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Abstract. The impact of the Internet of Things will transform business and 

economy. This network of intercommunicating heterogeneous Things is ex-

pected to affect the commerce industry by driving innovation and new opportu-

nities in the future. Yet, this open, distributed and heterogeneous environment 

raises challenges. Old eCommerce practices cannot be sufficiently applied 

while trustworthiness issues arise. This study proposes a rule-based eCommerce 

methodology that will allow Things to safely trade on the network. The pro-

posed methodology represents Things as Intelligent Agents since they form an 

alternative to traditional interactions among people and objects while they are 

involved in a rich research effort regarding trust management. It also combines 

Intelligent Agents with the microservice architecture in order to deal with 

Things heterogeneity while it adopts the use of a social agent-based trust model. 

Well-known semantic technologies such as RuleML and defeasible logic is 

adopted in order to maximize interoperability. Furthermore, in order to deal 

with issues related to rule exchange with no common syntax, the methodology 

is integrated to a multi-agent knowledge-based framework. Finally, an eCom-

merce scenario is presented, illustrating the viability of the approach. 

1. Keywords: Multi-agent Systems, Defeasible Reasoning, Trustworthiness. 

1 Introduction 

The Internet of Things (IoT) seems to be an emerging IT technology. Its main innova-

tion consists of creating a world where Things, devices, services or even humans, will 

be connected and able to make decisions and communicate [7]. An area that is ex-

pected to attract attention is eCommerce which has achieved a growth but due to IoT 

emergence, it faces new challenges. It must be clearly recognized that the application 

of IoT is still at an early stage while the relevant technology is not mature. Today, the 

IoT mostly sends data up towards the Cloud for processing. Many researchers believe 

that as both software and hardware continues to evolve, some of these processes may 

be bring back to the devices. Hence, in the IoT of tomorrow, value between devices 

and across industries could be uncovered using Intelligent Agents (IAs) that can add 

autonomy, context awareness, and intelligence [7]. Besides, current eCommerce 
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evolved on the basis of the past retail sector, hence, product quality is difficult to 

guarantee, the pay security, logistics and distribution systems need more automation. 

As more devices get connected and gain smart features, more data will be gathered, 

and consumer experience can be improved. Hence, although all these requirements 

exists in the IoT eCommerce, they have to be upgraded with intelligence, autonomy 

and semantic awareness (despite the need semantic languages are not used yet). With 

the penetration of IoT, a better management of inventory, easy loss tracking, increase 

in shopper intelligence and intelligent logistics systems with timeliness, convenience 

and safety properties should be developed. However, deployment of IoT to facilitate 

eCommerce applications raises important challenges such as information exchange 

and trust issues [3, 7]. In this context, we, as plenty others, propose a decentralized 

approach where devices combined with agents will become part of the Internet of 

Smart Things. Of course, there is much work to be done regarding decentralized Mul-

tiagent systems as a way to place decentralized intelligence in distributed computing. 

The aim of this study is to propose a rule-based eCommerce methodology that will 

allow Things to locate proper partners, establish trust relationships and interact in the 

future IoT network. The proposed methodology adopts the use of IAs that are consid-

ered a technology that can deal with these challenges while there are involved in a 

rich research effort regarding trust management, even though it refers to Semantic 

Web [3]. The methodology integrates an IoT social agent-based reputation model in 

order to allow trust establishment in the environment. Furthermore, this study com-

bines the agent technology with the microservice architecture, a promising modular 

approach [1]. A core concept of the methodology is the proper information exchange 

among Things in order to assure safe and robust transactions. Hence, the base of the 

methodology is a weakly-structured workflow with strong information technologies. 

Hence, well-known semantic technologies such as RuleML and defeasible logic is 

adopted, maximizing interoperability, reusability, automation and efficiency among 

Things. Additionally, the methodology is integrated to a multi-agent knowledge-based 

framework that supports rule exchange without the need of a common syntax. 

2 Rule-based eCommerce methodology 

All Things are represented as agents while microservice architecture is used for the 

implementation of services and devices [3]. Microservices have almost every known 

agent property while they allow control over even hardly reached devices. Here, we 

propose two types of microservices called DMicro, related to an IoT device, and SMi-

cro, related to a service, represented as agents. Each IoT-oriented eCommerce website 

should have at least a SMicro agent that will act as proxy between the site and the 

Things. Hence, the proposed methodology involves three types of agents, modeling 

IoT Things, called Thv (humans/virtual), TDMicro (devices) and TSMicro (services). Each 

agent’s conceptual base follows this Tx tuple specification:  A = {ID, Tx, LC, LP, B, S, 

ER, EV}(1), where ID is the agent’s name, Tx is its type {x ≡ Thv|TSMicro|TSMicro}, LC 

and LP are extendable lists of characteristics C and preferences P {LCx
n & LPx

n | n  

[1, N], x ≡ agent}, B is agent’s beliefs (facts) {B = BIBR | BI by agent’s interactions, 
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BR by reasoning processes}, S is its strategy rules, ER is the ratings derived by the 

agent’s direct experience and EV contains its evaluation criteria. The LC list includes 

information such as the type of provided products/services. Preferences (LP) include 

information such as the desirable delivery time. For computational and priority pur-

poses, each characteristic and preference is optionally assigned with a value of im-

portance (weight) at the range [0, 1] (Wc
n & Wp

n | n  [0, 1], c ≡ characteristic, p ≡ 

preference), defining how much attention will be paid to it. 

In this context, we propose a five stage weakly-structured workflow methodology 

for the IoT-oriented eCommerce, based on the philosophy that the procedure can be 

divided into groups of tasks forming special categories containing a number of steps. 

The proposed approach acknowledges five stages; 1. Locate potential partners, 2. 

Establish trust, 3. Exchange request/data, 4. Negotiate terms, 5. Reach agreement. 

Here, we focus mainly on the two first stages, namely locating partners and establish 

trust since they are critical for IoT success, yet, they are not sufficiently studied. In 

general, stages represent the main issues of the overall eCommerce process while 

steps represent individual actions that agents have to handle depending on their rule-

based strategy. Thus, each specific stage requires a group of steps. Transitions be-

tween stages are sequential, but transitions between steps may be not. The involved 

agents have to proceed gradually from the first issue (locate partners) to the last while 

steps represent individual actions referring even to optional or repeatable actions. 

In order to present the terms and defeasible rules of the approach in a compact 

way, we express them in the compact d-POSL syntax [4] of defeasible RuleML. De-

feasible logic (DL) has the notion of rules that can be defeated. In DL strict rules (B:-

A1, …, An in d-POSL syntax) are rules in the classical sense. Defeasible rules 

(B:=A1, …, An) can be defeated by contrary evidence. Defeaters (B:~A1, …, An) are 

a special kind of rules, used to prevent conclusions and not to support them. DL does 

not support contradictory conclusions, instead seeks to resolve conflicts. In cases 

where no conclusion can be derived, a priority is expressed through a superiority rela-

tion among rules which defines where one rule override the conclusion of another. 

Locating potential partners.  

The proposed approach offers two alternative options for locating partners, one of 

the major challenges for open distributed and large-scale systems. The first one is 

based on auction-inspired broadcasting with no rating requirements while the second 

is based on LOCATOR [24] which requires previously reported reputation ratings. 

Broadcasting option: Whenever an agent (Tx) has no previous interaction history 

or it needs fast SMicro locating, it broadcasts a CFP reaching easily available agents. 

Agents that receive the CFP call either ignore it or reply with a propose message.  

ri1: broadcastCFP(id→?idx, time→?t, sender→?x, receiver→?SMicro, 

typeRequest→?typeRequest, reasonImportance→?rim, specs→?specs) :- timeAvaila-

blity(low),request(typeRequest→?typeRequestx,specs→?specsx,reasonImportance→?

rimx,), reasonImportance_threshold(?rim), ?rimx>?rim, ?typeRequestx = ?typeRequest. 

A typical CFP message (ri1) indicates that the sender asks the receiver (?SMicro) 

about a specific reason (typeRequest, e.g. rating request), stating how important is that 

request (reasonImportance at the range [0, 1]) and which are the specifications of the 
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request (specs, e.g. service type). It will send the CFP if the time availability is low 

(there is such a fact to its beliefs: BR={timeAvailablity(low)}), the importance of the 

reason is greater than its threshold (reasonImportance_threshold(?rim), ?rimx>?rim) 

and it needs to fulfil such a type request (holds such goal: G={fulfil(?typeRequestx)}). 

LOCATOR variation option: The second option is based on the philosophy of 

LOCATOR, a locating rating mechanism that uses features from both social graphs 

and peer-to-peer networks in order to incorporate potential social dimensions and 

relationships within the IoT. Here, we adopt the use of LOCATOR to locate potential 

SMicro partners. Our variation works as follow: A Tx agent interested in a TSMicro 

agent, based on its preferences (LPTR
n) decides upon the characteristics (LCTE

n) it 

considers important. It assigns proper weights (Wc
n) to them and searches its database 

for previously known agents that fulfil its requirements in order to ask them. Charac-

teristics that weight more are more important in the sense that Tx believes that part-

ners with these characteristics will be more reliable (social influence). In this context, 

Tx depending on its personal strategy (sx
n  n [1, N], x ≡ agent) sends an offer request 

to known agents with one or two high-weighted characteristics. If the feedback is not 

satisfying, it sends requests to partners with lower-weighted characteristics. 

After choosing local neighbors (direct request receivers), TR assigns a time thresh-

olds (TTL) to its message and sends it to them. They, on their turn, either propose an 

offer or propagate it to their own local neighbors following the same procedure as 

long as they have time (t<TTL). In that case, these agents acting as subcontractors 

(RR) send the feedback offer to Tx as well as available ratings (see next subsection) 

for this partner. At the next step, Tx assigns a value V, an indication of relevance, to 

each received trusted path, calculated as follows: V = (pl-0.25*hp)*CRR, √pl<=5 or V 

= (pl-0.5*hp)*CRR, √pl>=6   (2), where pl stands for the length of the trusted path, hp 

stands for the number of network nodes while CRR is the credit score of the local 

neighbor (RR agent) that returned that path. CRR is based on RR agent’s credits with a 

time stamp that fits in TR requested time period. Using this time period, TR has a clue 

about RR’s latest behavior. The V value discards feedback, taking into account risk.  

Establishing trust. 

Despite the chosen mechanism, as soon as, potential partners are located, Tx pro-

ceeds to the next stage, establishing a relationship with the most promising eCom-

merce partner (TSMicro agent). We propose a reputation based approach. In general, 

reputation allows agents to build the degree to which an agent has confidence in an-

other agent. Hence, reputation (trust) models help parties to decide who to trust, en-

couraging trustworthy behavior [3]. The core element here is the ratings, the evalua-

tion reports of each transaction. According to our approach, a rating (r  ERx) is the 

fact: rating(id→rating’s_id, truster→truster’s_name, trustee→trustee’s_name, 

time→t EVn
1→value1, EVn

1→value2, EVn
1→value3, EVn

1→value4, EVn
1→value5 

EVn
1→value6, confidence→?conf), where confidence is agent’s certainty for that rat-

ing while we recommend six well-known evaluation criteria for EVn
x values, namely 

response time, validity, completeness, correctness, cooperation, confidence. 

The Tx agent combines (ri2 to ri4) its own ratings (ER) with those received by rec-

ommenders (LOCATOR variation) to discard potential partners and next to estimate 
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the reputation for the remaining in order to find the most well-reputed among them. 

These rules are defeasible and they all conclude conflicting positive literals for the 

same pair of agents (truster and trustee). That’s why there is a superiority relationship 

between the rules. 

 

ri2: eligible_partner(rating→?idx, cat→local, truster→?self, trustee→ ?x) := rat-

ing(id→?idx, truster→?self, trustee→ ?x, confidence→?confx). 

ri3: eligible_ partner (rating→?idx, cat→longerTie, truster→?a, trustee→ ?x) := 

confidence_threshold(?conf), rating(id→?idx, truster→?a, trustee→ ?x, confi-

dence→?confx), creditValue(?Vvalue), ?confx >= ?conf. 

ri4: eligible_ partner (rating→?idx, cat→longestTie, truster→?a, trustee→ ?x) := 

credit_threshold(?v), confidence_threshold(?conf), rating(id→?idx, truster→?a, trus-

tee→ ?x, confidence→?confx), creditValue(?Vvalue), ?confx >= ?conf, ?Vvalue>=?v, 

where category (cat) local refers to previously known agent, longerTie indicates a less 

than (5) path length and longest ties a greater path length (>5) and ri2 > ri3 > ri4. 

Due to superiority relationship, rule ri2 indicates that personal opinion is important 

if there are ratings from itself (truster→?self,), otherwise logerTies opinion (ri3) will 

be taken into account if it’s confident (rating with confidence greater than Tx’s ?conf 

threshold (confidence→?confx), ?confx >=?conf) whereas longestTies opinion (ri4) 

should be confident (?confx>= ?conf) and highly credit valued (creditValue(?Vvalue), 

?Vvalue>=?v) based on Tx’s threshold (?v) in order to be taken into account.  

After this discarding process, the final reputation value (Rx, x≡entity) of a potential 

partner, at a specific time t, is based on the weighted (either personal Wself or recom-

mended WRR) sum of the relevant reports (normalized ratings in order to cross out 

extremely positive or extremely negative values) and is calculated as below. In the 

case that agent Tx had chosen the broadcasting method, it uses only the first part of 

the above formula with its personal ratings for the agents that replied to its request.  
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 (3) 

Exchange data/request. 

Following this process, the Tx decides upon the preferred SMicro agent (highest R 

value) and sends to that agent an ACCEPT-PROPOSE message (ri5) indicating that it 

is interest for this proposal (about→?proposeID) as long as there is a stored offer 

(propose fact) from that agent. The message includes a time threshold (tth→?t) for 

the interaction, greater than current time (?t>tcurrent) specifying time availability. The 

SMicro agent, on its behalf, checks the offered service/product availability (time-

Valid→?tv, specs→?specsj) and replies either confirming or withdrawing its offer. 
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ri5: send_message(msg →accept_proposal(about→?proposeID, tth→?t), send-

er→?self, receiver→?SMicro) := propose(id→?idx, time → ?tt, sender→ ?SMicro, 

receiver→ ?self, offer→ ?offer, timeValid→?tv, specs→?specsj), ?t>tcurrent. 

Negotiating terms. 

This stage is optional. If the Tx agent is interest in negotiating specifications 

(specs) such as delivery time, it will continue by sending a negotiation request mes-

sage to its TSMicro partner, which could accept or deny to negotiate depending on its 

strategy. The agents may terminate the negotiation without agreement at any point. In 

case of negotiation agreement, the message exchange sequence involves the following 

steps (repeated as many times as necessary): Step 1: Tx (agent i) sends part of its be-

lief clauses iBR to the TSMicro agent (agent j). Step 2: TSMicro agent evaluates the clauses 
jBI (jBI≡ iBR) using its own beliefs jBR. Step 3: TSMicro agent replies either with its con-

clusions (part of its inferred clauses jBR) or accepts the Tx demand (iBR clauses). 

Reaching Agreement.  

Finally, the agents proceed with closing the eCommerce agreement. The TSMicro 

prepares the eContract, including the terms (terms→?terms) and the time it will be 

valid (timeValid→?tv, which should be greater than the signing time ?tv>t), and 

sends a signing request message (rj) to the Tx agent specifying the offer 

(about→?proposeID), the time (time→?t) and the terms (terms→?terms).  

rj: send_message(msg →signing_request(about→?proposeID, time→?t, 

terms→?terms), sender→?self, receiver→?x) := eContract(id→?idx, time → ?t, pro-

vider→ ? self, client→ ?x, terms→ ?terms, timeValid→?tv), ?tv>t. 

3 Integration and Evaluation of the Methodology 

The proposed methodology is integrated to EMERALD [6], a framework for interop-

erating knowledge-based intelligent agents. It provides, among others, a number of 

reputation models and reasoning services, among which four that use defeasible rea-

soning. These services are wrapped by an agent interface, the Reasoner, allowing 

other IAs to contact them via ACL messages. In essence, a Reasoner can launch an 

associated reasoning engine, in order to perform inference and provide results. The 

procedure is straightforward: each Reasoner stands by for new requests (REQUEST) 

and when it receives a valid request, it launches the associated reasoning engine that 

processes the input data (i.e. rule base) and returns the results (INFORM). As far as it 

concerns the language integration of the methodology, we use RuleML (included in 

the specifications of EMERALD) for our rules, representing and exchanging agent 

policies and clauses. We use the RDF model for data and belief representation. This 

methodology allows each agent to exchange its argument base with any other agent, 

without the need to conform to the same kind of rule paradigm or logic. Instead, via 

EMERALD, IAs can utilize third-party reasoning services, that will infer knowledge 

from agent rule bases and verify the results. 
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Fig. 1. Mean number of successful transactions. 

As far as, it concerns evaluation we tried to simulate a realistic IoT environment, 
hence, we used 20% of Thv agents representing humans or virtual entities, 30% TSMicro 

agents representing web services and 50% of TDMicro agents that represent devices. The 
aim of the experiments was to calculate the mean number of successful transactions 
(ending to an eContract agreement) when using the proposed methodology, compared 
to a random transaction approach (Fig. 1). The adopted testbed consists of provider and 
consumer agents and it can be embedded to any eCommerce case while each experi-
ment is populated with a different number of providers and consumers. From experi-
ment to experiment we increased the number of agents about 10% in order to evaluate 
how the methodology behaves in various populated networks. We run eleven experi-
ments; the first was populated with 20 providers and 20 consumers whereas the last 
was populated with 100 agents, divided in providers and consumers. The testbed in-
cludes good (15%), ordinary (30%), bad (40%) and intermittent providers (15%), 
namely honest and malicious agents. Good, ordinary and bad providers have a mean 
level of performance, hence, their activity (actual performance) follows a normal dis-
tribution around this mean. Intermittent agents, on the other hand, cover all possible 
outcomes randomly. As a result, ratings (and reputation values) vary in the network.  

4 Related work 

There are plenty approaches dealing with parts of the discussed topics, yet, there is 

still some lack to tightly related approaches combining a rule-based eCommerce per-

spective with microservices and agents for the IoT. In [8] a web service negotiation 

process is presented, focusing only on negotiation whereas our approach is more ge-

neric. The authors promote the reuse of the artefacts produced throughout the negotia-

tion like our methodology which adopts the philosophy of clauses and policies reuse 

based on a rule-based mechanism. The authors support only web services opposed to 

our approach. As far as it concerns partner locating, Hang and Singh [2] also employ 

a graph-based approach but it focus only on measuring trust, with the aim to recom-

mend a node in a social network using the trust network. The model uses the similari-

ty between graphs to make recommendations. This approach similar to our 

LOCATOR variation attempts to take advantage of graphs in order to locate better 

partners, although this is just a part of our approach which takes into account more 

aspects in an attempt to sufficiently simulate eCommerce in the IoT. 
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5 Conclusion and Future Work 

We presented a rule-based eCommerce methodology, forming a five-stage workflow, 

which allows Things to locate proper partners and establish trust relationships in the 

IoT network (there is no such support yet) via a social agent-based model for locating 

eCommerce partners and estimating their reputation. The study adopted agent tech-

nology, an increasing trend for IoT realization, combined the with the microservice 

architecture. A core concept of the methodology was the proper information exchange 

among heterogeneous Things, hence we proposed the use of semantic technologies 

such RuleML, although it is not yet adopted in IoT, in an attempt to support web evo-

lution from Semantic Web to IoT and hopefully to the Internet of Agents. Finally, the 

methodology was integrated in EMERALD that provides appropriate Reasoners, sup-

porting rule exchange with no common syntax. As for future directions, our intention 

is to enrich it with powerful mechanisms that will extract the relationships between 

potential partners as well as their past and future behavior. Hence, another direction is 

towards further improving it by adopting more technologies, such as ontologies, ma-

chine learning techniques and user identity recognition and management. 
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