF( ?Value ="unbounded", 

true,  

IF(<par.value>="unbounded",  

 false,  

 xsd:double(?Factor2)*?Value >= xsd:double(?Factor1)*<par.value>  

))) 

4.2.2 Retrieving Non-Functional Parameters 

Non-functional parameters are scored even if the retrieved value of the parameter is outside the limits. 

Therefore, the final FILTER expression (which was present at the templates for the functional parameters) 

is not needed. The rest of the SPARQL query is almost the same (Algorithm 14). Note here that instead of 

multiple templates according to the type of the quality value that parametrizes the non-functional parameter, 
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we have a single one with multiple UNION sections that collect the “correct” value. Furthermore, the tem-

plate query takes care of the case where there are numerical values that are characterized by units that need 

to be transformed before compared (e.g. GBytes vs. Mbytes). In this way, the SPARQL query calculates the 

“correct” offering parameter value to be fed to the scoring function, by using prefixes of Derived Units to 

transform the value of the offering parameter into the same measurement unit as the application profile 

parameter (e.g. transform Gbytes to Mbytes).  

Compared to the single value case (Algorithm 11), the focus lies on lines 1 and 62: In line 62 a single 

?Factor multiplier is calculated by dividing ?Factor2 by ?Factor1. To better grasp this, consider an appli-

cation request for 512MB memory and an offering of 1GB memory. The former has ?Factor1=2^20, 

whereas the latter has ?Factor2=2^30. The ?Factor will be 2^10. Thus, the SPARQL query will return (line 

1) to the calling algorithm 1GB*2^10=1024MB as the value of the parameter for the offering, so that the 

scoring function correctly compares this to the 512MB request. 

Notice that both the value of the parameter and the concept instance are returned. This is needed when a 

single concept has multiple parameters (thus multiple values) of the same type. Furthermore, if there are 

multiple concepts (of the same type) for the same offering, they will also be returned. So, each value is 

connected to the concept it belongs to. This is needed later in the scoring, in order to be able to score at the 

concept level and then select the best concept score for each offering. Note also line 4, with the VALUES 

construct, which takes into account the list of concepts (<concept-list>) that have satisfied the functional 

parameters. If a concept does not belong to this list, then it cannot be used to provide values for non-func-

tional parameters. However, when a concept does not have any functional parameter, but only non-func-

tional parameters, then <concept-list> is empty and the query will not return any concepts and values. In 

this case, line 4 is omitted. We assume that the calling function takes care of this issue. 

Algorithm 14. SPARQL template for retrieving values of non-functional numerical parameters 

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

 

61.  

62.  

63.  

SELECT ( xsd:double(?Factor)*?Value as ?Offering-Value ) ?concept WHERE { 

 <offering.ID> DUL:satisfies ?groundDescription . 

 ?groundDescription paas:offers ?concept . 

 VALUES ?concept { <concept-list> } 

 ?concept rdf:type <concept.type> . 

 ?concept DUL:hasParameter ?par . 

 ?par rdf:type <par.type> . 

 ?par DUL:hasParameterDataValue ?Value . 

… 

 Identical to lines 15-61 of Single Value functional parameter (Algorithm 11) 

… 

 BIND (?Factor2/?Factor1 AS ?Factor) 

} 
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4.2.3 Queries for Ordinal Values 

In this sub-section we describe two SPARQL queries needed by the scoring function for Ordinal values. 

Check order of two ordinal values 

The following query (Algorithm 15) checks if the first Value (Value1) is greater than the second one 

(Value2). The two values must belong to parameters of the same type (lines 2-4) and, of course, they must 

be different (line 6). Then we check if they both belong to ordinal quality values (lines 7-10), and finally, in 

order for the first value to be greater than the second one, the first value must follow the second one via the 

DUL:follows transitive property (line 14) or the second value must precede the first one via the DUL:pre-

cedes transitive property (line 11). 

Algorithm 15. SPARQL template for checking order of ordinal values. 

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

11.  

12.  

13.  

14.  

15.  

16.  

ASK { 

 ?par1 DUL:hasParameterDataValue <Value1> . 

 ?par2 DUL:hasParameterDataValue <Value2> . 

 ?par1 rdf:type ?par-type . 

 ?par2 rdf:type ?par-type . 

 FILTER ( <Value1> != <Value2> ) 

 ?par1 DUL:parametrizes ?QualityValue1 . 

 ?QualityValue1 rdf:type paas:OrdinalValue . 

 ?par2 DUL:parametrizes ?QualityValue2 . 

 ?QualityValue2 rdf:type paas:OrdinalValue . 

 { ?QualityValue2 DUL:precedes+ ?QualityValue1 . 

 } 

 UNION 

 { ?QualityValue1 DUL:follows+ ?QualityValue2 . 

 } 

} 

Count distance between two ordinal values 

The following query (Algorithm 16) counts the distance (hops) between the first Value (Value1) and the 

second value (Value2). The difference between the current and the previous queries is from line 11 onwards. 

So, instead of just checking if the two values are connected through a DUL:precedes orDUL:follows path, 

we instantiate with the ?mid variable all the intermediate nodes of the path and in line 1 we return the total 

number of these intermediate nodes using the COUNT aggregate function. 

Algorithm 16. SPARQL template for counting the distance between two ordinal values 

1.  

2.  

 

10.  

11.  

12.  

13.  

SELECT (count(?mid) AS ?diff) { 

… 

 Identical to lines 2-10 of Algorithm 15 

… 

 { ?QualityValue2 DUL:precedes* ?mid . 

  ?mid DUL:precedes+ ?QualityValue1 . 

 } 
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14.  

15.  

16.  

17.  

18.  

 UNION 

 { ?QualityValue1 DUL:follows* ?mid . 

  ?mid DUL:follows+ ?QualityValue2 . 

 } 

} 

4.3 Matchmaking Examples 

In this section, we give some examples that better illustrate the matchmaking and scoring procedures of our 

algorithm. The first offering (Figure 9) has java 1.6.0 as programming environment and two different op-

tions for database: a MySQL database with up to 1 GB size and a MySQL database with up to 5 GB storage. 

The second offering (with a similar structure) has java 1.4.0 as programming environment, a MySQL data-

base with 10 GB storage and a MongoDB with 15 GB storage. 

Application 1 - SQL type database and java 1.6.0 (as functional): We assume that we have an application 

profile which requires java 1.6.0 and an SQL database. Our algorithm first checks which offerings have 

concepts with ‘SQLDatabase’ as type and ‘SQLDatabase’ as ServiceType parameter. Afterwards, the algo-

rithm checks the programming environment. For every offering’s concept check, first, if the type is of Pro-

gramming environment type and then check if it has parameter ‘LanguageName’ and if that parameter has 

a value equal to ‘java’. For every concept that passes this check, if it has ‘LanguageVersion’ we also need 

to confirm that this parameter has a value of ‘1.6.0’. When the algorithm terminates, only the first offering 

has passed, with ‘java’ and with ‘1.6.0’ as its version.   

offering1
MySQL_1GB

MySQL_5GB

offers

Capacity

ServiceName
offers

hasParameter

hasParameter

Capacity

ServiceName

hasParameter

hasParameter

Java_1.6.0

offers

LanguageNamehasParameter

LanguageVersion

hasParameter

hasParameterDataValue

ServiceType

hasParameter

ServiceType
hasParameter

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

 java 

 1.6.0 

1

 SQLDatabase 

 SQLDatabase 

 MySQL 

5

 MySQL 

parametrizes

MaxMinGB

parametrizes MaxMinGB

 

Figure 9. Example 1 of an offering. 

Application 2 - MySQL database with 7GB (as storage) and java (as functional): We now have an applica-

tion that has a MySQL database with 7GB as a first requirement. So, the algorithm for every offering checks 
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every concept that has ‘SQLDatabase’ as type, ‘MySQL’ as service name and if it has a capacity of 7GB or 

more. Only instance ‘MySQL_10GB’ has these attributes; thus only offering 2 passes that test. Afterwards, 

the algorithm checks all remaining offerings for a programming environment concept that has ‘java’ as 

LanguageName value. When the algorithm finishes, only offering 2 has passed. 

Application 3 - MySQL database (functional) with 1GB as storage (non-functional): In this case the user 

only needs a MySQL database. If an offering indeed has a MySQL database, then we would like to give it 

a higher score if the storage is larger than 1GB. Our algorithm first checks all concepts of every offering if 

they contain the functional parameters (‘MySQL’ as service name and ‘SQLDatabase’ as type). For every 

concept that contains the functional parameters, it checks the value for non-functional parameters and as-

signs a score to the concept. In this example, concepts ‘MySQL_1GB’, ‘MySQL_5GB’, ‘MySQL_10GB’ 

all have functional parameters and are scored 0.0, 0.44, and 1, respectively. If an offering has more than one 

concept that passes the functional parameter threshold, we assign the maximum score of these concepts to 

the offering. Thus, offering 1 scored 0.44 and offering 2 scored 1. 

We now present some scoring results of the algorithm. We tested one parameter with different offering 

values and the same requirement. Table 1 (columns 2-4) and Figure 10-a show the results of different 

values of RAM capacity. The offerings’ values vary between 512MB to 6 GB. Columns 5-7 of Table 1 and 

Figure 10-b illustrate the results of different values of RAM capacity, again, but an offering has “un-

bounded” as value. 

Table 1. Values of scoring functions with and without “unbounded” value. 

RAM capacity (GB) 
without “unbounded” value with “unbounded” value 

linear sublinear superlinear linear sublinear superlinear 

0.5 0 0 0 0 0 0 

1 0.0909 0.019 0.36 0.07 0.015 0.31 

2 0.2727 0.06 0.74 0.22 0.05 0.67 

3 0.4545 0.1212 0.89 0.37 0.09 0.84 

4 0.6363 0.2 0.95 0.52 0.14 0.92 

5 0.8181 0.34 0.98 0.66 0.22 0.96 

6 1 1 1 0.81 0.34 0.98 

 

 

Figure 10. Scoring functions (a) without “unbounded” value and (B) with “unbounded” value. 
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Finally, we change the quality value of parameter from Max to Min/MaxMin, thus, the minimum value is 

better. The table below presents the results of the execution. 

Table 2. Inverse values (1-x) of scoring functions. 

RAM capacity (GB) linear superlinear sublinear 

0.5 1 0.99 1 

1 0.9 0.98 0.47 

2 0.72 0.97 0.25 

3 0.54 0.93 0.15 

4 0.36 0.83 0.09 

5 0.18 0.59 0.04 

6 0 0 0 

 

 

Figure 11. Inverse scoring functions. 

4.4 Interaction with the Persistence Layer 

The Persistence (or Repository) Layer is used in order to persist the various PaaSPort data models that are 

mapped to the semantic model and other entities that are needed for the proper function of PaaSPort Mar-

ketplace, while also offering appropriate search and discovery interfaces that allow the usage of persisted 

information from other components (PaaSport Consortium, 2015). The main component of the persistence 

layer is a Relational database that is used to store the data that are necessary for the operation of the platform. 

The repository contains: a) the semantic profiles of the PaaS offerings advertised in the Marketplace; and 

b) the semantic profiles of the deployed business software applications. 

In order to expose the PaaS offerings stored in the repository layer to the recommendation layer for the 

purposes of semantic matchmaking and ranking, we use the D2RQ Platform (D2RQ Platform, 2012), which 

is a system for accessing relational databases as virtual, read-only RDF graphs. It offers RDF-based access 

to the content of relational databases without having to replicate it into an RDF store. The D2RQ Platform 

provides a language for mapping relational database schemas to RDF vocabularies and OWL ontologies, 

through a mapping document that defines a virtual RDF graph that contains information from the database. 

In PaaSport we use the D2RQ mapping language in order to export the offering profiles from the relational 

database of the persistence layer to an RDF format (PaaSport Consortium, 2014d), so that they can be used 
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by the matchmaking and ranking algorithm of the recommendation layer. Every time that a PaaS provider 

inserts a new offering instance in the database, a script is responsible to recreate the PaaSport ontology file. 

The Recommendation layer interacts with the persistence layer, through the matchmaking algorithm, to: 

1. retrieve the PaaS offerings stored in the PaaSport Marketplace database 

2. get the application requirements that the DevOps engineer has posted through the UI 

Figure 12 shows the workflow of data from the persistence layer to the recommendation layer, concerning 

the inputs needed for the matchmaking/recommendation algorithm. The PaaS offerings are stored in the 

relational database of the persistence layer and they are mapped to RDF data, using the concepts and prop-

erties of the Semantic Models, using the D2RQ platform presented above. Then the offerings are fed into 

the matchmaking algorithm. After that, the application requirements are queried from the persistence layer 

and they are used to construct an application object that is also used as input of the matchmaking/recom-

mendation algorithm, which then proceeds as already described above. 

 

Figure 12. Workflow of Data for the Recommendation layer 

5 Evaluation 

In order to evaluate the scalability of the recommendation algorithm we have set up an experiment where 

we are generating three types of PaaS offerings multiple times and we measure the response time of the 

algorithm. Table 3 shows the concepts and the parameters of the three offering types. The “small offering” 

type has the “worse” values for the various numerical range quality values, such as bandwidth, storage 

capacity, latency, etc., whereas the “large offering type” has the “best” values. These offerings reside in a 

file and are loaded by Jena in main-memory, so we are just testing the algorithm performance and not the 

performance of the whole marketplace. However, since in the actual marketplace deployment the offerings 

will reside in a file that will be re-generated each time offerings are added to the repository, our experiments 

are still valid regarding the algorithm performance in the actual PaaSport marketplace. 

Matchmaking Algorithm

Mapping 
File

Offering Repository

D2RQ script
Read 

Ontology
Read Application 

Object
Execute the 
Algorithm 

Application 
Repository

Ontology of the 
offerings

Scored 
Offerings
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Table 3. Concepts and parameters for the three offering types of the evaluation. 

Concept ID Concept 

Type 

Concept Parameters Value 

Type 

Small 

Value 

Medium 

Value 

Large 

Value 
Network Network NetworkBandwidth Min 1000 1500 2000 

NetworkLatency Max 400 200 100 

NumberOfSSLEndpoints MaxMin 1 2 4 

PHP 5.3 Programming-

Language 

LanguageName SingleValue PHP PHP PHP 

Version SingleValue 5.3 5.3 5.3 

PHP 5.4 Programming-

Language  

LanguageName SingleValue PHP PHP PHP 

Version SingleValue 5.4 5.4 5.4 

python 2.6 Programming-

Language  

LanguageName SingleValue python python python 

Version SingleValue 2.6 2.6 2.6 

python 3.0 Programming-

Language 

LanguageName SingleValue python python python 

Version SingleValue 3.0 3.0 3.0 

dJango Programming-

Framework  

LanguageName SingleValue python python python 

LanguageVersion SingleValue 2.6 2.6 2.6 

FrameworkName SingleValue dJango dJango dJango 

FrameworkVersion SingleValue 1.7 1.7 1.7 

java 7 Programming-

Language 

LanguageName SingleValue java java java 

Version SingleValue 7.0 7.0 7.0 

java 8 Programming-

Language 

LanguageName SingleValue java java java 

Version SingleValue 8.0 8.0 8.0 

QoS QoS  Latency Max 400 200 100 

Uptime Min 95 98 100 

Mongodb NoSQLData-

base  

ServiceName SingleValue mongoDB mongoDB mongoDB 

Version SingleValue 2.6 2.6 2.6 

StorageCapacity MaxMin 1 2 4 

MySQL SQLDatabase ServiceName SingleValue mySQL mySQL mySQL 

Version SingleValue 5.0 5.0 5.0 

StorageCapacity MaxMin 1 2 4 

postgresSQL SQLDatabase ServiceName SingleValue postgresSQL postgresSQL postgresSQL 

Version SingleValue 5.0 5.0 5.0 

StorageCapacity MaxMin 1 2 4 

Processing Processing Frequency Min 400 800 4000 

MemoryCapacity MaxMin 1 2 4 

NumberOfCores MaxMin 1 2 4 

ScalingAvailability SingleValue TRUE TRUE TRUE 

Storage Storage StorageCapacity MaxMin 1 2 4 

 

We have repeated the experiment with various application requirements, both functional and non-functional 

(see Table 4). The storage capacity requirement for the container of the platform (next-to-last line of Table 

4) is a functional requirement and differs from 1 GB to 5 GB, in order to test the scalability of the algorithm 

for various percentages of PaaS offerings that satisfy the functional requirements and pass from the first 

loop of the recommendation algorithm (see section 4.1) that checks functional requirements to the second 

loop that ranks non-functional requirements for the offerings that satisfy the functional requirements. There-

fore, since the three types of PaaS offerings have container storage capacity of 1, 2 and 4 GB, this means 

that by differing the corresponding application functional requirement, the number of offerings that pass 

from the first loop to the second vary from 100% (when the requirement is for 1 GB storage capacity), to 

66% (2 GB), 33% (3 GB), 0% (5 GB).  
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Table 4. Application requirements for the algorithm evaluation 

PaaS Concepts PaaS concept Parameters 

Processing number of cores = 2 (non-functional) frequency = 1000 Hz (non-functional)  

QoS latency = 300 ms (non-functional) uptime = 98% (non-functional)  

ProgrammingLanguage name = 'PHP' (functional) version = 5.3 (functional) 

Storage storageCapacity = 1 | 2 | 3 | 5 GB (functional) 

NoSQLDatabase name = 'mongodb' (functional)  version = 2.6 (func-

tional) 

storageCapacity = 2GB 

(non-functional) 

 

Figure 13. Recommendation algorithm scalability with the number of PaaS offerings 

Figure 13 shows the response time of the recommendation algorithm vs. the number of PaaS offerings for 

the four different application requirements of Table 4. The experiments run on a Windows PC with 8 core 

CPU at 4GHz, 16 GB RAM, SSD. The number of offerings varies from 30 to 150,000. In a reasonable real-

world setting that number would be in the order of 100-1000. It is clear that the algorithm is linear to the 

number of offerings, verified by a regression analysis shown in Table 5, where it can be seen that the pro-

cessing time per offering is about 8,7 msec, giving actual executions times between 2-10 sec in a real-world 

setting. Furthermore, the response time of the algorithm also depends on the number of matched offerings, 

i.e. the ones that satisfy the functional requirements and pass to the ranking phase of the non-functional 

requirements. The less the offerings pass to the second phase, the fastest the algorithm, since the second 

loop runs for fewer offerings. In the extreme case of 5 GB, no PaaS offering passes to the ranking phase.  

Table 5. Regression analysis for response time over number of offerings for various percentages of matched offers 

Percentage of 

matched offerings 
Linear function R² 

100% y = 0,0087x + 1,6137 1 

66% y = 0,0076x + 3,0289 1 

33% y = 0,0066x + 3,1742 0,9999 

0% y = 0,0056x + 2,3519 1 
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In order to estimate the impact of non-functional parameters on the running time of the recommendation 

algorithm we have repeated the experiment with only the storage capacity requirement (Table 4). Specifi-

cally, we have run the recommendation algorithm with various numbers of offering when storage capacity 

is a) the only non-functional application requirement, b) the only functional application requirement, and c) 

the application requirement that is both functional and non-functional. In cases (b) and (c), all offerings pass 

the functional requirement. Results are shown in Figure 14, where it is evident that the execution time of 

functional and non-functional parameters is almost identical. When both are present their execution time 

adds up (almost doubles). This is due to the fact that the complexity of both parts of the recommendation 

algorithm is identical and there is a single SPARQL query of constant time in the inner loop of both parts. 

 

Figure 14. Testing the impact of functional vs. non-functional parameters. 

Table 6. Incremental application requirements for testing the impact of the number of parameters. 

Exper-

iment 
PaaS Concepts 

Total Number 

of Parameters 

1 Processing 2 

2 Processing + QoS 4 

3 Processing + QoS + ProgrammingLanguage 6 

4 Processing + QoS + ProgrammingLanguage + Storage (1GB) 7 

5 Processing + QoS + ProgrammingLanguage + Storage (1GB) + NoSQLDatabase 10 

 

Furthermore, we have tested the impact of the number of parameters on the execution time. Notice that 

parameters are associated to concepts and the recommendation algorithm has two loops: one regarding con-

cepts and one regarding parameters of a certain concept. However, what really matters in terms of execution 

time is how many SPARQL queries are executed; this depends on the total number of parameters since there 

is one SPARQL query per parameter. We are using the application requirements of Table 4 in that order. 

At experiment 1 we are using the concept/parameters of the first line; at each consecutive experiment i we 
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are using accumulatively the concepts/parameters up to line i (Table 6). For the container storage functional 

requirement we have used 1GB, meaning that 100% of the offerings are selected and ranked.  

We have repeated the experiment for four different number of offerings (1,5K - 30K). Results (Figure 15) 

show that the algorithm scales up also linearly with the number of the application requirement parameters. 

This is also verified by a regression analysis shown in Table 7. The lower values of R2 are due to the fact 

that not all application requirements are similar; some of them are functional and some non-functional. The 

previous experiment (Figure 14) has shown that their execution times are similar but not identical. 

 

Figure 15. Recommendation algorithm scalability with the number of application requirements 

Table 7. Regression analysis for response time over number of requirements for various numbers of offerings 

Number of offerings Linear function R² 

1.500 y = 1,4362x + 1,1151 0,9959 

3.000 y = 2,7043x + 1,0353 0,9935 

15.000 y = 13,23x - 3,1153 0,9937 

30.000 y = 25,695x - 4,2433 0,9986 

 

An obvious question that arises after the finding that the response time is linear to the number of offerings 

and the number of parameters is how the response time depends on these two parameters concurrently, i.e. 

what is the shape of the function T(N,R), where N is the number of offerings and R is the number of param-

eters. The analysis in section 4.1 suggest that the time complexity of the recommendation algorithm is 

O(N*R), which suggests that its 3D plot should be a hyperbolic paraboloid surface (Weisstein, 2016). In 

Figure 16 we have plotted the response time according to the number of offerings and requirement param-

eters in a surface. We have used the curve fitting toolbox of Matlab to check whether this surface is a 

hyperbolic paraboloid indeed. The general equation that time complexity O(N*R) suggest is f(x,y) = a + b*x 

+ c*y + d*x*y. The curve fitting results are shown in Table 8 and they confirm that time complexity of the 
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recommendation algorithm is O(N*R). The coefficient of the N*R term indicates that each iteration of the 

inner loop (SPARQL query) lasts less than a millisecond (0.0008168 s).  

 

Figure 16. Response time surface plot according to number of offerings and number of requirements 

Table 8. Results of curve fitting 

General model: 

     f(N,R) = a + b*N + c*R + d*N*R 

Coefficients (with 95% confidence bounds): 

       a =      0.6921  (-0.9042, 2.288) 

       b =   2.756e-05  (-8.844e-05, 0.0001435) 

       c =      0.1779  (-0.07136, 0.4272) 

       d =   0.0008168  (0.0007986, 0.0008349) 

 

Goodness of fit: 

  SSE: 53.54 

  R-square: 0.9995 

  Adjusted R-square: 0.9995 

  RMSE: 1.435 
 

Finally, we experimented with the impact of the ordering of the functional requirement that filters out of-

ferings. As it was discussed in section 4.1, if an offering violates a single functional parameter it is ruled 

out; therefore, the sooner a non-selectable offering is ruled out the better because the rest of the requirements 

will not be checked for it, saving time. In this experiment we have used the container storage requirement 

of 3GB, meaning that 33% of the total offerings are selected. The experiment was performed on checking 

the storage functional requirement in the first position up to the last position out of the 5 PaaS concepts 

(Table 4) and for different number of offerings (1,5K up to 30K). Figure 17 shows the results. Notice that 

in the horizontal axis we have the number of parameters checked (for the offerings that are filtered out due 

to the violation of the functional requirement), which depends on the order that the functional requirement 

is checked. If it is checked first, then it will be the only parameter checked for the 66% of the non-selected 

offerings. If it is checked second, then the 2 parameters of the first concept (see Table 4) along with the 
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storage parameter (3 in total) will be checked for the 66% of the non-selected offerings, and so on so forth. 

Table 9 summarizes the total number of parameters checked for the non-selected offerings, according to 

the position that the storage parameter is checked. It is evident that the algorithm scales up also linearly with 

the number of the application requirement parameters. This is also verified by a regression analysis shown 

in Table 10. The lower values of R2 are due to the fact that not all application requirements are similar; 

some of them are functional and some non-functional. The previous experiment (Figure 14) has shown that 

their execution times are similar but not identical. What can be concluded is that a wise selection of the 

order in which the functional requirement parameters are checked can save up to 58% of the total execution 

time (see Figure 17 for 30K offerings, first vs. last point of the graph). Of course, for larger numbers of 

offerings and requirement parameters the savings will be even higher.  

 

Figure 17. Testing the impact of the order of checking a functional parameter. 

Table 9. Number of parameters checked for non-selected offerings according to storage parameter position. 

Position of parameter Total Number of Parameters checked 
1 1 

2 3 

3 5 

4 7 

5 10 

 
Table 10. Regression analysis for response time over number of requirements for various numbers of offerings. 

Number of offerings Linear function R² 
1.500 y = 0,8581x + 6,4376 0,9925 

3.000 y = 1,6764x + 10,489 0,9918 

15.000 y = 8,2518x + 45,761 0,9974 

30.000 y = 17,16x + 87,935 0,9972 
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6 Conclusions and Future Work 

The PaaSport project aims to avoid the cloud provider lock-in problem of software SMEs, by enabling 

platform provider SMEs to roll out semantically interoperable PaaS offerings and facilitating the former to 

deploy business applications on the best-matching Cloud PaaS or to seamlessly migrate these applications 

on demand. To this end, PaaSport combined Cloud PaaS technologies with lightweight semantics in order 

to specify and deliver a thin, non-intrusive Cloud-broker, in the form of a Cloud PaaS Marketplace. 

In this paper we have presented the semantical aspects of the PaaSport cloud broker / marketplace. More 

specifically, we have developed an OWL ontology for representing the necessary PaaS concepts and attrib-

utes that are used to semantically annotate a) PaaS offerings, and b) profiles of applications to be deployed 

on one of the above cloud platforms through a Cloud Broker called PaaSport. The PaaSport ontology has 

been defined as an extension of the DOLCE+DnS ontology design pattern (DUL) (Gangemi & Mika, 2003). 

This offers extensibility, since both PaaS concepts and parameters are defined as classes, so extending the 

ontology with new concepts requires just to extend class hierarchies without adding ontology properties. 

On top of the PaaS ontology, we have developed a semantic matchmaking and ranking algorithm for rec-

ommending the best-matching Cloud PaaS offering to the application developer, which uses SPARQL que-

ries for retrieving relevant data from the semantic repository. The recommendation algorithm first rules out 

inconsistent offerings (matchmaking), taking into account the functional requirements of the application 

profile, and then scores offerings and ranks them accordingly (ranking), considering the non-functional re-

quirements of the application. Due to the fact that application requirements and PaaS offerings share the 

same vocabulary for PaaS concepts and parameters, the recommendation algorithm seamlessly matches 

requirements to offerings both syntactically and semantically. The recommendation algorithm scales-up 

linearly with the number N of instances and the number R of requirement parameters, with an overall time 

complexity of O(N*R). One of the main advantages of the algorithm is that it extensible because it is agnos-

tic to domain specific concepts and parameters, due to the extensible nature of the PaaS ontology. 

Future development plans for the recommendation algorithm, include exploring potential performance im-

provements through parallelization, since the loop over the offerings in the matchmaking part of the func-

tional requirements can be broken down into concurrent threads of execution. Another interesting direction 

would be a sophisticated tuner that selects the best order to check the requirements in order to save time by 

filtering out early offerings that are bound to violate some functional requirement. Of course, the execution 

time of the tuner should be far less than the execution time of the actual recommendation algorithm. Finally, 

since the recommendation algorithm is mostly based on SPARQL query templates, the integration of the 

algorithm within the ontology as SPIN / SPARQL rules would offer transparency, modifiability, extensibil-

ity and portability. 
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