
Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

1 

Towards Multipolicy Argumentation 

Nick Bassiliades 

Department of Informatics,  
Aristotle University of Thessaloniki,  

Greece 
nbassili@csd.auth.gr 

Nikolaos I. Spanoudakis 

School of Production Engineering and 
Management, Technical University of 

Crete, Greece 
nispanoudakis@isc.tuc.gr 

Antonis C. Kakas 

Department of Computer Science,  
University of Cyprus,  

Cyprus 
antonis@cs.ucy.ac.cy 

ABSTRACT 
In this paper, we develop a novel computational argumentation 
framework for resolving conflicts that arise in a community of 
multiple stakeholders where each one of them bears a private 
policy/strategy for shared and inter-related decisions. Decisions 
taken individually by stakeholders can be contradicting, so there 
is a need for an arbitration service that will resolve the conflict 
and conclude on a single decision. Centralized mediation ap-
proaches gather all relevant context information and decide on 
the prevailing decision option as suggested individually by mul-
tiple stakeholders. There is high complexity on resolving all pos-
sible competing option conflicts among all competing stakehold-
ers, thus, usually centralized solutions do not scale. Our ap-
proach avoids this complexity because it is based on defining an 
arbitration meta-policy for deciding on the priorities among 
stakeholders, which are few, and not among competing decisions 
of stakeholders. Then, this meta-policy is automatically rewrit-
ten into a full meta-policy about conflicting options, but without 
user intervention. Thus, human arbitrators can seamlessly define 
their arbitration meta-policies without a heavy cognitive load. 

CCS CONCEPTS 
• Computing methodologies → Nonmonotonic, default rea-
soning and belief revision • Information systems → Decision 
support systems 

KEYWORDS 
Computational argumentation, conflict resolution, multi-
stakeholder decision making  

ACM Reference format: 

N. Bassiliades, N.I. Spanoudakis, A.C. Kakas. 2018. In Proceedings of 10th 
Hellenic Conference on Artificial Intelligence, Rio Patras, Greece, July 2018 
(SETN’18), 10 pages. https://doi.org/10.1145/3200947.3201032 

1 INTRODUCTION 
Computational argumentation has been recognized as a solid 
theoretical framework to model human decision making [1], [5]. 
Existing approaches deal with various aspects of decision mak-
ing, such as uncertainty or multi-criteria, but the problem of 
modeling shared decisions among individual stakeholders with 
possibly conflicting options for the decision outcome has not 
been given enough attention. Moreover, defeasible reasoning has 
been applied in smart contracts [4], which can be captured as 
logic statements. A smart contract is a piece of software that 
captures the contents of a contractual agreement and allows for 
implementing it at run time. In [4], the authors explain the added 
value of using logic-based smart contracts as their nature makes 
them suitable for negotiation, enforcement and monitoring but 
also, importantly, for dispute resolution between different parts 
of the contract that may come from different stakeholders. 

In this paper, we consider cases where argumentation is used 
at different levels of decision making, however, these must be 
considered together, either because there is a conflict of interest 
of stakeholders and they want to argue, or because there are di-
verse opinions within an organization and a higher (executive) 
authority has the final say on the decision policy. 

One such example would be when people request access to 
personal or medical data. There are diverse organizations (e.g. 
hospitals, insurance companies, national health care systems) 
that can give access to data and each of them has its own busi-
ness model that might conflict to each other. For example, in the 
case of a hospital, access to a patient’s personal information is 
only allowed for treating medical doctors, and, even in that case, 
under strict circumstances. However, a fireman might request 
access to such data as he is at an accident scene and the victim is 
unconscious. How can these conflicts in decision making among 
conflicting stakeholders be resolved? In these cases, the stake-
holders want to argue their case. And when this happens, they 
all reference relevant legislation. The latter can be used as a me-
ta-policy over these business models to regulate them.  

Another example could be an energy management scenario in 
a smart building, where various stakeholders would like to man-
age the energy from their own perspective. An individual user 

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the 
first page. Copyrights for components of this work owned by others 
than the author(s) must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to re-
distribute to lists, requires prior specific permission and/or a fee. 
Request permissions from Permissions@acm.org. 
 
SETN '18, July 9–15, 2018, Rio Patras, Greece 
© 2018 Copyright is held by the owner/author(s). Publication rights 
licensed to ACM. 
ACM ISBN 978-1-4503-6433-1/18/07…$15.00 
https://doi.org/10.1145/3200947.3201032 



Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

2 

would strive for comfort, turning on/off the cooler/heater be-
yond a temperature threshold. The energy manager of the build-
ing would strive for energy savings, by turning off devices like 
coolers, when there is no apparent need for using them, e.g. no-
body is the room, it’s too late, etc. Finally, the safety officer of 
the building would strive for safety of people and equipment by 
turning off devices when there is an emergency in a room, such 
as fire. In this scenario, each of three types of stakeholder de-
fines their own policy, independently from the rest. These stake-
holders might not even know each other – so they could not co-
ordinate their policies development. 

In this paper, we present a novel argumentation-based 
framework for handling such situations. Our framework propos-
es the use of a meta-policy for defining priorities among stake-
holders. These priorities arise naturally or legally in a society of 
self-interested agents. Priorities may be strict, or they may de-
pend on the situation context. Our multipolicy framework can 
capture all such cases, by extending the “Gorgias” argumentation 
framework [6], [14] for representing stakeholders’ priorities in 
an arbitrator’s metapolicy.  

Our approach can be considered as a centralized mediation 
approach, without having, though, the scaling problems of exist-
ing similar approaches, which have a high complexity on resolv-
ing all possible competing option conflicts among all competing 
stakeholders. Our approach avoids this complexity because it is 
based on defining an arbitration meta-policy for deciding on the 
priorities among stakeholders, which are few, and not among the 
competing decisions of stakeholders. Then, this meta-policy is 
automatically rewritten into a full meta-policy about conflicting 
options, but without user intervention.  

Thus, human arbitrators can seamlessly define their arbitra-
tion meta-policies without a heavy cognitive load. Another bene-
fit is that individual stakeholder policies can be kept and main-
tained privately, without needing to re-organize the arbitrator’s 
meta-policy. In doing so, we may give up the possibility to define 
fine-grained contextual priorities among specific competing op-
tions of specific stakeholders. However, in practice, such fine-
grained priorities are rarely a need in cases that independent 
stakeholders define their decision-making privately and do not 
have access to the decision-making mechanism of each other, 
relying on an arbitrator to resolve the conflict based on norms 
and laws about stakeholders’ authority. Nevertheless, an ad-
vanced arbitrator user can still manually edit the final translated 
meta-policy for fine-grained refinements.  

Finally, our implementation in the Gorgias prolog-based ar-
gumentation system presents full explanations about the argu-
mentation process if needed (both for private and global deci-
sion-making levels).  

In the rest of the paper, we briefly review related work on re-
solving conflicts using argumentation through an arbitrator in 
section 2; we present background information on our argumen-
tation framework and methodology in section 3; we describe in 
detail the conceptual framework and the methodology of the 
proposed approach in sections 4 and 5 and we present two case 
studies in sections 6 and 7. Finally, we conclude the paper in sec-
tion 8, setting our future research goals. 

2 Related work 
Oguego et al. [11] use weighted contexts to compute the weight 
of an argument in order to resolve conflicts between policies. 
This approach, however, seems quite limited, as in their example 
they only put weight in one issue (i.e. television program types). 
It is not clear how this issue would be weighed against another, 
more or less serious one. Likewise, it would be difficult to ex-
plain a combined situation to the user. 

Howlett [3] proposed a multi-level nested model of policy in-
strument choice and policy design. He argues on that policy de-
sign passes through different levels where each one considers 
arguments of a different nature. Such a situation calls for argu-
ing at different levels for the application of a policy. 

Karafili and Lupu [8] used argumentation for representing 
the rules of data sharing agreements and for analyzing them to 
identify conflicts. For example, it is possible that a nation-wide 
agreement is applied, but when the international dimension 
comes in, national issues are superseded by higher level authori-
ty levels, considering different contexts (international agree-
ments) and roles of the person it is about (tourist or victim).  

Our framework can be seen as an instance of the abstract Hi-
erarchical Argumentation Framework proposed by Modgil [10], 
abstracting from earlier hierarchical structured frameworks ([6], 
[12]), where arguments in a level n argumentation framework 
resolve conflicts between arguments of a framework at level n – 
1, a process called meta-argumentation. Our implemented 
framework brings this abstract framework to practice, extending 
it also, since we can have several argumentation frameworks at 
level n-1. 

This work focuses on arbitration, i.e. a settlement process 
where a third party gathers the arguments of the disputing par-
ties and renders a decision. It should not be confused with medi-
ation or multi-party facilitation, where a third-party assists dis-
puting parties to reach an agreement, possibly through a negoti-
ation process [18], [12]. Works in Group, or Collaborative Deci-
sion Support Systems are also not sufficiently covering this do-
main as typically all participants can evaluate the arguments of 
their counterparts and assign priorities between them and their 
arguments [7]. This paper is mainly concerned with cases where 
the conflict resolution process needs to be resolved automatically 
as in the cases of Data Sharing Agreements or automation deci-
sions in IoT environments. 

3 Background 
The background of this work is the Gorgias argumentation 
framework [6] and the SoDA methodology [14]. 

3.1 The Gorgias Argumentation Framework 
Argumentation technology caters for situations where systems 
need to support decision making under complex preference poli-
cies that consider diverse factors [2]. We can abstractly define 
argumentation as the mechanism that allows the interaction of 
different, possibly conflicting, arguments and provides the se-
mantics for resolving conflicts. The conclusion supported by the 



Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

3 

arguments can be an action to take, the validity of a proposition, 
e.g. to validate or not a data access request.  

A hierarchical argumentation framework uses object level ar-
guments for representing the decision policies and then priority 
arguments for expressing preferences on the object level argu-
ments to resolve possible conflicts. Additional priority argu-
ments can be employed for resolving conflicts between priority 
arguments of a previous level. One such framework is Gorgias 
[6], which has been successfully applied in different applications, 
e.g. recently, for developing a theory capturing the Cyprus law 
for medical data access [16], for defining data access policies [8] 
and for conflict resolution [15]. We briefly provide some formal 
definitions from [6]: 

Definition 1. A theory is a pair (T, P) whose sentences are 
formulae in the background monotonic logic (L, ⊢) of the 
form L←L1,…,Ln, where L, L1, …, Ln are positive or negative 
ground literals. For rules in P the head L refers to an (irreflexive) 
higher priority relation, i.e. L has the general form L = h_p(rule1, 
rule2). The derivability relation, ⊢, of the background logic is 
given by the simple inference rule of modus ponens. 

An argument for a literal L in a theory (T, P) is any subset, 
Arg, of this theory that derives L, Arg ⊢L, under the background 

logic. A part of the theory T0 ⊂ T, is the background theory 
that contains facts and non-defeasible rules that always apply. 
An argument attacks another when they derive a contradictory 
conclusion. These two arguments are considered as conflicting 
arguments. A conflicting argument (from T) is admissible if it 
counter-attacks all the arguments that attack it. It counter-
attacks an argument if it can use priority arguments (from P) and 
make itself at least as strong as a conflicting argument. 

Definition 2. An agent’s argumentative policy theory is a 
theory APT = ((T, T0), PR, PC) where T contains the argument 
rules in the form of definite Horn logic rules, PR contains priori-
ty rules which are also definite Horn rules with head h_p(r1, r2) 
s.t. r1, r2 ∈ T and all rules in PC are also priority rules with head 

h_p(R1, R2) s.t. R1, R2 ∈ PR ∪ PC. T0 contains auxiliary rules of 
the agent’s background knowledge. 

All in all, we specify rules in three different levels for defin-
ing a decision-making theory. The first level (or object-level) 
rules (T) refer directly to the subject domain and reflect the 
background knowledge needed for reaching the different goals. 
The second level rules define priorities over the first level rules, 
resolving possible conflicts. These situations usually reflect the 
needs of a role that the decision maker assumes or a context in 
which he finds himself, usually also including a default context. 
The third level (and also higher level) rules define priorities over 
the rules of the previous level but also over the rules of this level 
to define specific contexts, which can be specializations of the 
previous level contexts or their combinations.  

3.2 The SoDA methodology 
The SoDA methodology [14] has been developed to allow for 
hierarchical argumentation framework-based software develop-
ment. SoDA defines the steps that the modeler should follow to 

define the decision policy leading from options definition to code 
generation. SoDA defines the following tasks: 
T1. Defining the different available options. 
T2. Identifying the knowledge needed to describe the applica-

tion environment. 
T3. Knowledge is distinguished in information that always ex-

ists for all instances of the problem and information that is 
circumstantial, i.e. which may be present in all instances of 
the problem.  

T4. Sorts circumstantial information from more general to more 
specific contexts, starting from level one (more general con-
texts). Independent contexts (i.e. when the one is not a re-
finement of the other) can appear at the same level. 

T5. Defines for each option, Oi, the different problem environ-
ments, i.e. the sets of preconditions, Ci, in terms of non-
circumstantial predicates, where the option is possible. 

T6. Iteratively defines sequences of increasingly more specific 
scenarios of the world and considers how options might 
win over others. This starts with the information from T5 to 
precondition the world and iterates, getting each time the 
next level of circumstantial information. At each level of it-
eration, it defines which option is stronger over another 
under the more specific contextual information. In the final 
iteration, the winning options (if they exist) for each partial 
model are defined without extra information. 

Since its conception in 2016 [14], SoDA has been applied for 
developing argumentation theories in diverse application do-
mains, i.e., for capturing legislation [16], for defining a decision 
policy [8] and for conflict resolution [15]. 

4 Conceptual Description of Framework 
Our framework assumes the following stakeholders: 
● Multiple peer stakeholders Si that decide among k compet-

ing options Oj and suggest their decisions to an arbitrator A, 
according to their own private policies APTi. 

● An arbitrator (or administrator) A that decides among k 
competing options Oj, suggested independently by n com-
peting peer stakeholders Si with different levels of authority 
or preference. The level of authority for each stakeholder is 
defined by law or by the administrator preferences and is 
realized through the administrator’s meta-policy MP. 

Formally, our framework is defined by the tuple <A, S, O>, 
where A is the arbitrator, S = {Si | i ∈ [1..n]} is the set of peer 
stakeholders and O = {Oj | j ∈ [1..k]} is the set of competing op-
tions. Each peer stakeholder Si is defined by the tuple <O, APTi>, 
where APTi is a private argumentative policy theory, as in Defi-
nition 2, and the object-level argument rules refer to Oj in their 
conclusions, i.e. r  T(APTi), r  (cond(r) → Oj). Each stake-
holder decides independently which among the k different pos-
sible options Oj to choose. We assume that options are common 
to all peer stakeholders (or they can be made compatible through 
rewriting rules). 

The arbitrator A is given by the tuple <S, MP>, where SiS 
are considered as mutually conflicting meta-options for each of 
the peer stakeholders. The MP (called meta-policy) is an argu-



Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

4 

mentative policy theory where the object-level argument rules 
refer to Si in their conclusions, i.e.  r  T(MP), r  cond(r) → Si. 
Note that it is conceptually easier to define authoritative priori-
ties on stakeholders alone, rather than on multiple options that 
each stakeholder might have. The private policies may have de-
fault priorities for the administrator, e.g. the energy saving poli-
cy is always preferable over the individual user’s room comfort 
policy, or priorities may be conditional, e.g. the previous default 
priority is inversed when the user is the IT manager defining the 
server’s room energy policy. The administrator is not interested 
at the conditions under which private policies become valid, as-
suming that they all compete for the right to decide on the com-
peting options among the competing peer stakeholders.  

Since the ultimate goal of the arbitrator is to decide on the ac-
tion (option) to be performed, the meta-policy MP on competing 
policies can be automatically transformed, transparently to the 
end user, into an argumentation theory MP’ on the n×k compet-
ing action options Oij suggested by the peer stakeholders Si,. This 
is achieved by: a) transforming the k Oj options of the n private 
policies into n×k Oij options by having an extra parameter indi-
cating the stakeholder, b) having one object-level rule for each of 
the competing options, and c) combining all preference rules of 
the meta-policy theory MP with all competing options Oj. 

Formally, the initial arbitrator tuple is converted into the tu-
ple <O’, MP’>, where O’ = { Oji | j ∈ [1..k], i ∈ [1..n] } are n × k 
conflicting options, i.e.  l  m  w  z Owl  Ozm ⊢ , and MP’ 
is an argumentative policy theory where the argument rules re-
fer to Oji in their conclusions. MP’ is constructed as follows: 

• Each Oji option suggested by stakeholder Si is renamed to 
Olocalji. 

• The object-level rules of the argumentative policy theory 
T(MP’) comprise of k mapping rules Olocalji → Oji that map 
stakeholders’ decisions to arbitrator’s decision.  

• The first-level preference rules of the MP’ theory PR(MP’) 
are constructed by combining all first-level preference rules 
of the MP theory with all competing options Oj of the 
framework, as follows: 

h_p(ri, rk)  PR(MP)   Oj, Oj’ ∈ O  Oj  Oj’ →  
 h_p(rjik, rj’ik)  PR(MP’) 

where ri, rk are argument rules in the MP (ri, rk  T(MP)) for 
stakeholders Si, Sk, respectively. 

• The second-level preference rules of the MP’ theory PC(MP’) 
are constructed by combining all second-level preference 
rules of the MP theory with the corresponding but compet-
ing first-level rules of the MP’ theory (i.e. first-level prefer-
ence rules that give contradicting preferences to object-
level rules), as follows: 

 h_p(h_p(ri, rk), h_p(rk, ri))  PC(MP)   h_p(rjik,rj’ik)  PR(MP’) 
→  h_p(h_p(rjik, rj’ik), h_p(rjki, rj’ki))  PC(MP’) 

Thus, for each policy preference rule of the meta-policy theo-
ry MP a number of preference rules (all 2-permutations of the k 
conflicting options) will be constructed at the transformed theo-
ry MP’. Therefore, if the initial MP meta-policy has R preference 

rules, the transformed MP’ meta-policy will have 𝑅 ∙ 𝑃(𝑘, 2) =

𝑅 ∙
𝑘!

(𝑘−2)!
 rules. So, even in the simplest case where k=2, the 

transformed MP’ meta-policy will have double the size of the 
preference rules of the original meta-policy MP. 

5 Methodological Approach 
Each stakeholder defines their own private policy, using the So-
DA methodology [14] and the Gorgias argumentation frame-
work [6], independently and privately from the other stakehold-
ers (including the arbitrator), using as input knowledge any be-
lief about the environment or background knowledge they have. 
This is also valid for the arbitrator who is omniscient and has 
access to all data – although he may be unaware about the de-
tails of a sub-policy. The only thing that the stakeholders must 
agree upon is the naming of the competing options and the ex-
change language for the options, using one of the following 
methodologies. The difference between them lies in who defines 
the competing options; the arbitrator (top-down) or the stake-
holders (bottom-up). 

5.1 Top-down methodology 
The administrator A uses the SoDA methodology in order to de-
fine the meta-policy MP for deciding among competing peer 
stakeholders Si. Thus, in task T1 of the SoDA methodology the 
administrator decides on the competing options / stakeholders Si. 
The input knowledge for the meta-policy (task T2) are: a) the 
stakeholders themselves and b) the union of the knowledge of all 
the private stakeholders’ policies. As stated above, the adminis-
trator is omniscient and, therefore, has access to all the 
knowledge that the peer stakeholders hold. The rest of the steps 
in the SoDA methodology are followed as usual. 

The actual decision to be taken involves not just the winning 
stakeholder, but also the action (option) to be performed. There-
fore, as stated above, the MP meta-policy is converted into the 
MP’ meta-policy which dictates which option Oj suggested by a 
stakeholder Si will be selected. Here, we remind that the options 
are supposed to be common / compatible among all stakeholders, 
including the administrator. In the top-down methodology, the 
administrator defines the options Oj and informs the peer stake-
holders, in an enhanced version of the task T1 of the SoDA 
methodology. The competing options Oj are augmented with an 
extra argument that indicates the stakeholder Si that suggests an 
option Oji. The meta-policy uses the “local” decisions, suggested 
by each stakeholder Si to the administrator as input knowledge. 
Actually, in order not to confuse the local stakeholder option 
predicate with the global administrator option predicate, the lo-
cal options are named as Olocalji and there exist mapping rules as 
explained in Section 4.  

The administrator then dictates to each stakeholder Si the al-
ternative options Olocalji for which the stakeholder needs to de-
cide. Then, each stakeholder Si defines its own policy APTi for 
deciding on the competing options Olocalji using the SoDA meth-
odology. To ease policy authoring, each peer stakeholder defines 
their private policy APTi using the options Oj, as if he/she was 



Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

5 

the only stakeholder to decide, and then our multi-policy frame-
work automatically transforms the APTi theory into one whose 
options are expressed as Olocalji, where i is a constant for each 
stakeholder Si. 

5.2 Bottom-up methodology 
Each peer stakeholder Si defines its own private policy APTi for 
deciding on the j competing options Oj using the SoDA method-
ology. Notice that there must be a global agreement between the 
peer stakeholders on the naming of the competing options which 
must be common to all, according to the current implementation 
of our multi-policy framework. However, this is not an intrinsic 
feature of our framework, since mapping rules at the administra-
tor’s meta-policy MP’ (see above) can take care of converting all 
local options to common global ones.  

Subsequently, peer stakeholders report to arbitrator A their 
competing options Oj, which are automatically transformed into 
Olocalji, adding one extra argument for the name of the stakehold-
er. The administrator uses the SoDA methodology to define the 
meta-policy MP’ for deciding among the competing options Olo-

calji suggested by the peer stakeholders. Actually, in order to ease 
policy authoring, the administrator defines the MP meta-policy 
for deciding among competing peer stakeholders Si, using the 
level of authority defined by the law or its own preferences, in-
cluding special circumstance exceptions. During task T1 of the 
SoDA methodology the administrator decides on the competing 
options / stakeholders Si. The input knowledge for the meta-
policy (task T2) is: a) the stakeholders Si, and b) the union of the 
background knowledge (T0) of all the private policies. As stated 
above, the administrator is omniscient and, therefore, has access 
to all the knowledge that the peer stakeholders hold. The rest of 
SoDA methodology is followed as usual. 

As it is for the case of the top-down methodology, the MP 
meta-policy is automatically converted into the MP’ meta-policy 
which dictates which option Oji suggested from a stakeholder Si 
will be selected. As explained in Section 4, there exist mapping 
rules between Olocalji and Oji. 

6 Energy Management Case Study 
In this section, we apply the top-down methodology of our ap-
proach to an energy management case study in a Smart Building, 
adopted from the work of Stavropoulos et al. [17]. We assume 
that various peer stakeholders Si would like to manage the con-
sumed energy from their own perspective. The decision is to 
control (switch on or off) a certain device (e.g. a cooler) in a spe-
cific room. In our specific example, S = {Sprs, Smgm, Semr}: 
• Sprs: An individual user would strive for their own comfort, 

turning on/off the cooler/heater beyond a temperature 
threshold. 

• Smgm: An energy manager would strive for energy savings. 
Their policy is to turn off devices like coolers, when there is 
no apparent need using them, e.g. nobody is the room, it’s 
too late, etc. 

• Semr: A safety officer would strive for safety of people and 
equipment. Their policy is to turn off devices when there is 
an emergency in a room, such as fire. 

Furthermore, there is a higher-level authority / administrator 
of the building, i.e. the building owner or the general manager of 
the organization, that receives possibly competing peer stake-
holders’ decisions and must decide which decision will be ap-
plied to control various devices on various rooms, based on a 
meta-policy dictated by the level of authority of each stakeholder 
and / or based on contextual information.  

Meta-policy 
According to the top-down methodology, the administrator de-
fines two competing options Oj, namely switchON(Dev,Room), 
and switchOFF(Dev,Room), with the obvious meaning. Then, 
the administrator should define the MP meta-policy on the com-
peting stakeholders Si. In our specific example, we have chosen 
to give the following default strict ordering: Semr stakeholder is 
superior to the Smgm stakeholder, which is superior to the Sprs 
stakeholder. The only exception is when the room to be con-
trolled is the Server room and the device to be controlled is the 
cooling device (e.g. you do not ever turn off the server room’s 
cooler for energy saving reasons, except when there is an emer-
gency). In this case, the Sprs stakeholder (personal meaning the 
person who oversees the server room, e.g. the IT manager of the 
organization) is superior to the Smgm stakeholder, but still inferi-
or to the Semr stakeholder. The default superiority relationships 
among stakeholders are captured by the following meta-policy 
object-level rules r1-3 and first-level priority rules p1-p3: 

r1(prs): stakeholder(prs) ← 

r2(mgm): stakeholder(mgm) ← 

r3(emr): stakeholder(emr) ← 

p1(emr): prefer(r3(emr), r1(prs)) ← 

p2(emr): prefer(r3(emr), r2(mgm)) ← 

p3(mgm): prefer(r2(mgm), r1(prs)) ← 

Object-level rules are just defeasible facts (body-less rules) 
that conclude every potential winning stakeholder. The first-
level priority rules (PR) give the default priority between the 
stakeholders, e.g. p1 states that the emergency stakeholders is 
preferable (superior) to the personal stakeholders, and so on so 
forth. The exception of the default priority is given by the fol-
lowing two rules: 

p4(prs): prefer(r1(prs), r2(mgm)) ← 
  device(cooler, srvroom). 
c1(prs): prefer(p4(prs), p3(mgm)) ← 

Priority rule p4 is a first-level priority rule, that gives prefer-
ence of the personal stakeholder over the management stake-
holder when the device is a cooler in the server room. Priority 
rules p3 and p4 are in conflict now because they give the exactly 
opposite preferences, therefore there is a need to resolve this 
conflict at a second-level (PC), with priority rule c1 which gives 
preference to priority rule p4 over p3, thus to personal over 
management stakeholder, when the special condition is met. 

Then, the MP meta-policy is converted into the MP’ meta-
policy which dictates which option Oj suggested from a stake-
holder policy APTi will be selected. According to our methodolo-



Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

6 

gy, the above options are augmented by an extra argument that 
indicates the stakeholder Si (represented by the variable parame-
ter S) that suggests a certain decision: switchON(Dev, Rm, S), 
switchOFF(Dev, Rm, S). These decisions are input 
knowledge (beliefs) to the meta-policy so they are renamed as 
switchON_local(Dev, Rm, S), switchOFF_local(Dev, 

Rm, S) to avoid confusion with the “global” decisions. Further-
more, there exist 2 mapping rules between the suggested “local” 
decisions from the peer stakeholders and the meta-policy “glob-
al” options, which play the role of the object-level rules for the 
converted meta-policy MP’: 
r1(Rm, Dev, S): switchOFF(Rm, Dev, S) ← 
  switchOFF_local(Rm, Dev, S). 
r2(Rm, Dev, S): switchON(Rm, Dev, S) ← 
  switchON_local(Rm, Dev, S). 

Notice that the competing options Oj(Si) can be between dif-
ferent stakeholders, therefore the competing options facts use 
different variables for the competing options: 
complement(switchOFF(Rm, Dev, S2), 
  switchON(Rm, Dev, S1)). 
complement(switchON(Rm, Dev, S1),  
  switchOFF(Rm, Dev, S2)). 

Consequently, all first-level preference rules of the MP meta-
policy are combined with all competing options Oj. For example, 
rule p2 of MP should be combined with both competing options 
switchON/3 and switchOFF/3, so that the emergency policy 
options will be preferred over the competing management policy 
options, i.e. switchON(Dev, Rm, emr) is preferred over 
switchOFF(Dev, Rm, mgm) and switchOFF(Dev, Rm, emr) 
is preferred over switchON(Dev,Rm, mgm). This is achieved by 
the following pair of first-level preference rules that give prefer-
ences over the object-level rules r1 and r2: 
p211(emr, Rm, Dev, mgm): 
 prefer(r1(Rm,Dev,emr),r2(Rm,Dev,mgm)) ← 
p221(emr, Rm, Dev, mgm): 
 prefer(r2(Rm,Dev,emr),r1(Rm,Dev,mgm)) ← 

Similar rules are generated for every first-level preference 
rule of the MP meta-policy. If there are more options, then more 
preference rules should exist, for all pairwise combinations of 
preferences between all object-level rules, both ways. 

Finally, for each second-level preference rule of the meta-
policy theory MP, similar multiple second-level preferences rules 
are generated in the MP’ meta-policy, resolving the conflicts be-
tween all pairwise combinations of first-level preference rules, 
both ways. For example, rule c1 in the MP meta-policy resolves 
the conflict between the default preference of management - 
personal stakeholders (rule p3) and the server room exception 
(rule p4), giving priority to the exception. This means that rule 
c1 will be converted to two second-level preference rules in the 
MP’ policy, since there are two options at the object-level: 
c111(prs, Rm, Dev, mgm): 
 prefer(p411(prs,Rm,Dev,mgm), 
  p321(mgm, Rm, Dev, prs)) ← 
c121(prs, Rm, Dev, mgm): 
 prefer(p421(prs, Rm, Dev, mgm),  
  p311(mgm, Rm, Dev, prs)) ← 

Notice that in this case the first-level preference rules in con-
flict (e.g. p421 and p311) give priorities to conflicting options 
(p411 gives priority to r2 over r1, when conflicting stakehold-

ers are personal and management respectively, whereas p311 
gives opposite priority to r1 over r2, for the same pair of stake-
holders. 
p311(mgm, Rm, Dev, prs): 
 prefer(r1(Rm,Dev,mgm), r2(Rm,Dev,prs)) ← 
p321(mgm, Rm, Dev, prs): 
 prefer(r2(Rm,Dev,mgm), r1(Rm,Dev,prs)) ← 
p411(prs, Rm, Dev, mgm): 
 prefer(r1(Rm,Dev,prs), r2(Rm,Dev,mgm)) ← 
  device(Dev, Rm),  
  Dev=cooler, Rm=srvroom. 
p421(prs, Rm, Dev, mgm): 
 prefer(r2(Rm,Dev,prs), r1(Rm,Dev,mgm)) ← 
  device(Dev, Rm),  
  Dev=cooler, Rm=srvroom. 

When more options exist at the object-level, this leads to 
more preference rules at the first-level and at the second-level, as 
well, since all conflicting first-level preference rules should be 
combined pairwise to resolve their conflict at the second-level. 

Then, the administrator informs the three peer stakeholders 
the alternative options switchON(Rm, Dev), switchOFF(Rm, 
Dev), for which each peer stakeholder needs to decide. Notice 
that the administrator needs as input the above decisions from 
each stakeholder, but in order not to be confused, an extra ar-
gument indicating the stakeholder that suggests the decision 
augments the above predicates: switchON(Rm, Dev, S), 
switchOFF(Rm, Dev, S). For each stakeholder, the S parame-
ter is a constant. For example, the options for the Smgm stake-
holder are: switchON(Rm, Dev, mgm), and switchOFF(Rm, 
Dev, mgm). However, peer stakeholders do not need to define 
that extra argument, because our framework adds it automatical-
ly, by converting the initial private policies. Each stakeholder 
defines their own policy for deciding on the above competing 
options using the SoDA methodology.  

Personal Policy 
In the personal policy, the stakeholder wants to switch on the 
cooler device in the room when the temperature is high. Accord-
ing to their preferences, the temperature is high when it is more 
than 28 degrees. Otherwise, they want the cooler turned off.  

The definition of the policy in Gorgias notation follows: 
r1(Rm): neg(tempHigh(Rm)) ← tmprtr(Rm, T), 28>=T. 
r2(Rm): tempHigh(Rm)      ← tmprtr(Rm, T), 28<T. 
r3(Rm, Dev): switchON(Rm, Dev) ← 
  tempHigh(Rm), 
  device(Dev, Rm), Dev=cooler. 
r4(Rm, Dev): switchOFF(Rm, Dev) ←  
  neg(tempHigh(Rm)), 
  device(Dev, Rm), Dev=cooler. 
complement(switchON(Rm,Dev), switchOFF(Rm,Dev)). 
complement(switchOFF(Rm,Dev), switchON(Rm,Dev)). 

Notice that in the above policy definition the extra “Stake-
holder” argument is not used. Thus, in our framework the stake-
holders define their own private policy using simplified predi-
cates and rules. However, when the individual policies are 
merged our framework performs the following source code 
transformations automatically: 
• Adds a bound “Stakeholder” argument to the options of a 

policy, to the rules that infer the options, and to the prefer-
ence rules that resolve conflicts among options up to all 
levels. 



Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

7 

• Renames the rules and the options of the policies in order 
not to be confused when loaded into a single Prolog KB. 

An example of the transformations performed is: 
prs_r1(Rm): neg(tempHigh(Rm)) ← 
  tmprtr(Rm, T), 28>=T. 
prs_r2(Rm): tempHigh(Rm) ← tmprtr(Rm, T), 28<T. 
prs_r3(Rm,Dev,prs): switchON_local(Rm,Dev,prs) ← 
  tempHigh(Rm), 
  device(Dev, Rm), Dev=cooler. 
prs_r4(Rm,Dev,prs): switchOFF_local(Rm,Dev,prs) ← 
  neg(tempHigh(Rm)), 
  device(Dev, Rm), Dev=cooler. 
complement(switchON_local(Rm, Dev, prs),  
  switchOFF_local(Rm, Dev, prs)). 
complement(switchOFF_local(Rm, Dev, prs), 
  switchON_local(Rm, Dev, prs)). 

Management Policy 
In the energy manager’s policy, the manager wants the cooler 
device turned off when the room is inferred to be at an energy 
saving mode or when there is nobody in the room. The room is 
in saving mode when it is late in the night (after 10 o’clock) or 
when the consumption exceeds 2KWatts/hr. However, when 
there is somebody in the room or when there is a PC operating 
in the room it seems that the cooler is still needed so there is no 
need to switch it off. Since there are conflicting options in this 
policy there are preference rules that dictate that energy saving 
is more important than an operating PC, but when a user is in-
side the room then this is more important than energy saving. 
However, even if the room is not in a saving mode, when there 
is no motion in the room, energy saving is preferred even in the 
presence of an operating PC. The manager’s policy is defined as: 
r1(Rm): savingMode(Rm) ← 
  consumption(Rm,C), 2000<C. 
r2(Rm, Dev): switchOFF(Rm,Dev) ← neg(motion(Rm)), 
  device(Dev,Rm), Dev=cooler. 
r3(Rm, Dev): switchOFF(Rm,Dev) ← savingMode(Rm), 
  device(Dev,Rm), Dev=cooler. 
r4(Rm, Dev): neg(switchOFF(Rm,Dev)) ← motion(Rm), 
  device(Dev,Rm), Dev=cooler. 
r5(Rm, Dev): neg(switchOFF(Rm, Dev)) ← 
  device(Dev,Rm), Dev=cooler,  
  device(Dev1,Rm), Dev1=pc. 
r6(Rm): savingMode(Rm) ← 
  mytime(T), 2200<T, room(Rm). 
p1(Rm, Dev): prefer(r2(Rm, Dev), r5(Rm, Dev)) ← 
p2(Rm, Dev): prefer(r4(Rm, Dev), r3(Rm, Dev)) ← 
p3(Rm, Dev): prefer(r3(Rm, Dev), r5(Rm, Dev)) ← 
abducible(neg(motion(Rm)), []). 
abducible(motion(Rm), []). 

Notice that the motion fact is an abducible one, meaning that 
when there is no evidence if there is motion or not, the system 
can still hypothesize on both facts and come to alternative deci-
sions based on those. Of course, if there is hard evidence on mo-
tion in the room, based on motion detectors that are part of In-
ternet-of-Things, then this can be turned into a hard fact. 

Emergency Policy 
In the emergency policy, when there is smoke, or high levels 

of CO2 in a room, then there is an alert that triggers an alarm 
and dictates to switch off the cooler device. 
r1(Rm): alert(Rm) ← smoke(Rm). 
r2(Rm): alert(Rm) ← highCO2(Rm). 

r3(Rm, Dev): switchON(Rm, Dev) ← alert(Rm), 
  device(Dev,Rm), Dev=alarm. 
r4(Rm, Dev):switchOFF(Rm, Dev) ← alert(Rm), 
  device(Dev,Rm), Dev=cooler. 

6.1 Verification 
In this subsection, we verify our multipolicy framework for dif-
ferent scenarios regarding the decision-making context (facts / 
beliefs about the environment) for the energy management case. 

Scenario 1: Hot room 
In this scenario, we assume that it is a hot day and the tenant of 
room a6 is the stakeholder that has defined the “personal” poli-
cy. The knowledge base (background file) contains the fact: 
 tmprtr(a6,30). 

The decisions about whether to switch on or off the cooler at 
the local / private policy level are as follows: 
?- prove([switchON_local(a6,cooler,prs)],A). 
A = [prs_r2(a6),prs_r3(a6,cooler,prs)]  
?- prove([switchOFF_local(a6,cooler,mgm)],A). 
A = [ass(neg(motion(a6))),mgm_r2(a6,cooler,mgm)]  

This happens, because motion is an abducible fact, so both 
options are possible: the personal policy decides to switch on the 
cooler because it is hot, whereas the management policy as-
sumes that there is none in the room and decides to switch off 
the cooler. On the meta-policy level, still both options are deduc-
ible even though the management stakeholder is supposed to be 
preferable over the personal stakeholder, because the abducible 
motion fact is assumed to be true, so this defeats the manage-
ment stakeholders by undercut (Listing 1). This can be better 
demonstrated by visualizing the argumentation tree of the first 
goal, where it is shown that the switch on decision of the per-
sonal policy is attacked by the switch off decision of the (superi-
or) management policy, which, however, is based on the abduci-
ble (thus defeasible) not-motion fact, which is counterattacked 
by the motion assumption. 

If the motion fact is fixed using the defeasible fact: 
 myfact: motion(a6) ← 

then there will be only one of the two decisions, both at the local 
and the global level, because there is only one option coming 
from the personal policy: 
?- prove([switchON_local(a6,cooler,prs)],A). 
A = [prs_r2(a6),prs_r3(a6,cooler,prs)] . 
?- prove([switchON(a6,cooler,P)],A). 
P = prs, 
A = [myfact,prs_r2(a6),prs_r3(a6,cooler,prs), 
  r2(a6,cooler,prs)]  

In the case where the negation of motion is true: 
 myfact1: neg(motion(a6)) ← 

the decision of management prevails over the personal policy: 
?- prove([switchON_local(a6,cooler,prs)],A). 
A = [prs_r2(a6),prs_r3(a6,cooler,prs)]  
?- prove([switchOFF_local(a6,cooler,mgm)],A). 
A = [myfact1,mgm_r2(a6,cooler,mgm)]  
?- prove([switchOFF(a6,cooler,P)],A). 
P = mgm, 
A = [myfact1,mgm_r2(a6,cooler,mgm), 
  r1(a6,cooler,mgm)]  



Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

8 

Scenario 2: Hot room, late at night, someone is inside 
In this scenario, we assume that it is a hot night and the tenant 
of room a6 is still inside the room, although it is very late. The 
knowledge base (background file) contains the following facts: 
 tmprtr(a6,30).  mytime(2300). 
 myfact: motion(a6) ← 

In the management policy, the neg(switchOFF) option pre-
vails over the switchOFF option, because someone is in the 
room. Thus, personal policy can suggest switching on the cooler 
both at local and global levels (Listing 2). The argumentation tree 
shows that the management policy attacked personal (being su-
perior) by assuming the abducible negative motion fact, but this 
was counterattacked by the defeasible positive motion fact. Fur-
thermore, the management policy activated saving mode, since it 
is late night (23:00), which led to the decision to switch off the 
cooler, attacking the personal policy decision, but the motion 
fact led to counterattacking this inside the management policy.  

Scenario 3: Hot, late at night, someone is inside, there is smoke  
In this scenario, we assume that it is a hot night and the tenant 
of room a6 is still inside the room, although it is very late. How-
ever, the smoke detector is showing that there is smoke in the 
room. The knowledge base contains the following facts: 
 tmprtr(a6,30). mytime(2300). smoke(a6). 
 myfact: motion(a6) ← 

Now, the emergency policy prevails over the personal policy 
due to smoke in the room (Listing 3). Preference rule p111 gives 

preference to the emergency policy over personal, whereas p311 
gives preference to management over personal. 

Scenario 4: Hot server room, no one is inside 
In this scenario, we assume that it is hot in the server room and 
none is inside. The knowledge base contains the following facts: 
 tmprtr(srvroom,35). 
 myfact2: neg(motion(srvroom)) ← 

Although none is inside the server room and the manage-
ment policy suggest switching off the cooler, the meta-policy 
exception suggests that the personal policy defeats the manage-
ment policy in this case, because it is the server room (Listing 4). 
Preference rule p421 gives preference to the personal policy 
over the management policy for the server room and the cooler 
device, whereas c121 gives preference to p421 over p311 that 
gives the opposite preference for the general case. 

Scenario 5: Hot server room, no one is inside, there is fire 
In this scenario, compared to scenario 4, the knowledge base 
contains one more fact about smoke in the server room: 
 tmprtr(srvroom,35). smoke(srvroom). 
 myfact2: neg(motion(srvroom)) ← 

The management and emergency policies suggest that the 
cooler should be switched off. Although in this case the personal 
policy still prevails over the management policy (see scenario 4), 
the emergency policy is stronger than the personal policy, so due 
to fire in the room suggests switching off the cooler (Listing 5). 

 

?- prove([switchON(a6,cooler,P)],A). 
P = prs, A = [ass(motion(a6)),prs_r2(a6), prs_r3(a6,cooler,prs),r2(a6,cooler,prs)]  

?- prove([switchOFF(a6,cooler,P)],A). 
P = mgm, A = [ass(neg(motion(a6))),mgm_r2(a6,cooler,mgm),r1(a6,cooler,mgm)]  

?- visual_prove([switchON(a6,cooler,P)],A). 

[prs_r2(a6),prs_r3(a6,cooler,prs),r2(a6,cooler,prs)] 
|___[r1(a6,cooler,mgm),ass(neg(motion(a6))), mgm_r2(a6,cooler,mgm),p311(mgm,a6,cooler,prs)] 
    |___[ass(motion(a6))] 

P = prs, A = [ass(motion(a6)),prs_r2(a6),prs_r3(a6,cooler,prs),r2(a6,cooler,prs)] 

Listing 1. Proofs and argumentation tree for scenario 1 

?- prove([switchON_local(a6,cooler,prs)],A). 
A = [prs_r2(a6),prs_r3(a6,cooler,prs)]  

?- prove([switchOFF_local(a6,cooler,mgm)],A). 
false. 

?- visual_prove([switchON(a6,cooler,P)],A). 

[prs_r2(a6),prs_r3(a6,cooler,prs),r2(a6,cooler,prs)] 
|___[r1(a6,cooler,mgm),ass(neg(motion(a6))),mgm_r2(a6,cooler,mgm),p311(mgm,a6,cooler,prs)] 
|   |___[myfact] 
|___[r1(a6,cooler,mgm),mgm_r6(a6),mgm_r3(a6,cooler,mgm),p311(mgm,a6,cooler,prs)] 
    |___[mgm_r4(a6,cooler,mgm),myfact,mgm_p2(a6,cooler,mgm)] 

P = prs, A = [mgm_r4(a6,cooler,mgm),mgm_p2(a6,cooler,mgm),myfact,prs_r2(a6),prs_r3(a6,cooler,prs),r2(a6,cooler,prs)]  

Listing 2. Proofs and argumentation tree for scenario 2 

?- prove([switchOFF(a6,cooler,P)],A). 
P = emr, A = [emr_r1(a6),emr_r4(a6,cooler,emr),r1(a6,cooler,emr)] 

?- visual_prove([switchON(a6,cooler,P)],A). 

[prs_r2(a6), prs_r3(a6,cooler,prs), r2(a6,cooler,prs)] 
|___[r1(a6,cooler,emr), emr_r1(a6), emr_r4(a6,cooler,emr), p111(emr,a6,cooler,prs)] 
|   |___{NO DEFENSE} 
|___[r1(a6,cooler,mgm), ass(neg(motion(a6))), mgm_r2(a6,cooler,mgm), p311(mgm,a6,cooler,prs)] 
|   |___[myfact] 
|___[r1(a6,cooler,mgm), mgm_r6(a6), mgm_r3(a6,cooler,mgm), p311(mgm,a6,cooler,prs)] 
    |___[mgm_r4(a6,cooler,mgm), myfact, mgm_p2(a6,cooler,mgm)] 

P = prs, A = 'FAIL' . 

Listing 3. Proofs and argumentation tree for scenario 3 



Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

9 

?- visual_prove([switchON(srvroom,cooler,P)],A). 

[prs_r2(srvroom),prs_r3(srvroom,cooler,prs),r2(srvroom,cooler,prs)] 
|___[r1(srvroom,cooler,mgm),myfact2,mgm_r2(srvroom,cooler,mgm),p311(mgm,srvroom,cooler,prs)] 
    |___[p421(prs,srvroom,cooler,mgm),c121(prs,srvroom,cooler,mgm)] 

P = prs, 
A = [p421(prs,srvroom,cooler,mgm),c121(prs,srvroom,cooler,mgm),prs_r2(srvroom), 
      prs_r3(srvroom,cooler,prs),r2(srvroom,cooler,prs)] 

Listing 4. Proofs and argumentation tree for scenario 4 

?- visual_prove([switchON(srvroom,cooler,P)],A,[failed(true)]). 

[prs_r2(srvroom),prs_r3(srvroom,cooler,prs),r2(srvroom,cooler,prs)] 
|___[r1(srvroom,cooler,emr),emr_r1(srvroom),emr_r4(srvroom,cooler,emr),p111(emr,srvroom,cooler,prs)] 
|   |___{NO DEFENSE} 
|___[r1(srvroom,cooler,mgm),myfact2,mgm_r2(srvroom,cooler,mgm),p311(mgm,srvroom,cooler,prs)] 
    |___[p421(prs,srvroom,cooler,mgm), c121(prs,srvroom,cooler,mgm)] 

P = prs, A = 'FAIL'  

?- visual_prove([switchOFF(srvroom,cooler,P)],A). 

[myfact2, mgm_r2(srvroom,cooler,mgm),r1(srvroom,cooler,mgm)] 
|___[r2(srvroom,cooler,prs),prs_r2(srvroom),prs_r3(srvroom,cooler,prs),p421(prs,srvroom,cooler,mgm)] 
    |___[r1(srvroom,cooler,emr),emr_r1(srvroom),emr_r4(srvroom,cooler,emr),p111(emr,srvroom,cooler,prs)] 

P = mgm, 
A = [r1(srvroom,cooler,emr),emr_r1(srvroom),emr_r4(srvroom,cooler,emr),p111(emr,srvroom,cooler,prs), 
      myfact2,mgm_r2(srvroom,cooler,mgm),r1(srvroom,cooler,mgm)] ; 
 

[emr_r1(srvroom), emr_r4(srvroom,cooler,emr), r1(srvroom,cooler,emr)] 

P = emr, A = [emr_r1(srvroom),emr_r4(srvroom,cooler,emr),r1(srvroom,cooler,emr)] 

Listing 5. Proofs and argumentation tree for scenario 5 

?- visual_prove([allowAccess(john,bob,address,X)],Delta). 

[myfact, firem_r2(john,bob,address,firem), r1(john,bob,address,firem)] 
|___[r2(john,bob,address,perso),perso_r1(john,bob,address,perso),p421(perso,john,bob,address,firem)] 
    |___[p911(firem,john,bob,address,perso), myfact, c211(firem,john,bob,address,perso)] 

X = firem, 

Delta = [p911(firem,john,bob,address,perso),c211(firem,john,bob,address,perso),myfact, 
          firem_r2(john,bob,address,firem),r1(john,bob,address,firem)] 

Listing 6. Argumentation tree for the victim scenario of the data sharing case study 

 

7 Data Sharing Case Study 
In this section, we apply the bottom-up methodology of our ap-
proach to a data sharing case study we have created by merging 
the scenarios from the works of Karafili and Lupu [8] and Marti-
nelli et al. [9]. We have identified five stakeholders competing to 
allow or deny access to a medical, or personal, data file: 
• The individual owner of the data file. The owner can define 

his policy for giving access, making it strict or free 
• Health institutions and hospitals. They have their business 

models and rules for data access 
• Security and emergency response organizations. They assess 

incidents and want access to information, either to notify 
relatives, or to understanding what happened, or to give 
first aid. All these organizations have their own business 
models and processes (e.g. firemen and red cross).  

• Finally, there is the legislation that limits access to data files 
All these stakeholders are independent entities, with their 

own business models and goals. There are many cases where 
their policies conflict, and in that case an arbitrator is needed to 
resolve the conflicts. Their business models can of course be di-
verse and they can have specific bilateral data sharing agree-
ments – which can themselves be encoded to rules. The ones we 

use for demonstrating our approach originate from the works of 
Karafili and Lupu [8] and Martinelli et al. [9], described in the 
sequel. Due to space limitations we present only the owner’s and 
firemen’s policies, and the meta-policy.  

Owner Policy 
The owner typically wants to access her own data but also pro-
tect them from being accessed by others. It is possible that she 
agrees that medical personnel can access these data without her 
consent only if her life is in danger. This policy is a combination 
of the victim policy in Martinelli et al. [9] and the owner policy 
in Karafili and Lupu [8] (P stands for person, O for owner and D 
for data): 
r1(P,O,D): denyAccess(P,O,D) ←  
r2(P,O,D): allowAccess(P,O,D) ← owner(O, D), P=O. 
r3(P,O,D): allowAccess(P,O,D) ← 
  medicalPersonnel(P). 
p1(P,O,D): prefer(r3(P,O,D), r1(P,O,D)) ←  
  lifeInDanger(O). 
p2(P,O,D): prefer(r1(P,O,D), r3(P,O,D)) ← 
c1(P,O,D): prefer(p1(P,O,D), p2(P,O,D)) ← 

Firemen Policy 
The firemen have full data access for a victim in a crime scene 
(Martinelli et al. [9] propose a more complete business model). 
r1(P,O,D): denyAccess(P,O,D) ← 
r2(P,O,D): allowAccess(P,O,D) ←  



Towards Multipolicy Argumentation SETN2018, July 2018, Patras, Greece 
 

10 

  victim(O), fireman(P), owner(O,D). 
p1(P,O,D): prefer(r2(P,O,D), r1(P,O,D)) ← 

Meta-policy 
The meta-policy states that the priorities are (in the rules only 
the five first characters of the policies have been used): 
• The personal stakeholder is preferred over all others. 
• The legislation is preferred over all others (except personal). 
• When the owner is hospitalized (is a patient) then the hos-

pital stakeholder is preferred over personal. 
• When the owner is a victim in an, e.g. accident, scene then 

firemen and Red Cross stakeholders are preferred over per-
sonal. 

r1(perso): policy(perso) ← 
… 
r5(firem): policy(firem) ← 
… 
p4(perso): prefer(r1(perso),r5(firem)) ← 
… 
p6(firem): prefer(r5(firem),r1(perso)) ←  
  victim(O). 
… 
c2(firem): prefer(p6(firem),p4(perso)) ← 

7.1 Verification 
Due to space limitations, we verify our multipolicy framework 
for the data sharing case, using a single scenario, where Bob is a 
victim found by a fireman, John, and John asks for access to 
Bob’s address. The knowledge base contains the following facts: 
 fireman(john). 
 owner(bob,address). 
 myfact: victim(bob) ← 

Access to John for Bob’s address is granted, as the fireman’s pol-
icy takes precedence over the personal one (Listing 6). 

8 Conclusions 
In this paper, we have proposed a novel computational argumen-
tation framework for resolving conflicts that arise in a communi-
ty of multiple stakeholders where each one of them bears a pri-
vate policy/strategy for shared and inter-related decisions. This 
is also the case of smart contracts that foresee the possibility of a 
trusted third party, a notary or an arbitrator, to certify the con-
tracts, as they can be disputed too [4]. Our work is a step to-
wards that direction allowing not only the certification of a 
smart contract but also for conflict resolution if the contract con-
flicts with law or other contractual obligation.  

Hence, in our framework there is a mediator that resolves the 
conflict and concludes on a single decision, using a meta-policy 
that defines preferences over competing stakeholders’ decisions. 
Our approach avoids the high complexity of resolving all possi-
ble competing option conflicts among all competing stakehold-
ers, because it is based on defining an arbitration meta-policy for 
deciding on the priority among stakeholders, instead, which are 
few. This meta-policy is automatically rewritten into a full meta-
policy about conflicting options, but without user intervention. 
Thus, human arbitrators can seamlessly define their arbitration 
meta-policies without a heavy cognitive load. One of the ad-

vantages of our approach is that when changes are made in an 
individual policy, the meta-policy does not have to change. 

Our framework has been tested with two scenarios, for ener-
gy saving and data sharing, indicating its generality. For the fu-
ture, we would opt to extend Gorgias-B so that the meta-policy 
can run in combination with the simple policies from within the 
Gorgias-B GUI, since currently we execute the framework man-
ually from the textual Prolog environment. Furthermore, we are 
working on providing a more comprehensible explanation for 
the decisions based on the argumentation trees. 

REFERENCES 
[1] Leila Amgoud, Henri Prade. 2009. Using arguments for making and explain-

ing decisions. Artif. Intell. 173, 3–4, 413-436. 
[2] Trevor J.M. Bench-Capon, Paul E. Dunne. 2007. Argumentation in artificial 

intelligence. Artif. Intell. 171, 10-15, 619-641. 
[3] Michael Howlett. 2009. Governance modes, policy regimes and operational 

plans: A multi-level nested model of policy instrument choice and policy de-
sign. Policy Sciences 42, 1, 73-89. 

[4] Florian Idelberger, Guido Governatori, Régis Riveret, Giovanni Sartor. 2016 
Evaluation of Logic-Based Smart Contracts for Blockchain Systems. In Rule 
Technologies. Research, Tools, and Applications (RuleML 2016), LNCS 9718. 
Springer, Cham, 167-183. 

[5] Antonis Kakas, Michael Loizos. 2016. Cognitive Systems: Argument and 
Cognition, IEEE Intelligent Informatics Bulletin 17, 1 (December 2016), 14-20. 

[6] Antonis Kakas, Pavlos Moraitis. 2003. Argumentation based decision making 
for autonomous agents. In Proceedings of the 2nd International joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS'03). 883-890.  

[7] Nikos Karacapilidis, Dimitris Papadias. 2001. Computer supported argumen-
tation and collaborative decision making: the HERMES system. Information 
Systems 26, 4, 259-277. 

[8] Erisa Karafili, Emil C. Lupu. 2017. Enabling Data Sharing in Contextual Envi-
ronments: Policy Representation and Analysis. In Proc. of the 22nd ACM 
Symposium on Access Control Models and Technologies (SACMAT '17). 231-238.  

[9] Fabio Martinelli, Ilaria Matteucci, Marinella Petrocchi, Luca Wiegand. 2012. A 
Formal Support for Collaborative Data Sharing. In Multidisciplinary Research 
and Practice for Information Systems (CD-ARES 2012). LNCS 7465. Springer, 
Berlin, Heidelberg, 547-561 

[10] Sanjay Modgil. 2006. Hierarchical Argumentation. In Logics in Artificial In-
telligence (JELIA 2006). LNCS, vol 4160. Springer, Berlin, Heidelberg, 319-332. 

[11] Chimezie L. Oguego, Juan C. Augusto, Andrés Muñoz, Mark Springett. 2018. 
Using argumentation to manage users’ preferences. Future Generation Com-
puter Systems 81, 235-243. 

[12] Henry Prakken, Giovanni Sartor. 1997. Argument-Based Extended Logic 
Programming with Defeasible Priorities. Journal of Applied Non-Classical 
Logics 7, 1, 25-75. 

[13] Carles Sierra, Ramon L. de Mantaras, Simeon Simoff. 2016. The argumenta-
tive mediator. In Multi-Agent Systems and Agreement Technologies. LNCS 
10207. Springer, Cham, 439-454. 

[14] Nikolaos I. Spanoudakis, Antonis C. Kakas, Pavlos Moraitis. Applications of 
Argumentation: The SoDA Methodology. In Proc. of the 22nd European Con-
ference on Artificial Intelligence (ECAI 2016), The Hague, Holland, 1722-1723 

[15] Nikolaos I. Spanoudakis, Antonis C. Kakas, Pavlos Moraitis. Conflicts Resolu-
tion with the SoDA Methodology. In Conflict Resolution in Decision Making 
(COREDEMA 2016), LNAI 10238, Springer, 82-99. 

[16] Nikolaos I. Spanoudakis, Elena Constantinou, Adamos Koumi, Antonis C. 
Kakas. 2017. Modeling Data Access Legislation with Gorgias. In Proceedings 
of the 30th International Conference on Industrial, Engineering & Other Appli-
cations of Applied Intelligent Systems (IEA/AIE 2017), Arras, France, 317-327 

[17] Thanos G. Stavropoulos, Efstratios Kontopoulos, Nick Bassiliades, John Ar-
gyriou, Antonis Bikakis, Dimitris Vrakas, Ioannis Vlahavas. 2015. Rule-based 
Approaches for Energy Savings in an Ambient Intelligence Environment. 
Pervasive and Mobile Computing 19, 1-23. 

[18] Gregg B. Walker, Steven E. Daniels. 1995. Argument and alternative dispute 
resolution systems. Argumentation 9, 5, 693-704. 

 


