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ABSTRACT
Drones and Electric Vehicles (EVs) are two technologies that are
growing fast and have the potential to revolutionize the transporta-
tion sector. In this paper, we take inspiration from a recent patent
submitted by Amazon, and we study the problem of scheduling
drones that carry a large battery and can partially recharge EVs
when a ground charging station is not available. The drones have
a limited range, as they are also using an electric motor powered
by batteries which need regular recharging. Thus, given a fixed set
of drones, the problem that arises is to calculate a schedule for the
flying and the recharging of the drones aiming to maximize the
number of EVs that are actually serviced. In this vein, we develop
a greedy algorithm that uses a heuristic search mechanism. We
evaluate our algorithm in a realistic setting and in a plethora of
scenarios to verify its effectiveness.
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1 INTRODUCTION
In recent years, Electric Vehicles (EVs) have returned to the spotlight
due to their technological developments [12] and the increasing
interest in renewable energy sources [7]. It is a fact that the adoption
of EVs in parallel with the development of the smart grids [13] is
considered a keystone for reducing carbon emissions which cause
the greenhouse effect and the consequent climate change.

Unmanned Aerial Vehicles (UAVs) or simply drones are vehi-
cles and can fly either autonomously based on a pre-programmed
flight plan, or they can be controlled by a remote operator [5]. The
rapid development and the direct influence of this technology on
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the quality of human life is remarkable. Drones are becoming in-
creasingly popular due to their small size, easy deployment, low
maintenance costs and high flexibility. Currently drones are used
in a multitude of applications such as transportation of goods [4],
search and rescue [8], traffic monitoring [2] and healthcare [14]
amongst others.

Despite their many advantages EVs still suffer from relatively low
range, long charging times and unavailability of charging stations
[11]. To tackle these issues intensive research is taking place in
terms of utilizing the existing charging infrastructure efficiently
[9, 16], or in terms of optimally placing charging stations [15].
Despite such advances, the possibility of having an EV running
out of battery remains. This causes the so-called range anxiety
[3], which is a central barrier towards the further adoption of EVs.
Recently, Amazon filed a patent [6] that describes the use of UAVs
that carry large batteries and can recharge EVs on the go. Despite
the fact that such services may take years until they become a
reality, using drones to recharge EVs raises several algorithmic
challenges that can be tackled using powerful AI algorithms and
tools. Specifically, given that drones are in principal electric vehicles
that are using their own battery to fly, their use as a carriage of a
battery to recharge another electric vehicle on the ground creates
a highly complicated scheduling problem where several decisions
need to be made: 1) Schedule the drones to maximize the number of
EV charging requests that are completed. 2) Schedule the recharging
of the drones. 3) Optimize the utilization of the (limited) available
batteries that the drones are using to recharge the EVs, as well
as the charging of these batteries. 4) Optimally select the stations
where the drones are located.

In this paper, we study the problem of scheduling drones that
carry a large battery to recharge EVs offline, where the charging re-
quests are assumed to be known in advance. In so doing, we develop
a greedy heuristic search algorithm. To the best of our knowledge,
this is the first paper that studies this challenging problem. Two
papers that share some similarities are presented next.

In [17] the authors consider an Internet of Things (IoT) scenario
where devices located on the edge are recharged wirelessly by
drones. In so doing, the authors aim to optimize the charging pro-
cedure, given a set of constraints, as well as the positions of the
drones to maximize service. They propose both an optimal Integer
Linear Programming (ILP) approach, as well as a suboptimal greedy
one. In contrast to our work, in [17] the authors do not consider
the recharging of the drones themselves, although they do consider
the drones’ limited range as a constraint.

In [10] the authors extend the well-known multiple traveling
salesman problem and study the problem of scheduling drones to
perform monitoring missions. They schedule the travel path of a
set of drones across a graph, where nodes need to be visited multi-
ple times at pre-defined points in time. They propose an optimal
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ILP solution, as well as a greedy algorithm that uses a one-step
look-ahead heuristic search mechanism, and an algorithm that is
based on ant colony optimization (ACO). In this work the authors
optimize both the placement of the drones and the recharging of
them, however their problem does not involve the recharging of
another device.

2 PROBLEM DEFINITION
In this paper, we study the problem of scheduling drones that carry
a large battery to recharge EVs. We model the area where both
drones and EVs are moving in, as a fully connected undirected graph
𝐺 (𝑁, 𝐸) and we assume a discrete time horizon with 𝑡 ∈ 𝑇 ⊆ N
points in time to exist. The nodes 𝑛 ∈ 𝑁 represent either the points
where electric vehicles can stop and request charging 𝑛𝐸𝑉 , or the
stations where drones 𝑛𝑑𝑟𝑛 can land. The edges 𝑒 ∈ 𝐸 ⊆ 𝑁 × 𝑁 of
the graph represent the paths connecting all pairs of nodes. Each
edge has a time 𝑡𝑒 that any drone needs to fly over it, assuming
a fixed average speed. Moreover, we consider a set of drones 𝑖 ∈
𝐼 ⊆ N. In this context we assume that all drones have an initial
location 𝑛𝑖𝑛𝑖𝑡

𝑑𝑟𝑛
and that all vehicles’ charging requests 𝑟 ∈ 𝑅 ⊆ N

are collected in advance. A charging request consists of a tuple
𝑝 = {𝑛𝐸𝑉 ,𝑟 , 𝑏𝑟 , 𝑡

𝑎𝑟𝑟
𝑟 , 𝑡

𝑑𝑒𝑝
𝑟 }. Specifically, 𝑛𝐸𝑉 ,𝑟 is the location where

the EV is asking to charge an amount of energy 𝑏𝑟 within a given
time window 𝑡

𝑑𝑒𝑝
𝑟 − 𝑡𝑎𝑟𝑟𝑟 . At each time point, a drone that is not

at its station, i.e., either flying or charging an EV, consumes 𝑐% of
its battery, assuming a fixed average speed. At each time point, a
drone can charge an EV with 𝑐 ∈ N units of energy. In other words,
if the EV demands 𝑥 units of energy, it will take ⌈𝑥/𝑐⌉ times for a
drone to charge this energy. Now, each drone is assumed at 𝑡 = 0 to
have a fully charged battery that allows it to operate for 𝜏𝑖 points
in time, and a battery containing 𝑏 units of energy for EV charging.
Once a drone returns to a station, both batteries are assumed to be
replaced with fully charged ones (i.e., battery swapping [1] is used).
Moreover, we assume that if a drone is en-route to charge an EV,
this route cannot change, even if another request has been made.
An example representation of the problem is depicted in Figure 1.

Figure 1: Example representation

3 SCHEDULING ALGORITHM
The algorithm for scheduling the flight of drones in order to maxi-
mize the EVs that are serviced is detailed below.

We initially read the data regarding the graph and we store them
in a two-dimensional table, and we also read the charging requests
and store them in a queue. Then, at each point in time, we check if
there is a request from an electric vehicle (see line 2 of Algorithm
1). If such a request exists, we follow a procedure to find the most
suitable drone (see line 4 of Algorithm 1) that can serve the request.

Firstly, we find which of the drones, that are neither flying, com-
mitted, nor selected in a previous request can serve the request,
i.e., which drones have enough battery power both for the electric
vehicle and to travel to the EV’s location, charge the EV, and return
to their station (see lines 3-5 of Algorithm 2). We group these drones
into available and busy. The availableDrones are those that are at
their station, while the busyDrones are those that are currently
at another node and are charging another EV. We find the drone
with the shortest distance from the node where the request was
made, both from the availableDrones and from the busyDrones
(see lines 1-6 of Algorithm 3). If the distance calculated from the
availableDrones is less than the distance from the busyDrones, then
the available drone is selected (see lines 7-8 of Algorithm 3). In the
opposite case, we consider how many points in time the busy drone
needs until it finishes charging the previous electric vehicle. Finally,
after comparing the two values, the drone that is going to reach
sooner the node, where the electric vehicle is located, is selected
(see lines 9-11 of Algorithm 3).

In casemore than one drones ha the shortest distance, either from
the availableDrones or from the busyDrones, we divide them into
minDistAvailable and minDistBusy. If a drone is to be selected from
minDistAvailable, then we send the one with the higher battery
level (see line 8 of Algorithm 3). If a drone from minDistBusy is to
be selected, then we find which one finishes charging the previous
EV earlier and bind it for this request (see line 10 of Algorithm 3).
If again more than one drones exist, (i.e. if two or more drones end
at the same time), then the one with the highest battery level is
chosen.

After finding the most suitable drone, we make some necessary
changes (see lines 5-9 of Algorithm 1). We define the position in
which the drone is located at each time point. In addition to the N
nodes of the graph, the position of the drone can be set equal to
-1 if it is flying , or -3 if it is at another node and is committed for
the current request. We reduce the battery level accordingly from
the drone and we subtract from the battery for electric vehicles the
units requested by the EV.

Unless a drone that can serve the request is found, thenwe inform
the EV that the request cannot be served and continue with the
next one. At the end of each time point, we perform the necessary
checks and coordination of the drones (see lines 10-11 of Algorithm
1). More specifically, for the drones located at one of the nodes and
are not selected at the given time, if it is the last instant of time
they are charging the electric vehicle, then we send them back to
their station. We update their position to -1 for each time instant
until they reach the station and set their batteries to full.
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Algorithm 1Main scheduling algorithm

1: for each time t do
2: if there is a demand at time t then
3: Remove the demand from the Queue
4: 𝐹𝑖𝑛𝑑𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝐷𝑟𝑜𝑛𝑒 (𝑛𝑜𝑑𝑒, 𝑑𝑒𝑚𝑎𝑛𝑑, 𝑡𝑖𝑚𝑒), Alg. 2
5: if chosen drone is at its station then
6: Set its position equal to -1 for the times it flies
7: else if chosen drone is at another node then
8: Set its position equal to -3 for the times until it

finishes charging the previous EV and -1 for the times it flies
9: Update the value of two batteries
10: Coordination ⊲ The drones needed are going back to

the station
11: Coordination

Algorithm 2 Finding suitable drone - preprocessing
1: Create two ArrayLists ⊲ availableDrones and busyDrones
2: for each Drone d do
3: if 𝑝𝑜𝑠! = −1 and 𝑝𝑜𝑠! = −3 then
4: Calculate the battery it needs to spend
5: if 𝑑𝑟𝑜𝑛𝑒𝐵𝑎𝑡 >= 𝑏𝑎𝑡𝑁𝑒𝑒𝑑𝑒𝑑 and 𝑑𝑟𝑜𝑛𝑒𝐵𝑎𝑡𝐹𝑜𝑟𝐸𝑉 >=

𝑑𝑒𝑚𝑎𝑛𝑑 then
6: Add drone at the appropriate ArrayList
7: Call Alg. 3 providing 𝑑𝑟𝑜𝑛𝑒𝑊 𝑖𝑡ℎ𝑀𝑖𝑛𝐷𝑖𝑠𝑡 (𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐷𝑟𝑜𝑛𝑒𝑠,
𝑏𝑢𝑠𝑦𝐷𝑟𝑜𝑛𝑒𝑠, 𝑛𝑜𝑑𝑒, 𝑡𝑖𝑚𝑒)

Algorithm 3 Finding closest available drone
1: Create ArrayList minDronesAvailable ⊲ Availble drones with

min distance
2: if 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐷𝑟𝑜𝑛𝑒𝑠.𝑠𝑖𝑧𝑒 > 0 then
3: From available drones find those with the min distance

from the node
4: Create ArrayList minDronesBusy ⊲ Busy drones with min

distance
5: if 𝑏𝑢𝑠𝑦𝐷𝑟𝑜𝑛𝑒𝑠.𝑠𝑖𝑧𝑒 > 0 then
6: From busy drones find those the min distance from the

node
7: if 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝐵𝑢𝑠𝑦 then
8: From minDronesAvailable find and return the drone with

max battery
9: else if 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 >=𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝐵𝑢𝑠𝑦 then
10: From minDronesBusy find the drone that will finish sooner

charging the previous EV
11: Return the drone that will reach sooner to the node

4 EVALUATION
After developing the algorithm as this was presented in the previous
chapter, we proceed in its evaluation by testing its performance
in different scenarios. In all cases we used a graph with 24 nodes,
four of which representing the stations for the drones, where each
of which initially has three drones, and the remaining 20 nodes
represent the points where the electric vehicles can stop and request
charging.

First Experiment
The purpose of this experiment is to evaluate how the algorithm
behaves and how many vehicles are served in each case. In this
experiment, we create 3 scenarios by changing the number of drones
and requests each time.

More specifically, the first scenario consists of 40 requests, while
in each of the following scenarios we add 10 requests. In all cases
the total number of drones belongs to the set 4, 8, 12, 16, 20, 24 and
the algorithm runs for 100 time points.

The graphs below show how the percentage of requests served
changes as the number of drones increases in each of the three cases.
On the horizontal axis we have the number of drones and on the
vertical axis we have the percentage of requests served. Observing
Figure 2, although at the beginning the percentage of vehicles
served is not quite satisfactory, we see that with 16 drones and more
we serve all our vehicles. This means that it would be redundant if
we used more than 16 drones for this scenario. Similar conclusions
are drawn for the other two scenarios we tested. Observing the
three curves, it is easy to see that as the number of drones increases,
so does the number of vehicles served.

Interestingly, we observe that while there is a gradual increase
in the number of vehicles served, as expected, it seems that at a
certain point the upward curves stop rising. Thus, we can easily
decide how many drones we should ideally use in order to service
the highest percentage of requests without a surplus of drones.

Figure 2: Efficiency with variable number of drones and fixed
requests

In another experiment, we evaluate how the increase in charging
requests affects the EVs that are actually charged. By observing
Figure 3, we see that the percentage of vehicles serviced differs for
different numbers of requests, with the same number of drones.
More specifically, while at 20 requests we serve all vehicles, at 80
requests the percentage decreases to 61%.
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Figure 3: Efficiency with variable number of requests and
fixed drones

Second Experiment
The purpose of this experiment is to observe howmany vehicles are
served as the distribution of requests in time becomes increasingly
sparse. To achieve this, we consider a setting where we increase the
number of points in time from 100 to 400 with a step of 100, keeping
the number of requests fixed to 50 and the number of drones fixed
to 4.

Figure 4: Efficiency with variable sparsity of requests

As we can observe from the results of this experiment, as these
are depicted in Figure 4, when the sparsity of requests decrease,
the percentage of vehicles served also decreases. More specifically,
when we have 100 time points, almost half of the drones are ser-
viced and this is because for many incoming requests there is no
availability of drones, as they have not had time to release from pre-
vious requests. In contrast, when we have 400 time points, almost
all requests are serviced since the availability of drones is much
higher. So, we conclude that when the demand is more sparse in
the time horizon, the percentage of requests that are completed
increases, as more drones are available to service vehicles.

5 CONCLUSIONS AND FUTUREWORK
In this paper we dealt with a problem that arises due to the lack of
charging stations for electric vehicles. The idea is to fly a drone to
the point where an electric vehicle has stopped and charge it. We
therefore needed to design an algorithm to coordinate and schedule
the flight of drones in order to maximize the completion of charging
requests. We concluded that in order to make the algorithm as effi-
cient as possible, we need to pay special attention to the parameters
we set on it. These parameters are the number of drones, the num-
ber of requests and the range of time instants. The combination of

these three elements plays a crucial role in the results the algorithm
will give.

An idea for future work is to collect data from real events, apply
the algorithm on them and then build some demand prediction
model. Moreover, based on the algorithm we built, we could de-
velop an optimal algorithm, in addition to the heuristic one which
can operate as a benchmark for other non-optimal algorithms. Ad-
ditionally, an algorithm that will be able to solve the problem in an
online manner would be very useful since charging requests are
more possible to arrive on the fly. Finally, a tool to simulate this
scenario using graphics could be developed in the future.
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