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Abstract The field of energy disaggregation deals with the approximation of
appliance electric consumption using only the aggregate consumption measure-
ment of a mains meter. Recent research developments have used deep neural
networks and outperformed previous methods based on Hidden Markov Mod-
els. On the other hand deep learning models are computationally heavy and
require huge amounts of data. The main objective of the current paper is to
incorporate the attention mechanism into neural networks in order to reduce
their computational complexity. For the attention mechanism two different
versions are utilized, named Additive and Dot Attention. The experiments
show that they perform on par, while the Dot mechanism is slightly faster.
The two versions of self-attentive neural networks are compared against two
state-of-the-art energy disaggregation deep learning models. The experimental
results show that the proposed architecture achieves faster or equal training
and inference time and with minor performance drop depending on the device
or the dataset.
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1 Introduction

Energy disaggregation, also known as non-intrusive load monitoring (NILM),
aims to separate appliance-level electric data from the total power consump-
tion of a electrical installation. The main benefit of NILM is the possible im-
provement of electrical energy management. In the long term, the unnecessary
waste of energy will be avoided, positively affecting the global warming and
the climate change problems. Further analysis on the targets’ consumption
may identify functionality inefficiencies.

Due to the rise of Internet of Things (IoT), the usage of smart meters in res-
idential buildings increases [24]. As a result, NILM is becoming popular among
the energy data analytics techniques of the residential and small commercial
sector [1]. Home energy management systems (HEMS) are capable of mon-
itoring and management of electrical appliances in many smart houses [32].
There are two ways the appliance load monitoring (ALM) can be developed; ei-
ther with intrusive or non-intrusive methods [26,40]. Against intrusive-loading
monitoring (ILM), NILM is cheaper and more straightforward because it de-
pends only on measurements from a single mains meter, without the use of
extra equipment. On the contrary, ILM provides better accuracy than NILM,
being more expensive and demanding in terms of installation.

The contribution of the current paper to the research field of energy disag-
gregation could be summarized as follows. A novel lightweight recurrent neural
network architecture is designed. The attention mechanism, a technique bor-
rowed from Natural Language Processing sector, is inserted in a typical NILM
architecture, by significantly reducing it’s complexity. A set of baseline results
and a meticulous analysis are presented, emphasizing not only the performance
but also the efficiency of the models. It should be noted that the current re-
search extends the work published by Virtsionis et al. [37]. An ablation study
is performed to highlight the fact that the attention mechanism boosts the
network in on/off events detection. Extended experiments on more devices
of a different data set, alongside comparisons with one more popular state-
of-the-art architecture, lead to significant insights on which components are
more suitable for designing lightweight and efficient NILM architectures. A
knowledge transfer scenario is demonstrated, using the extracted features of
complicate devices to simpler appliance disaggregation. Overall, the current
study reveals that the proposed model can perform on par with the state-of-
the-art models on most occasions, achieving stronger generalization properties
in scalable training and inference times.

The anatomy of this article is as follows. As a starting point, there is a brief
presentation of the related work on NILM and energy disaggregation. Secondly,
the attention mechanism is analyzed. The third section presents a concise ex-
planation of Attention operators. Section 4, includes a thorough explanation
of the purpose and operation of each individual part of the proposed archi-
tecture. Section 5 includes a description of the methodology of experiments.
The most important of the results are presented in section 6. In section 7,
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an ablation study is demonstrated. Last but not least, conclusions and future
work proposals are introduced.

2 Related Work

Energy disaggregation was firstly introduced by Hart in mid 80s as Non In-
trusive Load Monitoring. Later, Hart proposed a combinatorial technique to
tackle the problem of NILM [10]. This method extracts the optimal states of
the target devices in such a way that the sum of appliance power consumptions
would be the same as the meter reading of total power. The drawback of the
combinatorial method is that it can be applied only on simple devices with
finite number of operation states.

Before the rise of deep learning, the most popular techniques for NILM
included Factorial Hidden Markov Models (FHMM) [15,19,30]. A FHMM ar-
chitecture is essentially a set of multiple independent Hidden Markov Models.
A combination of all the individual hidden states constitutes the observed
output of the model. Kolter and Jaakkola [19] proposed an additive novel
FHMMs, where as output the sum of the individual HMMs is calculated.

Recent developments on hardware engineering opened the door for the
rapid evolution of machine and deep learning. New approaches and algo-
rithms thrive in complex tasks from the sectors of Natural language process-
ing (NLP), Computer Vision and Time Series Analysis. Hence, NILM research
started to focus on adjusting many of these techniques for the problem of en-
ergy disaggregation alongside developing new ones. Motivated by the current
trends, Kelly and Knottenbelt [14] designed three deep neural networks; a re-
current architecture, a denoising autoencoder (DAE) and a ANN model to
regress start/end time and power. The results on the UK-DALE [12] data set
were more than promising, with the novel models outperforming both Hart’s
method and FHMM. A similar architecture with LSTM recurrent neurons is
in [25]. This method was tested on real data from REDD [20] alongside with
synthetic data, achieving good results for appliances with cycling motives in
power consumption.

A state-of-the-art architecture called Sequence-to-Point was implemented
by Zhang et al. [39] only with the use of convolutional neural network (CNN)
and dense layers. The name Sequence-to-Point comes from the fact that this
technique uses a sliding window of aggregate data measurements to disaggre-
gate the appliance consumption on a single midpoint time step. The latter
constitutes a core difference versus the other methods presented by Kelly and
Knottenbelt [14] and Mauch et al. [25]. Krystalakos et al. [21] used a different
sliding window technique, utilizing Gated Recurrent Units (GRUs), a varia-
tion of LSTMs, in combination with dropout layers to improve previous RNN
architectures in terms of performance and efficiency. As the popularity of RNN
architectures grew, authors propose more variants of these methods [13,8].

Recently, the attention mechanism was introduced in the NILM sector. A
variant of Google’s Transformer [36], Bert4NILM [38] was adjusted to the
problem of disaggregation. The model achieves great results, but it has a
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large number of parameters, which affects training and inference. An encoder-
decoder type of model with temporal attention is proposed by Piccialli et al.
[31]. The results show that the attention helps in event detection, resulting to
good generalization in unseen data.

To successfully compare various methods and models Symeonidis et al.
[35], synthesized a benchmark methodology. Also, an exploration of the Stack-
ing method of five well known models is conducted, providing good results
on simple 2-state appliances. Nevertheless, regarding the reproducibility and
comparability of energy disaggregation frameworks, a standardization of the
assessment procedures is recommended [18,27].

Despite the breakthroughs that Deep Learning brought in NILM research,
deployment issues remain. The main reason is the training and inference du-
ration, due to the massive number of parameters of the state-of-the-art ar-
chitectures. Moreover, for years the centre of attention of the NILM field of
study was the development of one model per device. Hence, a complete energy
disaggregation system should be consisted of a number of models equal to the
number of devices the target electrical installation contains. In real time cases,
energy measurements output massive quantities of data even at low sampling
rates, which makes deploying NILM on embedded devices a challenging task.
In order to do so, a number of steps should be taken. The development of
lightweight architectures is the first one. Next, it is suggested that multi-label
machine learning models should be designed. Multi-label models are trained
in order to estimate the electrical power consumption of more than one appli-
ances, making the relation of ”models per device” in ”1-to-many” situation.

Basu et al. [3,4] introduced the multi-label classification in energy disag-
gregation using algorithms such as decision trees and boosting. Recently an
article on multi-label disaggregation was published by Nalmpantis and Vrakas
[29], proposing a novel framework called multi-NILM. This approach combines
a dimensionality reduction technique called Signal2vec [28] with a lightweight
disaggregation model, showcasing promising results. A different approach on
reducing computational resources constitutes a family of methods known as
transfer learning. Transfer learning is used in NILM research with some success
in [7,11]. Kukunuri et al. [22] proposed various compression methods in order
to make deep neural networks suitable for deployment on the edge, alongside
a multi-task method based on a hard parameter sharing approach, in a similar
approach as transfer learning methods.

3 Attention Mechanism

The extraction of input-output relations is a common task in machine learning
and pattern recognition, with uses in image captioning, machine translation
etc. Sequence to sequence models (seq2seq) consist a go-to approach regarding
the Deep Learning techniques. In [34] the original seq2seq 3 model, as proposed
by Sutskever et al., contains two major components; the encoder and the
decoder. Essentially these components are two RNNs. The role of the encoder
is the compression of the sequence input into a vector of fixed length, known
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as the context. The intuition is that this vector suppresses the most important
information of the source input. Given the same context vector, the decoder is
capable to re-construct the source sequence. The drawback of this architecture
is that it fails to process very long sequences, due to the fixed length of the
context vector.

To improve the efficiency of seq2seq architecture, Bahdanau et.al [2] pro-
posed Attention. This mechanism gives the decoder the power to concentrate
on the parts of the input that matter the most, in relation to the corresponding
output. At each time step of the decoder, Attention calculates the relations
between the entire input sequence and the decoder output. These calcula-
tions create an alignment vector, that contains the score between the input’s
sequence and the decoder’s output at the corresponding step. The resulting
context vector is a combination of both the alignment vector and the encoder’s
output.

Considering how the scores and alignments are calculated, the most popu-
lar types of attention are the Additive [2] and the Multiplicative/Dot [23]. In
a different setting called Self-Attention [6], the attention mechanism is applied
on the same sequence, in order to relate different parts of it. Self-Attention can
integrate either Bahdanau’s or Luong’s scoring methods. The proposed archi-
tecture in the current research uses Additive and Dot attention mechanisms.
As inputs to an Attention layer three kinds of vectors are given; a query, a key
and a value. The layer output is calculated as described bellow. A summary
of the steps is shown in Fig.3.

Fig. 1 Inside Attention mechanism.

To begin with, the similarity between a query (q) and a key (ki) is calcu-
lated, estimating for each query-key pair, a score (ai).

ai = score(q, ki) (1)

Next, a softmax function is used to normalize the scores in order to sum up
to one. The attention weights are obtained as follows.

bi =
exp(ai)∑
j exp(aj)

(2)
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The final output is the weighted sum of the values (v):

output =

n∑
i=1

bivi (3)

Between Additive and Dot attention mechanisms the scoring function dif-
fers. Specifically, the dot scores are given by the dot product of keys and
queries. On the other hand, the additive scoring function is a non-linear sum.

4 Self Attentive Network Topology

The development of a computationally light neural network is the main ob-
jective of the current research. To design a lightweight model, inspiration was
draught by the architecture known as Window GRU (WGRU) [21].

WGRU [21] is composed of the following ANN layers: a convolutional layer,
two Bidirectional GRU layers and one Dense layer before the output. Dropout
technique [33] is used between layers against overfitting problems. In order to
approximate the appliance power consumption at a single time step, a sliding
window of past aggregate data points is used. The core element of the WGRU
architecture, is the GRU layer, a variation of the LSTM recurrent layer.

Instead of using two GRU layers back to back, the novel network con-
tains an Attention layer before one GRU layer. The proposed model is called
Self-Attentive-Energy-Disaggregation (SAED) and, comparing to the WGRU,
achieves up to 7.5 times faster training and up to 6.5 times faster inference. In
terms of performance, there is a trivial trade-off which is explored thoroughly
in upcoming sections.

Fig. 2 Architecture of the Attention model.

SAED architecture is a synthesis of four different types of ANNs. In order
to extract new features from the input a 1D convolution layer is used. This
type of layer is time invariant; it can learn local patterns found at certain
positions of the sequence, which is able to identify at different spots of other
sequences. Using Attention, the network learns to focus on the most crucial
of those features. Next the output of the attention layer is provided to a
GRU layer, to recognize possible sequential patterns. The final result is given
after passing through a dense layer, functioning as a regressor. A graphical
representation of the architecture is depicted in Fig.2. Two important notes
must be highlighted. Firstly, the Attention layer operates as a Self-Attention
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Table 1 Learnable Parameters and Size of the models.

Model Parameters Size(MB)
WGRU 270k 3.3
Seq2Point 2600k 31.3
SAED-dot 40k 0.54
SAED-add 42k 0.54

mechanism given as input the output of the CNN layer. Secondly, SAED comes
in two variations concerning the attention mechanism; with either Additive or
Dot attention, mentioned as SAED-add and SAED-dot correspondingly.

The proposed network was developed with Python 3.8 and Tensorflow 2.2.0.
Tensorflow provides two Attention layers; Attention and AdditiveAttention
which corresponds to Dot Attention and Additive Attention. Adam optimiza-
tion algorithm [16] and MSE loss were used for the training. The experiments
were executed on a Nvidia GPU GTX-1060 6Gb. NILMTK framework [5] was
used for data loading.

5 Structure of Experiments

For the experiments only real measurements were considered. The sampling
period was 6 seconds and the batch size 1024. Seven electric devices were
chosen for the experiments; dish washer (DW), fridge (FZ), kettle (KT), mi-
crowave (MW), washing machine (WM), television (TV) and computer (PC).
The optimal size of the sliding windows depends on the device and on the al-
gorithm [21]. At the current research, time window was 50 samples for all the
target appliances and models with the exception of washing machine, where a
window of 100 samples was used. The experiments were conducted comparing
three different architectures; the proposed SAED architecture, the WGRU [21]
and the Seq2Point [39] as implemented by Krystalakos et al. [21]. The num-
ber of learnable parameters of all the models are presented in Table 5. SAED
models have 65 and 6.5 times less parameters than the Seq2Point and WGRU
accordingly, resulting to considerably smaller space storage requirements on
deployment. It should be noted that for the devices television and computer,
the dropout ratio for the Seq2Point model was 25%. For all the models the
training duration was 5 epochs, while the benchmark basis described in [35]
was followed. In this methodology the experiments are divided in four distinct
categories; Single Building NILM, Single Building learning and generalization
on same dataset, Multi building learning and generalization on same dataset
and Generalization to different dataset.

The first category of experiments is about training and inference on the
same house at different time periods. Therefore, the models are evaluated in
the same environment where training was executed. Models with low perfor-
mance in these experiments are probably weak [35]. In the second category
of experiments training and inference happen on different houses of the same
dataset. These experiments serve the purpose of measuring the generalization
potential of the model on different buildings. Briefly, different buildings lead
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to divergent energy patterns that derive from multiple factors such as the dif-
ferent habits of the residents, the use of other electric devices. Nevertheless,
similarities between measurements of the same data set are also expected.
Properties like electricity grid, weather conditions and regionality are some
of the possible reasons for this fact. Hence, in addition to this category more
experiments are needed in order to explore the generalization ability of the
models in a greater detail.

The third category is about experiments where training data is collected
from different buildings and testing is executed on an unseen building. All
the measurements for this category belong in the same dataset. On the other
hand, even though in the fourth category of experiments training data is also
collected from different houses, the inference is executed on houses of a different
dataset. The purpose of the last two categories of experiments is to evaluate
the sufficiency of an algorithm in learning from a variety of sources. Naturally,
the challenge for the model rises even more in the fourth category, because the
inference is done on unknown data from a completely different dataset. Due to
these challenges, models that succeed in the last two categories of experiments
could be considered strong [35].

Due to the number of devices that were used, we divided them in two groups
based on the data sets used for training and inference. In the first group of
devices the experiments operated on UK-DALE [12] and REDD [20] data sets,
whereas in the second group REFIT [9] and UK-DALE data sets were used.
It should be noted that UK-DALE and REDD contain power consumption
measurements of households in UK and USA correspondingly, while REFIT
contains power readings of 20 residential houses in UK, with a wider range of
devices than the UK-DALE.

For the devices of the first group (dish washer, fridge, kettle, microwave
and washing machine), categories of experiments 1-3 were executed on the UK-
DALE data set, while for category 4 inference was evaluated on the REDD
data set. Due to the lack of kettle device data in the REDD data set, the fourth
category of experiments on kettle was not conducted. Training for categories
1 and 2 of experiments was conducted on house 1 of UK-DALE during the
first 9 months of 2013 while the last 3 months of the same year were used for
testing. Regarding the experiments of categories 3 and 4, the ratio of training
versus inference data depends on the device.

For the remaining electric devices (television, computer) REFIT [9] was
used for training, while data from UK-DALE were used for inference. Con-
cerning the experiments on this device group, three months of data from RE-
FIT was used, while the inference was executed on measurements of length 1
month. These experiments may highlight how the models perform in the case
of limited data. Thus, the models do not perform great in some categories of
experiments. All the experiments are summed up in Table 2.

For the evaluation and comparison of the models, the following metrics
are calculated; F1 score, Relative Error in Total Energy (RETE) and Mean
Absolute Error (MAE). The ability of model to detect on/off energy states is
evaluated with F1 score. As seen in eq. 4, F1 score is computed as the harmonic
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Table 2 Buildings used for train and test. For the first 4 devices: In Categories 1-3, UK-
DALE was used for training and testing. In Category 4, UK-DALE was used for training
and REDD was used for testing. For the last 3 devices: In Categories 1-3, REFIT was used
for training and testing. In Category 4, REFIT was used for training and UK-DALE was
used for testing.

Device Category1 Category2 Category3 Category4
Train Test Train Test Train Test Train Test

DW 1 1 1 2,5 1,2 5 1,2 1,2,3,4,6
FZ 1 1 1 2,4,5 1,2,4 5 1,2,4 1,2,3,5,6
KT 1 1 1 2,3,4,5 1,2,3,4 5 - -
MW 1 1 1 2,3,5 1,2 5 1,2 1,2,3,5
WM 1 1 1 2,4,5 1,5 2 1,5 1,2,3,4,5,6

TV 6 6 6 14,17,19 6,17 14,19 6,17 1,5
PC 6 6 6 16,17,19 6,17 16,19 6,17 5

mean of Precision and Recall, presented in eq. 5 and 6. Precision measures the
ratio of the actual true positives (TP) versus the total predicted positives. In
addition, Recall is the percentage of TP versus the actual positives.

On the other hand, MAE (measured in Watts) and RETE (dimensionless)
evaluate the capability of the models to estimate the actual electric power
consumption of the device. MAE and RETE are given in equations 7 and 8,
where E’ is the predicted total energy, E is the true value of total energy,
T is the length of the predicted sequence, yt’ the estimated electrical power
consumption and yt the true value of active power consumption at moment t.

F1 = 2
Precision ∗Recall

Precision + Recall
(4)

RETE =
|E′ − E|

max(E′, E)
(5)

MAE =
1

T

∑
|y′t − yt| (6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

In an effort to investigate the generalization properties of the proposed
SAED model even further, the use of more metrics is inevitable. As proposed
by Klemenjak et al. [17], the amount of seen and unseen installations where
a model is evaluated should be taken upon consideration. Thus, the idea of
generalization loss (G-loss) was proposed. The intuition is that between seen
and unseen installations there may be a change in the value of a metric. This
indicates a change in the performance of the model when tested on unseen
data. Whether the metric is used to evaluate event detection or power approx-
imation, the G-loss is calculated as described in eq. 9 or eq. 10, where u stands
for unseen and s for seen installations.
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For example, a calculated G-loss of 15% on F1 score means that the mea-
sured F1 score on the unseen house data is 15% lower than on the seen data,
where the training took place. On the contrary, 10% G-loss on MAE denotes
that the error measured on the unseen data is 10% higher than the error
measured on the seen building measurements.

The mean of all the G-losses calculated for the unseen houses resembles
the mean generalization loss (MGL), which represents the overall performance
loss. In order to evaluate the the generalization properties of an architecture,
accuracy on unseen houses (AUH) and error on unseen houses (EUH) can
be calculated also. The above metrics are given by eq. 11-13, where N is the
number of the unseen building.

G− loss = 100(1− F1u
F1s

) (9)

G− loss = 100(
MAEu

MAEs
− 1) (10)

MGL =
1

N

N∑
i

G− lossi (11)

AUH =
1

N

N∑
i

F1ui (12)

EUH =
1

N

N∑
i

MAEui (13)

A different aspect of generalization was suggested by D’Incecco et al. [7].
The intuition is that extracted features learned on training ”complex” de-
vices could be used to disaggregate appliances with ”simpler” electric signa-
tures. The main benefit of this idea offers is the speed up of training, thus the
need of less computational resources. The authors proposed two scenarios of
model knowledge transfer; appliance (ATL) and cross domain transfer learning
(CTL). In CTL schema, a model is trained and tested on different data sets,
in similar way as in the benchmark method described in [35]. On the other
hand, in ATL scenario, the model is trained and fine-tuned before the final
inference. In the current article we compare the models on the ATL scenario.

6 Results and Comparisons

The models are compared on 3 levels. At first, in terms of performance on
the four categories of experiments. Next, on generalization by computing the
generalization loss on unseen data. Furthermore, on the possible knowledge
transfer of latent learned features. Finally, inference speed on different sizes of
data is computed in order to compare the scalability of the models.
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6.1 Performance Comparison

The most important results are summarized in Tables 3 – 5, where the mean
training epoch time in seconds is noted as time/ep and the best values are
highlighted. The complete python code and the produced results are contained
in: https://github.com/Virtsionis/SelfAttentiveEnergyDisaggregator.

As shown in Table 3, in Category 1 of Dish Washer the SAED models
perform on par with WGRU and Seq2Point. Concerning training time per
epoch, SAED is up to 7.1 times faster than WGRU, but with almost same
speed as Seq2Point. In Category 2, SAED-dot is the clear winner with similar
metric values as the SAED-add model, but with almost half the training time
per epoch versus the WGRU. In Category 3 of the same device, the SAED
models show similar performance with the Seq2Point but the WGRU is better
in the error metrics. In terms of speed, SAED-dot is the fastest. In Category
4 the SAED-add achieves better F1 score and MAE, while SAED-add has the
lowest RETE. The general conclusion is that SAED shows promising results
on Dish Washer in comparison to the WGRU and the Seq2point, with faster
training and better performance in Categories 2 and 4.

In Category 1 of Washing M., SAED-dot is 7.5 times faster than WGRU
trading of maximum 10% performance regarding the metrics F1 and MAE. In
Category 2, SAED-dot performs on par with WGRU but with 7.5 times faster
training time per epoch. The SAED-add has best F1 score in Category 3, while
Seq2Point achieves the lowerst RETE. In terms of MAE in this category of
experiments, the SAED models are better. In the fourth category, the SAED
models are trained faster with lower RETE and MAE values.

It is notable that disaggregating Dish Washer and Washing Machine, the
SAED models have comparable or better performance with the state-of-the-
art models while training time per epoch was up to 7.5 times faster than the
WGRU. Also, Seq2Point shows lower performance when disaggregating the
Washing Machine.

Results for the Fridge are summed also in Table 3. In Categories 1 and 2,
the state-of-the-art models achieve greater F1 score, while SAED-add shows
promising results with the smallest RETE and MAE, reaching up to 4 times
faster training times versus the WGRU. On the other hand, in Categories 3
and 4 all the models perform the same, indicating the good generalization
capabilities of the SAED method.

In Categories 1 and 2 of the Kettle, shown in Table 4, the models have
comparable RETE and MAE values, but the WGRU achieves the best F1
score in 7.7 slower training time than the SAED-dot. In the third category of
experiments, the WGRU is the winner in terms of F1 and RETE, whereas in
MAE all the models perform the same. These results reveal that, comparing
to the WGRU, the SAED models show difficulties in disaggregating devices
with simple behavior, such as the Fridge and the Kettle. The Kettle is a two-
state device, while the Fridge has a finite number of states and repetitive time
series. Especially, in Categories 1-2 of the Fridge and the Kettle the SAED
has low values on F1 score, but it achieves good results in Categories 3-4 of
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Table 3 Performance Comparison for Dish Washer(DW),Washing M.(WM),Fridge(FZ).

Device Cat. Train Test Model F1s RETE MAE time/ep

DW 1 1 1

WGRU 0.33 0.17 13.22 550
Seq2Point 0.31 0.35 15.44 79
SAED-dot 0.28 0.31 13.03 77
SAED-add 0.25 0.17 12.03 141

DW 2 1 2

WGRU 0.26 0.77 37.47 550
Seq2Point 0.35 0.83 41.77 79
SAED-dot 0.63 0.62 33.48 77
SAED-add 0.6 0.63 34.31 141

DW 3 1,2 5

WGRU 0.33 0.34 20.75 575
Seq2Point 0.35 0.7 40.52 108
SAED-dot 0.33 0.57 26.45 74
SAED-add 0.25 0.62 31.01 138

DW 4 1,2 4

WGRU 0.3 0.65 8.6 575
Seq2Point 0.31 0.2 13.1 101
SAED-dot 0.45 0.1 12.71 74
SAED-add 0.53 0.77 8.6 138

WM 1 1 1

WGRU 0.54 0.12 16.55 1097
Seq2Point 0.25 0.15 18.5 150
SAED-dot 0.51 0.26 18.51 147
SAED-add 0.45 0.29 28.55 416

WM 2 1 2

WGRU 0.34 0.43 10.45 1097
Seq2Point 0.1 0.66 20.57 150
SAED-dot 0.3 0.34 13.1 147
SAED-add 0.3 0.53 22.01 416

WM 3 1,5 2

WGRU 0.12 0.36 22.74 585
Seq2Point 0.14 0.16 17.2 147
SAED-dot 0.19 0.36 14.66 81
SAED-add 0.2 0.21 15.18 81

WM 4 1,5 1

WGRU 0.26 0.66 43.65 585
Seq2Point 0.22 0.54 42.22 147
SAED-dot 0.18 0.39 50.65 84
SAED-add 0.18 0.7 41.93 81

FZ 1 1 1

WGRU 0.63 0.27 33.29 562
Seq2Point 0.63 0.3 33.2 78
SAED-dot 0.59 0.17 32.78 73
SAED-add 0.59 0.13 30.56 145

FZ 2 1 2

WGRU 0.82 0.13 28.46 562
Seq2Point 0.91 0.13 33.43 78
SAED-dot 0.82 0.21 26.86 73
SAED-add 0.84 0.23 27.33 145

FZ 3 1,2,4 2

WGRU 0.52 0.18 51.18 519
Seq2Point 0.52 0.03 49.52 74
SAED-dot 0.52 0.29 51.35 69
SAED-add 0.52 0.22 50.52 70

FZ 4 1,2,4 1

WGRU 0.53 0.32 52.57 519
Seq2Point 0.42 0.27 60.06 72
SAED-dot 0.49 0.29 50.89 69
SAED-add 0.5 0.33 51.39 70

the Fridge. The low values of F1 score indicate the difficulty of the models to
identify the On/Off states of the test devices. Also, it is notable that SAED
performs better than the Seq2Point on the Kettle Categories 1 and 2 and in
a tad bit faster training times.
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Table 4 Performance Comparison for Kettle (KT), Microwave(MW), Television(TV).

Device Cat. Train Test Model F1s RETE MAE time/ep

KT 1 1 1

WGRU 0.65 0.09 7.35 563
Seq2Point 0.28 0.24 17.6 79
SAED-dot 0.44 0.14 8.57 73
SAED-add 0.34 0.26 9.46 143

KT 2 1 2

WGRU 0.9 0.31 14.04 563
Seq2Point 0.39 0.36 29.8 79
SAED-dot 0.62 0.3 19.03 73
SAED-add 0.49 0.28 17.35 143

KT 3 1,2,3,4 5

WGRU 0.41 0.05 9.92 1096
Seq2Point 0.41 0.56 10.44 150
SAED-dot 0.27 0.27 12.24 141
SAED-add 0.31 0.18 10.95 271

MW 1 1 1

WGRU 0.32 0.09 6.29 560
Seq2Point 0.22 0.35 6.01 79
SAED-dot 0.16 0.14 7.51 74
SAED-add 0.18 0.16 7.61 144

MW 2 1 2

WGRU 0.44 0.25 4.36 560
Seq2Point 0.37 0.54 5.29 79
SAED-dot 0.25 0.19 5.97 74
SAED-add 0.26 0.17 5.98 144

MW 3 1,2 5

WGRU 0.08 0.59 60.53 440
Seq2Point 0.1 0.555 59.61 41
SAED-dot 0.21 0.58 56.93 41
SAED-add 0.22 0.51 59.36 41

MW 4 1,2 1

WGRU 0.41 0.19 23.53 440
Seq2Point 0.36 0.08 22.68 74
SAED-dot 0.34 0.2 25.67 41
SAED-add 0.34 0.15 25.13 41

The results of the experiments on the Microwave are also displayed in Table
4. In Categories 1-2 the WGRU is the clear winner. In the third category of
experiments SAED models outperform both the WGRU and Seq2Point, where
in Category 4 the WGRU achieves 17% better F1 score than the SAED in 10
times slower training time. Considering that the Microwave is a multi-state
device with variable power consumption and on-state duration, the SAED
models show descent performance comparing with the state-of-the-art.

Overall, the SAED models achieve good performance in disaggregating
multi-state devices instead of simpler devices. Furthermore, the SAED per-
forms good in experiments of Categories 3-4, a fact that reveals the great gen-
eralization capability of the proposed models. In addition, Seq2Point seems to
perform on par with the WGRU showing faster training times.

As shown in Table 4, in Category 1 of Television the SAED models perform
better than the state-of-the-art models showing identical F1 scores alongside
with lower MAE errors and faster training times. Furthermore, in Category
2 of experiments, all the models perform on par, with Seq2Point scoring 5%
higher F1 measure, while SAED-add achieved lower RETE and MAE alongside
with faster training per epoch. It is notable that all the models show better
performance in this category of experiments than in the situation where the
training and testing was on the same house (Category 1). In Category 3 SAED-
dot achieves 34% higher F1 score than the state-of-the-art models. In terms of
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RETE all the models perform on par, although concerning the MAE, SAED
models score up to 60% lower errors. In the fourth category of experiments,
the SAED models show better performance in overall.

Concerning the experiments on the Computer, the results are displayed in
Table 5. In Category 1 the SAED-add and Seq2Point perform on par in terms
of identifying the On/Off events with up to 35% better F1 score than the
WGRU. Regarding the RETE values, WGRU performs better, whereas the
MAE scores of all models are nearly the same. Comparing the SAED models
results that the SAED-add performs 10% better than the SAED-dot, but with
a slower training time per epoch. In Category 2, WGRU shows slightly better
performance in comparison to the SAED models. Specifically, in terms of F1
score WGRU achieves 14% better values with maximum value of 66%. In
addition, the WGRU achieves lower RETE and MAE values. In Categories 3
and 4 of the same target device, SAED-dot model is a clear winner achieving
better F1 and MAE scores, while WGRU shows lower RETE value. In terms
of training time per epoch, the SAED-dot is almost two times faster than the
SAED-add and up to three times faster than the WGRU in all the categories of
experiments. On the contrary, Seq2Point achieves almost equal training times
with the SAED-dot, even though it consists of a huge number of parameters.

6.2 Generalization Evaluation

To explore on a deeper level the generalization ability of the SAED, in compar-
ison to the WGRU and Seq2Point, a computation of more metrics took place.
Table 6 presents the values of AUH, EUH alongside with the corresponding
MGL calculations. These metrics are calculated using the F1 scores and MAE
measured in the Category 1 of experiments. Because of the size of experiments
only some of the measurements are used. To compare the models the interest
concentrates on MGL values, where lower means better.

In terms of MGL and Classification Accuracy, the SAED models achieve the
lowest values on all the test devices, except the Computer. Thus, SAED shows
great generalization ability when detecting on/off events. Also, the negative
values of MGL indicate that the SAED models perform better on the unseen
houses than on the seen house. Regarding the MGL and Estimation Accurary,
mixed results are observed with the SAED showing finer values than the state-
of-the-art models on Washing Machine and Television. As a result, on these
test devices, SAED seems to generalize better than the WGRU in terms of
power estimation levels. On the Dish Washer and Kettle, Seq2Point shows
lower values. The above results strongly highlight the generalization power of
the SAED approach in the task of NILM.

6.3 Knowledge Transferability Comparison

To explore the knowledge transfer capacity of the SAED method, a transfer
learning schema was executed. At first the models are trained on the WM
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Table 5 Performance Comparison for Television(TV), Computer(PC).

Device Cat. Train Test Model F1s RETE MAE time/ep

TV 1 6 6

WGRU 0.68 0.49 40.38 145
Seq2Point 0.68 0.52 42.63 54
SAED-dot 0.67 0.5 35.68 54
SAED-add 0.65 0.41 31.67 102

TV 2 6 17

WGRU 0.79 0.36 32.06 144
Seq2Point 0.8 0.4 32.94 57
SAED-dot 0.75 0.34 32.41 53
SAED-add 0.72 0.24 30.15 101

TV 3 6,17 14

WGRU 0.31 0.65 36.5 164
Seq2Point 0.31 0.65 36.3 102
SAED-dot 0.47 0.6 14.37 62
SAED-add 0.39 0.67 15.08 114

TV 4 6, 17 1

WGRU 0.14 0.79 42.21 165
Seq2Point 0.14 0.72 36.4 102
SAED-dot 0.56 0.52 9.02 62
SAED-add 0.49 0.35 9.66 112

PC 1 6 6

WGRU 0.34 0.33 45.97 148
Seq2Point 0.54 0.46 40.44 53
SAED-dot 0.43 0.5 44.2 52
SAED-add 0.51 0.44 40.1 101

PC 2 6 17

WGRU 0.78 0.54 36.52 145
Seq2Point 0.62 0.62 46.72 50
SAED-dot 0.67 0.65 52 51
SAED-add 0.62 0.62 48 100

PC 3 6,17 16

WGRU 0.27 0.7 40.2 169
Seq2Point 0.27 0.62 30.66 105
SAED-dot 0.37 0.37 17.05 63
SAED-add 0.34 0.51 20.52 112

PC 4 6,17 5

WGRU 0.54 0.1 45.36 167
Seq2Point 0.54 0.19 55.95 105
SAED-dot 0.71 0.2 32.41 62
SAED-add 0.62 0.2 35,84 112

appliance. Then, fine-tuning of the network was applied on the target device.
Finally, inference was performed on unseen data of the target device. The data
for all the stages of this experiment was the same as the Category 1 described
in Table 2. The results on KT are presented on Table 6.3. In comparison to
the results of Table 5, WGRU shows similar performance, whereas SAED-add
and Seq2Point achieved better results. It should be noted that fine-tuning
and testing on other devices showed unsatisfying results, indicating that this
method should involve devices with similar electric signatures.

6.4 Scalability Comparison

An important and frequently neglected parameter when comparing models is
the inference time. Large scale applications involve feeding a disaggregation
models with batches of data from many houses. The cost of this application is
critical and depends heavily on the scalability of inference time of the model.
The scalability is simulated by increasing the time period of disaggregation
from one day to 3 months and measuring the inference time for the various
sizes of test data. From observing the results in Fig. 3, it is obvious that the
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Table 6 Classification and Estimation Accuracy of the SAED in comparison to the WGRU
and the Seq2Point. Seen and Unseen houses are noted as S and U correnspondingly.

Classification Accuracy Estimation Accuracy

Device S|U Model F1s AUH MGL[%] MAEs EUH[W] MGL[%]

DW 1|2,5
WGRU 0.33 0.26 19.3 13.22 31.29 136.7

Seq2Point 0.32 0.32 −4.85 15.44 31.4 103.35
SAED-dot 0.28 0.48 −72.5 13.03 30.42 133.6
SAED-add 0.25 0.45 -82 12.03 31.72 163.6

WM 1|2,5
WGRU 0.54 0.29 46.9 16.55 25.02 51.2

Seq2Point 0.25 0.12 54 18.55 29.14 57.5
SAED-dot 0.51 0.27 48.1 18.51 23.56 27.3
SAED-add 0.45 0.26 43.4 28.55 35.1 22.9

FZ 1|2,5
WGRU 0.63 0.69 −9.8 33.3 34.08 2.3

Seq2Point 0.63 0.67 −5.55 33.2 37.46 12.85
SAED-dot 0.59 0.69 −18.4 32.78 32.85 3.25
SAED-add 0.59 0.7 -19.65 30.56 32.68 6.89

KT 1|2,5
WGRU 0.66 0.59 9.9 7.35 24.44 232.5

Seq2Point 0.24 0.3 −7.15 17.6 27.85 58.25
SAED-dot 0.44 0.45 −2 8.57 23.49 174.1
SAED-add 0.33 0.37 -10.4 9.46 21.05 122.5

MW 1|2,5
WGRU 0.32 0.33 −1.7 6.29 12.79 103.5

Seq2Point 0.22 0.28 −25 6.01 13.34 125.05
SAED-dot 0.16 0.26 -68.6 7.5 18.07 140.9
SAED-add 0.18 0.28 −53.9 7.61 17.59 131.2

TV 6|1,17
WGRU 0.68 0.52 24.25 40.38 24.27 −39.05

Seq2Point 0.68 0.49 28.7 42.63 32.67 −23.35
SAED-dot 0.67 0.55 18.7 35.68 21.75 -39.7
SAED-add 0.65 0.53 18.45 31.67 20.67 −34.7

PC 6|16,17
WGRU 0.34 0.54 -58.8 45.97 30.74 -33.15

Seq2Point 0.54 0.51 5.55 40.44 31.92 −21.1
SAED-dot 0.43 0.51 −18.6 44.2 34.75 −21.4
SAED-add 0.51 0.49 3.9 40.1 31.81 −20.65

Table 7 Knowledge Transferability Comparison for Kettle(KT), on UK-DALE House 1
data.

Device Model F1 RETE MAE

KT
WGRU 0.66 0.07 9.04

Seq2Point 0.54 0.1 8.14
SAED-dot 0.33 0.18 7.25
SAED-add 0.56 0.19 7.55

SAED models achieve similar inference times as the Seq2Point, whereas the
WGRU is a lot slower.

7 Ablation Study

As demonstrated in the previous sections of this article, the attention mech-
anism provides great generalization capabilities and performance gain to a
lightweight neural network. To quantify these enhancements, an ablation ex-
periment was conducted, where the same network (Baseline) is tested on some
situations without the attention mechanism. Specifically, the models were com-
pared side by side on experiments of Categories 1 and 2, as described in Table



SAED: Self-Attentive Energy Disaggregation 17

1 day 1 week 1 month 3 months
Inference time period

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

In
fe

re
nc

e 
ti

m
e 

(s
)

SAED-dot SAED-add WGRU Seq2Point

Fig. 3 Inference time versus inference time period for fridge, where 1 day of data is equal
to 14400 samples.

2. The results are shown in Fig. 4. In overall, the SAED models achieved
better F1 scores than the Baseline model on both categories of experiments.
In addition, the SAED-dot model achieves the best F1 scores on Category 1,
whereas on Category 2 SAED-add achieves best scores on MW and FZ appli-
ances. Regarding the MAE errors, there are mixed results, with the Baseline
showing similar performance to the SAED models. The differences between
SAED and Baseline models on F1 scores, highlight the fact that the attention
mechanism assists the network in the energy changes detection task. Thus the
SAED method are more capable on detecting on/off events than the Baseline.
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Fig. 4 Performance comparison of SAED models to a Baseline model.

8 Conclusions and Proposals for Future Work

Comparing the proposed SAED models to the lightweight state-of-the art
WGRU leads to promising conclusions. In general, the results of the SAED
models were comparable and, in some cases, better than the WGRU. Concern-
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ing the disaggregation on different devices, SAED achieved better performance
on complex devices than on devices with simple time series, although this is
not the case when disaggregating Television. Experiments on a wider range of
target devices may provide more insights on this topic. In addition, the pro-
posed architecture possesses good generalization capabilities, as pointed out by
the results on the Categories 3 and 4 of experiments. Interestingly, in cases of
limited data, SAED models show encouraging results, performing better than
the WGRU in the majority of cases. The fact that the proposed architecture
is faster in training and inference than the WGRU, causes the deployment of
SAED models on embedded systems to be more feasible.

After inspecting the performance between SAED method and Seq2Point,
interesting conclusions occurred. SAED models perform on par or even better
than the Seq2Point in many cases of the experiments. One of the strengths
of SAED is the ability to generalize on out-of-distribution data. In terms of
speed, Seq2Point achieves almost the same training times per epoch with the
SAED-dot (the fastest of the two SAED models), whereas Seq2Point achieves
faster inference times. On the other hand, in terms of model size, SAED is sig-
nificantly smaller. The explanation hides in the structural differences between
Convolutional and Recurrent Neural Networks.

Concisely, using the Attention mechanism on lightweight ANN architec-
tures led to the creation of fast-trainable models with good generalization
capabilities. As a result, Attention may be a powerful tool in the task of en-
ergy disaggregation with Neural Network architectures. In order to achieve
even faster training-inference times, Attention could be combined with CNN
layers instead of RNNs.
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