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ABSTRACT
Dealing with electricity demand fluctuations throughout peak and
off-peak periods is challenging for electricity companies. During
peak demand times, the grid should be able to match the high con-
sumer needs. Conversely, minimal usage during off-peak periods
leads to underutilization of generation capacity. This imbalance
challenges utilities to ensure sufficient capacity and devise fair pric-
ing models. The Time-of-Use (ToU) pricing model has emerged
as a viable solution in many countries, encouraging consumers
to shift their energy consumption from expensive peak hours to
more affordable off-peak periods. To this end, this paper proposes
unsupervised machine learning methods for designing ToU tariffs
using only energy consumption time series data. Additionally, a
new metric is introduced to evaluate the adaptability of the ToU
methods to fluctuations in energy consumption. To validate the
implemented techniques, public datasets from different countries
were used.
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1 INTRODUCTION
Electricity pricing is influenced by various factors such as de-
mand fluctuations, availability of generation sources, and oper-
ational costs. Naturally, high energy demand leads to increased
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energy prices due to the incorporation of more expensive gen-
eration sources to meet the increased load. Energy retailers can
motivate customers to adjust their consumption patterns through
Demand Response (DR) programs [31], which involve modifying
electricity usage in response to price signals or incentives. ToU
pricing, a form of DR, encourages load shifting by imposing higher
prices during peak hours, prompting consumers to redistribute
their energy usage to lower-cost periods [5, 11, 15].

The use of ToU tariffs could be beneficial for both consumers
and energy companies [19]. Firstly, consumers would experience
lower electricity costs. Additionally, by avoiding periods of exces-
sively high demand, overall energy production and management
costs could be reduced, leading to lower wholesale electricity prices.
Moreover, ToU tariffs could improve the economic viability of vari-
ous distributed energy sources, such as solar panels, energy storage
and electric vehicles. For instance, household owners that produce
electricity via solar panels might receive compensation for each
kWh of energy they generate.

Most state-of-the-art techniques produce ToU tariffs based on
peak and off-peak pricing structures. Their goal is to incentivize
consumers into shifting their energy demand, decrease power grid’s
pressure during production and distribution, and ensure its stability.
However in the literature, there was a lack in ways to evaluate the
quality of a developed ToU tariff schema. As far as knowledge
is concerned, there is no available metric that can estimate how
well a ToU tariff is aligned with the consumption patterns of the
time series. Furthermore, the majority of ToU tariffs production
algorithms were usually tested only on a single dataset to prove its
basic functionality.

In this paper, new unsupervised machine learning algorithms
for generating ToU tariffs are introduced, based on forecasted data
of the next day. These new algorithms are applied in various pub-
lic datasets for validation. These datasets originate from different
countries, which offers a more reliable statistical analysis on the
results. This work also proposes a new metric for the evaluation of
the adaptability of ToU tariffs creation methods to various fluctua-
tions of the energy consumption time series. Tariffs, must always
be appropriately aligned with the valleys (low consumption peri-
ods), the flat periods (medium consumption periods) and the spikes
(high consumption periods) of the consumption time series. The
proposed metric provides a way to estimate how well ToU tariffs
are adjusted in these consumption periods and also how fast or
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slow the adjustment happened. Using this metric, researchers can
compare different ToU tariff-design algorithms, which can lead into
more accurate results.

2 RELATEDWORK
In the pursuit of optimizing dynamic tariff design for energy con-
sumption, various studies have investigated methodologies employ-
ing fuzzy logic and clustering techniques. This section provides an
overview of the literature, highlighting key findings and method-
ologies utilized in previous research.

Dynamic tariff schemes have been explored extensively, with
researchers emphasizing the importance of variable energy charges
throughout the day to manage load levels effectively. Studies by
Shrinivasan et al. [29] and Soland et al. [30] have demonstrated the
development of dynamic tariffs aimed at encouraging consumers to
adjust their energy usage patterns. These tariffs typically involve
higher energy charges during peak periods and lower charges dur-
ing off-peak periods, incentivizing consumers to shift their con-
sumption habits [18].

Optimal ToU tariff design under uncertainty has also garnered
attention in the literature. Previous research efforts have proposed
stochastic programming models to manage price changes and en-
courage load shifting among customers. Game-theoretic approaches
have been employed to optimize ToU pricing strategies and achieve
a Nash equilibrium between companies and consumers. Addition-
ally, the integration of ToU pricing with economic dispatch prob-
lems has been explored to enhance network reliability and customer
benefits [4, 7, 12, 14, 35].

Clustering techniques have been utilized to address challenges
associated with time period segmentation for tariff design. Studies
have implemented various clustering methods, such as linear inte-
ger programming and Gaussian mixture models, to partition time
periods and design ToU tariffs for domestic customers [22, 27].

Moreover, the literature underscores the significance of methods
based on fuzzy membership functions in peak-valley time division
models. These methods utilize fuzzy c-means (FCM) clustering
algorithm based on membership functions to address time period
partition challenges associated with ToU tariffs [9, 21, 34, 36].

However, the clustering effect is sensitive to initialization, prompt-
ing research into improving clustering algorithms. Various methods
have been proposed, including fuzzy c-means with discriminative
embedding to address suboptimal results [24]. Modifications to the
initialization process, such as setting small non-negative values and
adjusting parameters, have been explored to stabilize clustering
initialization [13, 26].

In conclusion, previous research efforts have laid the ground-
work for dynamic tariff design using fuzzy logic and clustering
techniques. While promising, further research is needed to inte-
grate these methodologies into real-world energy market scenarios
and assess their practical feasibility and effectiveness [10, 33].

3 CONTRIBUTIONS
The proposedwork contributes to the field of ToU tariff design in the
following points. Firstly, with a proposed algorithm for tariff design.
The algorithm, based on the concepts of fuzzy systems and cluster-
ing, produces the corresponding tariff values using only the daily

consumption time series as input. This underscores the advantage
of unsupervised learning techniques, as they facilitate the identi-
fication of dynamic pricing patterns at a reduced computational
expense. Next, with the investigation of unsupervised machine
learning algorithms versus custom-tailored heuristics methods for
the problem of tariff design. Finally, a novel performance evaluation
metric is introduced to measure how fast the algorithm adapts to
relevant fluctuations of the load consumption.

The rest of the paper is organized as follows. Section 4 contains
a concise description of the datasets used to validate the proposed
techniques. The methodology that was followed is thoroughly de-
scribed in Sections 5 and 6. Section 7 presents the experiments that
were conducted. Section 8 presents the results produced after qual-
itative and quantitative evaluation. Section 9 contains the relevant
conclusions and ideas for future work.

4 DATA
This section presents the data utilized in designing and comparing
dynamic tariffs for electricity consumption. The data primarily
consists of smart meter readings obtained either at the individual
consumer level or aggregated at the network level. It is important
to note that due to the limited use of dynamic pricing during data
mining, the actual pricing in the datasets is unknown. Table 1
provides a comprehensive overview of the datasets utilized in this
study.

4.1 Low Carbon London Dataset
The Low Carbon London dataset [28], was created by UK Power
Network, spans from November 2011 to February 2014 and encom-
passes residential consumers in London. It comprises electricity
consumption data from 5567 residential consumers, recorded at
30-minutes granularity. The consumers were categorized into two
subgroups based on their tariff structures: 4334 consumers under
fixed tariffs and 1199 consumers under dynamic tariffs. Addition-
ally, the dataset includes tariff details for the respective subgroups,
alongside supplementary demographic, weather, and calendar infor-
mation. Notably, only electricity consumption data at the network
level was utilized in this analysis.

4.2 CAMSL Dataset
The CAMSL dataset [20], was created collaboratively by Looop Inc.
and SMAP ENERGY Limited, aimed to introduce dynamic pricing in
Tokyo, Japan. The project spanned from July 1, 2017, to December
31, 2018, involving 1423 residential consumers, with data recorded
at a 30-min granularity. Consumers were segmented into three dis-
tinct tariff subgroups: 400 consumers under controlled pricing, 1023
consumers under dynamic pricing, and 3337 consumers under fixed
pricing. Similar to the Low Carbon London dataset, the CAMSL
dataset includes tariff specifications for the subgroups, along with
supplementary demographic, weather, and calendar data. For this
study, only electricity consumption data at the network level was
utilized.

4.3 Open Power System Data
The Open Power System Data platform [25] provides open-access
data crucial for power system design and modeling. It encompasses
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Table 1: Overview of Datasets

Dataset Name Duration Geography Consumer Count Sampling Frequency
Low Carbon London Dataset Nov 2011 - Feb 2014 London, UK 5567 30 min
CAMSL Dataset Jul 2017 - Dec 2018 Tokyo, Japan 1423 30 min
Open Power System Data Jan 2015 - Sep 2020 Great Britain, Ireland, Austria N/A 15, 30, 60 min

data on total electricity consumption, production, and storage of
solar and wind energy, as well as tariff information for 32 European
countries and select neighboring nations. These datasets offer vari-
ous sampling periods, including 15 minutes, 30 minutes, and 1 hour.
For this paper, data from Great Britain, Ireland, and Austria were
extracted, covering the period from January 2, 2015, to September
30, 2020, with a sampling frequency of 1 hour.

5 METHODOLOGY
The imperative need to increase the utilization of renewable en-
ergy sources and mitigate energy footprints has spurred extensive
research efforts toward sustainable solutions [3]. Among these,
demand response through dynamic techniques has emerged as a
promising avenue [1]. Historically, diverse methodologies have
been proposed to design dynamic pricing, often relying on sta-
tistical models [8]. However, these approaches typically demand
expertise from skilled scientists and engineers. Leveraging artifi-
cial intelligence (AI) and machine learning (ML) techniques for
dynamic pricing design offers a viable alternative, as it can harness
insights solely from historical data, circumventing the necessity for
specialized expertise [10, 33]

Below, some of the principal techniques employed in dynamic
pricing design are outlined:

5.1 Heuristic Thresholding
Heuristic Thresholding operates on classical principles of dynamic
pricing design, leveraging statistical analysis and threshold setting
to define distinct pricing tiers [8]. In this approach, thresholds
are established following an analysis of historical data, effectively
partitioning pricing levels.

To tailor this technique to the Low Carbon London dataset, an
analysis was conducted to determine optimal threshold values for
tariffs. This analysis involved normalizing mean daily consump-
tion by dividing it by the number of consumers enrolled in the
scheme and the mean price of consumption. Notably, normaliza-
tion facilitated a direct comparison between the two consumption
curves.

Figure 1 illustrates both mean consumption and total normalized
consumption, revealing a consistent percentage difference between
the two curves. Upon dataset examination, it was observed that the
maximum mean electricity consumption corresponds to approx-
imately 80% of total normalized consumption. This observation
led to the decision to designate this value as the benchmark for
establishing the upper tariff limit. Conversely, the minimum price
served as the reference point for determining the lower tariff limit.
Equations 1 and 2 are utilized to compute the thresholds of the
tariffs.

𝑇𝐿 = (1 + 𝑙𝑜𝑤𝑐𝑜𝑒 𝑓 ) ×𝑚𝑖𝑛𝑑𝑐 (1)

𝑇𝑈 = (1 + ℎ𝑖𝑔ℎ𝑐𝑜𝑒 𝑓 ) ×𝑚𝑎𝑥𝑑𝑐 × 80% (2)
Where:
• 𝑇𝐿 is the lower tariff limit.
• 𝑇𝑈 is the upper tariff limit.
• 𝑙𝑜𝑤𝑐𝑜𝑒 𝑓 and ℎ𝑖𝑔ℎ𝑐𝑜𝑒 𝑓 represent the percentage difference
from the reference points.

• 𝑚𝑖𝑛𝑑𝑐 represents the minimum daily consumption
• 𝑚𝑎𝑥𝑑𝑐 represents the maximum daily consumption

5.2 K-Means
The k-means algorithm [17] is an iterative clustering method em-
ployed to partition a dataset into ’k’ distinct clusters based on
similarity measures. It proceeds iteratively by initially assigning
data points to the nearest cluster centroid and recalculating cen-
troids based on the mean of the data points assigned to each cluster.
The algorithm commences by randomly initializing ’k’ centroids
within the feature space. In each iteration, it assigns each data point
𝑥𝑖 to the cluster with the nearest centroid 𝑐 𝑗 based on a distance
metric, typically the Euclidean distance formula [2]:

𝑑
(
𝑥𝑖 , 𝑐 𝑗

)
=

√√
𝑛∑︁

𝑚=1

(
𝑥𝑖𝑚 − 𝑐 𝑗𝑚

)2 (3)

Here, ’n’ signifies the number of dimensions in the feature space,
𝑥𝑖𝑚 denotes the m-th component of the i-th data point, and 𝑐 𝑗𝑚
signifies the m-th component of the j-th centroid. Following the
assignment of all data points, centroids are updated by computing
the mean of all points assigned to each cluster. This iterative process
continues until convergence criteria are met, such as a minimal
change in centroid positions or reaching a maximum number of
iterations. The outcome comprises ’k’ clusters, each represented by
a centroid, with data points assigned to the cluster whose centroid
they are closest to.

Below is the pseudocode for the k-means algorithm:

5.3 Fuzzy C-Means
The Fuzzy C-Means (FCM) [32] algorithm emerges as a prominent
method within cluster analysis, distinguishing itself from tradi-
tional clustering algorithms by assigning membership values to
data points, indicating the degree of association with each cluster.
Mathematically, FCM endeavors to minimize the objective function
𝐽 , which quantifies the overall fuzziness of the clustering:

𝐽 =

𝑛∑︁
𝑖=1

𝑐∑︁
𝑗=1

𝑢𝑚𝑖 𝑗 ·


𝑥𝑖 − 𝑣 𝑗



2 (4)

Where:
• 𝑛 denotes the number of data points,
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Figure 1: Mean and Total Normalized Energy Consumption in Low Carbon London dataset

Algorithm 1 K-Means
1: Initialize centroids randomly within the feature space.
2: while not Convergence criteria are met do
3: for each data point do
4: Assign the point to the nearest centroid based on the

distance metric.
5: end for
6: for each centroid do
7: Update the centroid by computing themean of all points

assigned to it.
8: end for
9: end while
10: return Final centroids and cluster assignments.

• 𝑐 represents the number of clusters,
• 𝑢𝑖 𝑗 signifies the membership of data point 𝑥𝑖 in cluster 𝑗 ,
• 𝑣 𝑗 denotes the centroid of cluster 𝑗 ,
• 𝑚 is a weighting exponent typically set to 2 for crisp parti-
tioning, yet adjustable for fuzzier partitions.

Initially, FCM assigns membership values randomly to each data
point. It then proceeds to iteratively update cluster centroids and
membership values alternately until convergence. The updated
equations are delineated as follows:

Membership Update:

𝑢𝑖 𝑗 =
1∑𝑐

𝑘=1

( ∥𝑥𝑖−𝑣𝑗 ∥
∥𝑥𝑖−𝑣𝑘 ∥

) 2
𝑚−1

(5)

Centroid Update:

𝑣 𝑗 =

∑𝑛
𝑖=1 𝑢

𝑚
𝑖 𝑗

· 𝑥𝑖∑𝑛
𝑖=1 𝑢

𝑚
𝑖 𝑗

(6)

Throughout each iteration, data points are re-evaluated for mem-
bership values based on their proximity to cluster centroids, with
closer points accorded higher memberships. Concurrently, cen-
troids are recalibrated through weighted averages of data points,

where the weights are determined by membership values. This iter-
ative process persists until membership values stabilize, indicating
well-defined clusters.

FCM exhibits versatility and efficacy in handling intricate datasets
featuring overlapping clusters or noisy data. By permitting soft as-
signments, it adeptly captures the inherent uncertainty prevalent
in real-world data. Nonetheless, FCM’s performance is contingent
upon initializations and parameter selections, necessitating metic-
ulous tuning for optimal outcomes. Despite its limitations, FCM
maintains widespread utilization across diverse domains such as
pattern recognition [6], image segmentation [16], and data min-
ing [23], owing to its capability to furnish meaningful clusterings
across varied contexts.

Below is a pseudocode representation of the Fuzzy C-Means
algorithm:

Algorithm 2 Fuzzy C-Means (FCM)
1: Initialize: Choose the number of clusters (𝑐), weighting expo-

nent (𝑚), and terminate threshold (𝜖)
2: Randomly initialize cluster centroids (𝑣 𝑗 )
3: while not Convergence do
4: for each data point 𝑥𝑖 do
5: for each cluster centroid 𝑣 𝑗 do
6: Compute membership value 𝑢𝑖 𝑗 using the member-

ship update equation
7: end for
8: end for
9: for each cluster centroid 𝑣 𝑗 do
10: Update centroid coordinates using the centroid update

equation
11: end for
12: Compute the change in cluster centroids
13: if change in centroids is less than 𝜖 then
14: Convergence = True
15: end if
16: end while
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Figure 2: Energy Consumption, Membership Function, and
FCM Tariffs in Low Carbon London dataset

6 IMPROVING DYNAMIC PRICING STABILITY
OF FUZZY C-MEANS

This subsection outlines the corrections proposed to enhance the
stability and reliability of FCM in the context of dynamic pricing.
In particular, Correction 1 addresses abnormal periods in clustering
significance, while Correction 2 focuses on managing multiple
pricing changes within short time intervals.

From the analysis depicted in Figure 2, which showcases the
Low Carbon London dataset for 05/03/2012, it becomes evident
that the FCM algorithm encounters challenges in providing high
accuracy answers during specific time slots, namely 07:00, 9:00,
18:00, and 22:00. Moreover, the algorithm’s pricing exhibits notable
fluctuations within the 15:00 to 21:00 interval.

6.1 Correction 1: Addressing Abnormal Periods
To mitigate the impact of uncertainty in clustering significance dur-
ing abnormal periods, a threshold value is computed for each time
point based on the variability in the membership function. Specifi-
cally, the marginal value threshold is calculated as the product of
the difference between the maximum and minimum membership

function values and a coefficient representing the percentage of the
boundary between these extremes (Equation 7). Abnormal periods
are then identified where the difference between the two largest
membership function values falls below the computed threshold
(Equation 8). The maximum threshold value within these abnormal
periods is set to mitigate the impact of uncertain clustering on
dynamic pricing stability.

𝑇ℎ = (𝑚𝑎𝑥ℎ −𝑚𝑖𝑛ℎ) × coef, 𝑠 .𝑡 .ℎ ∈ [0, 23] (7)

Where:

• 𝑇ℎ is the computed threshold between maximum and mini-
mum values of the membership function at time h.

• 𝑚𝑎𝑥ℎ is the maximum value of the membership function at
time h.

• 𝑚𝑖𝑛ℎ is the minimum value of the membership function at
time h.

• coef is a coefficient denoting the percentage of the boundary
between the maximum and minimum value

Current Period = Abnormal Period
if diffℎ < 𝑇ℎ

(8)

6.2 Correction 2: Managing Multiple Pricing
Changes

This correction addresses the challenge of multiple pricing changes
occurring within short time intervals. Initially, time points exhibit-
ing unit changes in pricing are identified. Subsequently, instances
of multiple pricing variations between consecutive time points are
determined. To manage these variations, an adjustment is made to
intermediate prices based on the prevailing tariff values at neigh-
boring time points. Specifically, intermediate prices are aligned
with the prevailing tariff values, ensuring smoother transitions and
reducing pricing fluctuations (Equation 9).

𝑝ℎ−1 = 𝑝ℎ if 𝑝ℎ−2 = 𝑝ℎ
𝑝ℎ+1 = 𝑝ℎ if 𝑝ℎ = 𝑝ℎ+2
ℎ ∈ [0, 23], ℎ ∈ Z

(9)

Where:

• ℎ is the hour of the day
• 𝑝ℎ is the tariff price at time h.

Figure 3 provides a visual representation of the aggregate con-
sumption values alongside the dynamic tariffs of Fuzzy C-Means
and Corrections 1, and 2 within the Low Carbon London dataset.
The incorporation of these corrections enhances the reliability and
stability of Fuzzy C-Means in dynamic pricing applications.

7 EXPERIMENTS
In this section, we detail the experiments conducted to assess the
effectiveness of the designed methods discussed in Sections 5 and
6 using the Low Carbon London, CAMSL, and datasets from Great
Britain, Ireland, and Austria extracted from the Open Data Platform.
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Figure 3: Dynamic Tariffs in Low Carbon London Dataset
with Fuzzy C-Means Corrections

7.1 Preprocessing
The preprocessing step is necessary to bring data in the appro-
priate form to design dynamic prices and make predictions. For
the datasets mentioned, missing values were filled using hourly
profiles, and aggregation of consumer consumption was performed
for the Low Carbon London and CAMSL datasets to calculate the
total consumption of the network.

After analyzing the datasets, Figures 4 and 5 showcase the con-
sumption of Ireland and Austria for different sampling frequencies.
It’s noted that there are no significant changes in the shape of the
waveform. Therefore, it was decided to use a 1-hour granularity to
better understand the pricing resulting from the algorithms. This
decision was made due to the insignificant changes observed in
the consumption time series at 15-minute, 30-minute, and 1-hour
intervals.

7.2 Parameter Settings
To create dynamic pricing, algorithms from Sections 5 and 6 were
employed. For Heuristic Thresholding, coefficients 𝑙𝑜𝑤𝑐𝑜𝑒 𝑓 and
ℎ𝑖𝑔ℎ𝑐𝑜𝑒 𝑓 were determined through statistical analysis, resulting
in optimal pricing with 𝑙𝑜𝑤𝑐𝑜𝑒 𝑓 = 1.45 and ℎ𝑖𝑔ℎ𝑐𝑜𝑒 𝑓 = 0.90. For
k-Means, no specific hyperparameter tuning was performed as
the results were consistent across different settings. However, for
Fuzzy c-Means, a grid search was conducted to identify suitable
hyperparameters, resulting in the following hyperparameters:

𝑚 = 7.0, 𝑒𝑟𝑟𝑜𝑟 = 0.0005,𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 1000 (10)

Additionally, corrections were implemented to optimize the
uncertain Fuzzy c-Means tariffs and prevent rapid consumption
changes. The coefficients for these corrections were determined

Figure 4: Energy Consumption in Ireland for 30-min and
1-hour

Figure 5: Energy Consumption in Austria for 15-min and
1-hour

experimentally, with 𝑐𝑜𝑒 𝑓 = 0.35 yielding optimal uncertainty im-
provement for Correction 1. Correction 2, which smoothes changes
between low and high tariffs, did not require parameterization.
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7.3 Experiment Setup
The experiments were conducted using the extracted datasets, and
the unsupervised machine learning algorithms were implemented
with the determined parameter settings. The experiments aimed to
observe the performance of each algorithm in identifying periods
of high and low demand and adjust tariffs accordingly.

Furthermore, in devising the tariffs, the proposed algorithms
leveraged daily data inputs. This highlights the advantage of unsu-
pervised learning techniques, as they enable the identification of
dynamic pricing patterns at a reduced computational expense.

The aforementioned datasets served as the basis for the experi-
mental procedure. Heuristic Thresholding was applied as a statisti-
cal method for the design of dynamic pricing, while K-Means and
Fuzzy C-Means algorithms were utilized as Unsupervised Machine
Learning methods. Additionally, Corrections 1 and 2 were applied
as a heuristic approach to design dynamic tariffs more favorably
from the provider’s point of view and to avoid destabilization of
the network.

Moreover, to enhance the adaptability of the system, three levels
of pricing were created to update the Demand Response elasticity.
This decision aimed to provide a more nuanced approach to tariff
adjustments based on varying levels of demand.

8 RESULTS
8.1 Qualitative evaluation
Figure 6 illustrates consumption and dynamic tariffs for the Low
Carbon London dataset on 05/03/2012, demonstrating that all al-
gorithms effectively identify periods of increased demand (High
Tariffs). However, Heuristic Thresholding displays more Normal
Tariffs and struggles to identify periods of low tariffs. K-Means
identifies high-demand periods but exhibits tariff inaccuracies, as
observed at 15:00. On the other hand, Fuzzy c-Means, identifies
effectively periods of increased demand, while corrections create
smoother transitions between low and high tariffs.

Additionally, it becomes clear that Fuzzy C-Means offers tariffs
that do not favor the provider, as they allow the consumer to shift
consumption from 15:00 and 17:00 to 16:00 to reduce their bill. This
shift poses numerous risks, including network destabilization and
potential blackout. Therefore, Fuzzy C-Means with Corrections 1
and 2 offer ideal tariffs for the provider and help to stabilize the
network.

Figure 7 showcases consumption and dynamic tariffs for the
CAMSL dataset on 20/05/2018, with all techniques successfully
identifying high and low demand periods. Fuzzy c-Means, along
with corrections, demonstrate robust performance in identifying
demand patterns and adjusting tariffs accordingly.

Figures 8, 9, and 10 depict consumption and dynamic tariffs
for Great Britain, Ireland, and Austria on 01/09/2018, respectively,
demonstrating consistent performance across all techniques in iden-
tifying periods of high and low demand. Fuzzy c-Means, supple-
mented by corrections, exhibit reliable performance in adapting
tariffs to varying demand levels

Figure 6: Energy Consumption and Tariffs in Low Carbon
London Dataset on 05/03/2012

Figure 7: Energy Consumption and Tariffs in CAMSL Dataset
on 20/05/2018

8.2 Quantitative Evaluation
8.2.1 Evaluation Metric Design.
To evaluate the efficacy of the tariff design algorithms, a new metric
was created. The aim was to ascertain the precision of the algo-
rithms in adapting tariffs during periods of heightened ("peak") and
reduced ("valley") energy consumption.

Illustrated in Figure 6 are energy consumption patterns for
05/03/2012, drawn from the Low Carbon London dataset. Through
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Figure 8: Energy Consumption and Tariffs in Great Britain
on 01/09/2018

Figure 9: Energy Consumption and Tariffs in Ireland on
01/09/2018

a detailed examination of this data, we identified valley periods
between 02:00 - 07:00 and 10:00 - 13:00, alongside peak periods at
08:00, 15:00, and 17:00.

The novel metric emphasizes two crucial aspects: the alignment
between peak periods and the consistency of tariff adjustments,
denoted by penalties. Initially, consumption data was segmented
into distinct periods by detecting local peaks and valleys, thereby
defining "valleys" and "peaks".

Figure 10: Energy Consumption and Tariffs in Austria on
01/09/2018

Segmenting the consumption data in Figure 6 yielded intervals:
00:00 - 01:00, 01:00 - 08:00, 08:00 - 15:00, 15:00 - 17:00, and 17:00 -
23:00. While local minima were observed at 14:00, 16:00, and 18:00,
the first and last were considered insignificant due to minimal
variation. Notably, the value for 16:00 was encompassed within the
15:00 - 17:00 period, regarded as an abnormal period.

Subsequently, we determined the dominant pricing category
for each segment and identified the lag of tariff adjustments from
the segment’s boundaries. Figure 6 depicts the dominant pricing
category for each segment, accompanied by corresponding delays
in tariff adjustments from segment boundaries.

Following this, Equation 11 presents the proposed metric:

metric = overlap − 𝑝1 × 𝑑𝑠 − 𝑝2 × 𝑑𝑒 (11)
Where:
• 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 : denotes the alignment of dominant pricing in each
consumption segment.

• 𝑝1 and 𝑝2: coefficients representing the penalty percentage
for distances from the start and end of the segment, respec-
tively.

• 𝑑𝑠 : signifies the distance from the start of the segment.
• 𝑑𝑒 : signifies the distance from the end of the segment.

The metric was computed using both mean and weighted mean
methods to ensure accuracy and inclusivity in evaluation.

8.2.2 Application results.
After examination, both coefficients 𝑝1 and 𝑝2 were assigned as 0.25.
Tables 2, 3, and 4 provide an overview of the mean and weighted
average of the metric derived from the Low Carbon London dataset,
organized by year. These tables offer insights on the algorithms’
performance trends over time. Notably, the data highlights the sig-
nificance of Fuzzy C-Means with Corrections, positioning it as the
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Table 2: Results of Metrics for Low Carbon London dataset
during 2012

2012 metric Low Normal High
mean weighted average mean

Heuristic Thresholding 0.628 0.645 0.421 0.675 0.726
KMeans 0.644 0.645 0.641 0.652 0.629
FCM Vanilla 0.624 0.634 0.505 0.679 0.663
FCM Correction 1 0.624 0.634 0.505 0.679 0.663
FCM Correction 2 0.679 0.679 0.508 0.688 0.841
FCM Correction 1 and 2 0.679 0.679 0.508 0.688 0.841

Table 3: Results of Metrics for Low Carbon London dataset
during 2013

2013 metric Low Normal High
mean weighted average mean

Heuristic Thresholding 0.631 0.659 0.331 0.714 0.744
KMeans 0.638 0.634 0.604 0.683 0.627
FCM Vanilla 0.615 0.646 0.394 0.699 0.657
FCM Correction 1 0.615 0.646 0.394 0.699 0.657
FCM Correction 2 0.668 0.685 0.394 0.708 0.834
FCM Correction 1 and 2 0.668 0.685 0.394 0.708 0.839

Table 4: Results of Metrics for Low Carbon London dataset
during 2014

2014 metric Low Normal High
mean weighted average mean

Heuristic Thresholding 0.585 0.613 0.301 0.722 0.651
KMeans 0.608 0.602 0.587 0.686 0.447
FCM Vanilla 0.588 0.618 0.322 0.716 0.639
FCM Correction 1 0.588 0.618 0.322 0.716 0.639
FCM Correction 2 0.636 0.658 0.322 0.732 0.776
FCM Correction 1 and 2 0.637 0.661 0.322 0.732 0.771

best choice for tariff design. Additionally, the analysis underscores
the algorithms’ proficiency in detecting fluctuations in high tariff
periods, showcasing their adaptability to dynamic demand condi-
tions. However, a notable limitation arises in accurately identifying
changes in low tariff periods. Nonetheless, Fuzzy C-Means, partic-
ularly when combined with Corrections (1, 2, or both), emerge as
the optimal performer, consistently achieving the highest accuracy
scores.

Tables 5 and 6 illustrate the mean and weighted average of the
metric for the CAMSL dataset, delineated by year. Notably, in Table
5, focusing on the weighted average, the analysis for 2017 unveils
KMeans as the top performer, followed closely by FCMwith Correc-
tion 1. Meanwhile, Table 6, addressing also the weighted average,
reveals that Heuristic Thresholding demonstrates the most robust
performance for 2018, with KMeans exhibiting the subsequent best
performance. This trend can be attributed to the distinct segmen-
tation of consumption into discrete segments and the absence of
significant "spikes" throughout the day.

9 CONCLUSIONS AND FUTUREWORK
This paper explores three unsupervised learning algorithms applied
to dynamic value design, focusing on Fuzzy C-Means and its ability

Table 5: Results of Metrics for CAMSL dataset during 2017

2017 metric Low Normal High
mean weighted average mean

Heuristic Thresholding 0.514 0.492 0.479 0.622 0.529
KMeans 0.519 0.535 0.359 0.673 0.476
FCM Vanilla 0.504 0.531 0.332 0.644 0.463
FCM Correction 1 0.504 0.531 0.331 0.643 0.463
FCM Correction 2 0.503 0.529 0.331 0.645 0.461
FCM Correction 1 and 2 0.503 0.531 0.331 0.644 0.461

Table 6: Results of Metrics for CAMSL dataset during 2018

2018 metric Low Normal High
mean weighted average mean

Heuristic Thresholding 0.524 0.506 0.501 0.569 0.624
KMeans 0.499 0.488 0.373 0.653 0.491
FCM Vanilla 0.492 0.481 0.357 0.645 0.503
FCM Correction 1 0.492 0.481 0.356 0.646 0.501
FCM Correction 2 0.492 0.481 0.357 0.644 0.502
FCM Correction 1 and 2 0.492 0.481 0.356 0.645 0.499

to explain clustering through the membership function. In addi-
tion, two heuristic algorithms are introduced to address abnormal
periods based on the membership function and to handle multiple
pricing changes within a short time.

The study uses five datasets with different consumption patterns
in terms of load and the frequency of "valleys" and "peaks" per day
to develop and evaluate the algorithms. A newmetric was proposed
to evaluate the overlap and the delay of tariff adjustments.

Experimental results show that Heuristic Thresholding andKMeans
are more effective in identifying tariffs for well-segmented con-
sumption, i.e., without "sharp" peaks. In contrast, Fuzzy C-Means,
when combined with corrections 1 and 2, outperforms in identi-
fying tariffs for daily consumption with numerous "valleys" and
"peaks", as well as abnormal periods.

Future research should explore the integration of the proposed
metric with economic analysis for better refined tariff design. More-
over, evaluating the algorithms using synthetic consumption data
with added noise will provide insights into the limits of the grid.
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