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Abstract 

Semantic Web Rule Language (SWRL) combines OWL (Web Ontology Language) ontologies 

with Horn Logic rules of the Rule Markup Language (RuleML) family. Being supported by on-

tology editors, rule engines and ontology reasoners, it has become a very popular choice for 

developing rule-based applications on top of ontologies. However, SWRL is probably not going 

to become a WWW Consortium standard, prohibiting industrial acceptance. On the other hand, 

SPIN (SPARQL Inferencing Notation) has become a de-facto industry standard to represent 

SPARQL rules and constraints on Semantic Web models, building on the widespread acceptance 

of SPARQL (SPARQL Protocol and RDF Query Language). In this paper, we argue that the life 

of existing SWRL rule-based ontology applications can be prolonged by converting them to 

SPIN. To this end, we have developed the SWRL2SPIN tool in Prolog that transforms SWRL 

rules into SPIN rules, considering the object-orientation of SPIN, i.e. linking rules to the appro-

priate ontology classes and optimizing them, as derived by analysing the rule conditions. 
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1. Introduction 

Rule-based systems have been extensively used in several applications and domains, such 

as e-commerce, personalization, games, businesses and academia. They offer a simplistic model 

for knowledge representation for both domain experts and programmers; experts usually find it 

easier to express knowledge in a rule-like format and programmers usually find rule-based pro-

gramming easier to understand and manipulate, decoupling computation from control. The first 

is performed by the rules whereas the latter is determined by the rule engine itself, that is when 

and how to apply the rules.  

The Semantic Web initiative of the World Wide Web Consortium (W3C, 2013) works on 

standards, technologies and tools in order to give to the information a well-defined meaning, 

enabling computers and people to work in better cooperation. Ontologies can be considered as 

a primary key towards this goal since they provide a controlled vocabulary of concepts, each 

with explicitly defined and machine processable semantics. The Web Ontology Language 

(OWL) (Hitzler et al., 2012) is the W3C recommendation for creating and sharing ontologies 

on the Web. It provides the means for ontology definition and specifies formal semantics on 

how to derive new information. 

There are mainly two modeling paradigms for the Semantic Web (Horrocks et al., 2005). 

The first paradigm is based on the notion of the Description Logics (Baader et al., 2010) on 

which the OWL is based. In this case, the semantics of OWL ontologies can be handled by DL 

reasoning systems, such as Pellet (Sirin et al., 2007), RacerPro (Haarslev et al., 2012), Fact++ 

(Tsarkov & Horrocks, 2006) and HermiT (Glimm et al., 2014) that reuse existing DL algorithms, 

such as tableaux-based algorithms (Baader & Sattler, 2001). The other paradigm is based on 

Horn logic, whereas a subset of the OWL semantics is transformed into rules that are used by 

a rule engine in order to infer implicit knowledge. There are major differences between these 

two paradigms, including computational and expressiveness aspects. For example, the DL rea-

soning engines have a rather inefficient instance reasoning performance, whereas rules are in-

sufficient to model certain situations related to the open nature of the Semantic Web. The se-

lection of the most suitable modeling paradigm depends on the domain and the needs of the 

application.  

Since description logics and Horn logic are orthogonal in the sense that neither of them is 

a subset of the other (Grosof et al., 2003), there are two interesting combinations of ontologies 

and rules, namely their intersection, which is OWL 2 RL, and their union, namely SWRL. OWL 

2 RL (Motik et al., 2012) is an OWL 2 profile is aiming at applications that require scalable 

reasoning without sacrificing too much expressive power. This is achieved by defining a syn-

tactic subset of OWL 2 which is amenable to implementation using rule-based technologies, 

namely it is the largest syntactic fragment of OWL2 DL that is implementable using rules. The 

design of OWL 2 RL was inspired by Description Logic Programs (Grosof et al., 2003) and 

pD* (ter Horst, 2005). Obviously, OWL 2 RL is a decidable language, but one that is necessarily 

less expressive than either the description logic or rules language from which it is formed. 

SWRL (Horrocks et al., 2004; 2005) is a semantic web rule language that combines OWL 

ontologies with Horn Logic rules of the RuleML family of rule languages (“RuleML”, n.d.), 

extending the set of OWL axioms to include Horn-like rules. SWRL is considerably more pow-

erful than either OWL DL or Horn rules alone; however, key inference problems for SWRL are 

undecidable (Horrocks et al., 2005). Decidability can be regained by restricting the form of 

admissible rules, by imposing a suitable safety condition (Motik et al., 2005).  

Being supported by the Protégé ontology editor (“Protégé”, n.d.) as well as by popular rule 

engines and ontology reasoners, such as Jess (Friedman-Hill, 2003), Drools (“Drools”, n.d.) 
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and Pellet (Sirin et al., 2007), SWRL has become a very popular choice for developing rule-

based applications on top of ontologies (Billet et al., 2011; Dautov et al., 2017; Herrero-Zazo 

et al., 2015; Khan et al., 2017; Matheus et al., 2005; Namahoot et al., 2016; O'Connor et al., 

2008; Somodevilla et al., 2015). However, SWRL being around for more than 10 years now, it 

is most probable that it will never become a W3C standard; therefore, its scope is difficult to 

reach out to the industrial world. 

On the other hand, SPIN (Knublauch et al., 2011) has become a de-facto industry standard 

to represent SPARQL rules and constraints on Semantic Web models, building on the wide-

spread acceptance of the SPARQL query language (Harris & Seaborne, 2013) for querying and 

processing Linked Open Data. SPARQL is well supported by numerous engines and databases. 

This means that SPIN rules can be directly executed on the databases and no intermediate en-

gines with communication overhead need to be introduced. Also, SPIN is more expressive than 

SWRL, because SPARQL has various features such as UNION, OPTIONAL, FILTER and NOT 

EXISTS expressions. SPIN has an object-oriented model that arguably leads to better maintain-

able models than SWRL's flat rule lists. Finally, SPIN goes far beyond being just a rule lan-

guage, and also provides means to express constraints and to define new functions and tem-

plates. 

Furthermore, recent industrial rule-based applications (Fortineau et al., 2014; Aarnio et al., 

2016; Samavi & Consens, 2018) have identified some SWRL limitations for modelling appli-

cation business rules, such as the Open World Assumption and the difficulties to manage rule 

complexity and information update, proposing the use of SPARQL/SPIN as a rule language for 

OWL based models, to overcome the above issues.  

For all the above reasons, in this paper, we argue that the life and expressiveness of existing 

SWRL rule-based ontology applications can be extended by being transformed into SPIN. To 

this end, we have developed a tool called SWRL2SPIN, using SWI-Prolog (Wielemaker et al., 

2012) that takes as input an OWL ontology that contains an SWRL rule base and transforms 

SWRL rules into SPIN rules in the same ontology, taking into consideration the object-oriented 

scent of SPIN, i.e. linking rules to the appropriate ontology classes as derived by analyzing the 

rule conditions. Furthermore, conditions of transformed rules are optimized according to the 

hosting class by re-ordering condition elements. Our SWRL2SPIN tool is accompanied by a 

rich implementation of SWRL built-ins (41); however, the way these built-ins have been trans-

lated provides room for extensibility in the future to increase coverage.  

So, concluding, the main contribution of the paper is that it introduces a tool for automati-

cally transforming and optimizing flat SWRL rules to object-oriented SPIN rules, and its nov-

elty lies on the fact that, to the best of our knowledge, there is no other tool in the literature that 

does that. 

In the rest of the paper, we briefly review related works on SWRL rule transformations for 

interchange and/or execution reasons in section 2, and then, we overview SWRL and SPIN 

syntax and semantics, focusing on their RDF vocabularies, in sections 3 and 4, respectively. In 

section 5 we present our tool, its transformation methodology, how rules are embedded into 

classes, how they are optimized and how built-ins have been implemented. In section 6 we 

evaluate the tool and finally, in section 7, we conclude. 

2. Related Work 

To the best of our knowledge there is no other tool for transforming SWRL rule bases to 

SPIN rules. In this section, we briefly review existing approaches to transforming SWRL rules 

into another rule formalism, mainly for execution reasons, i.e. to be able to implement an SWRL 

rule engine by re-using another rule engine. The purpose of our work is rather to transform 
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SWRL rules into SPIN rules so that SPIN-compliant ontology / rule editors can be used to 

maintain / extend these rule bases / applications. Thus, it is not exactly similar to just running 

SWRL rules, but it could also be viewed in this way, since TopSPIN (TopQuadrant, n.d.) is a 

rule engine that after the translation of SWRL rules into SPIN rules it is able to execute them 

and store the results within the OWL ontology. 

DL-reasoners do not support the full specification of SWRL because the reasoning becomes 

undecidable. So, there are different approaches of combining OWL-DL with SWRL reasoning. 

Translate SWRL into First Order Logic and demonstrate reasoning tasks with a theorem 

prover. The best-known implementation of this paradigm is Hoolet (Bechhofer, 2004), which 

is an implementation of an OWL-DL reasoner that uses the first order theorem prover Vampire 

(Riazanov & Voronkov, 2002) and supports SWRL (Horrocks et al., 2005).  

Translate OWL-DL axioms into rules and give the axiom rules plus the translated SWRL 

rules to a rule engine. This approach cannot cover the full expressivity of OWL-DL due to many 

incompatibilities between Description Logics and Horn Logic. Examples of this paradigm are 

the implementations of the SWRLTab (O’Connor et al., 2005) of Protégé (“Protégé”, n.d.), such 

as the older SWRLJessTab plugin (Golbreich, 2004), which is available only for the v. 3.5 of 

Protégé and the newer SWRLDroolsTab plugin (“SWRL Drools Tab”, 2012), which is availa-

ble both for Protégé 5.2 and 3.5. These plugins translate the ontology axioms into facts of the 

Jess (Friedman-Hill, 2003) and Drools (“Drools”, n.d.) production rule engines, respectively, 

and SWRL rules into production rules that materialize the conclusions of the rules as derived 

facts. Then the production rule engines run the SWRL rules along with the entailment rules that 

implement part of the DL-reasoning process and the results (materialized inferred axioms of 

the SWRL rules) are copied back to Protégé. 

Other systems that support a similar functionality, using forward chaining rule engines are 

Bossam (Jang & Sohn, 2004)., a forward chaining deductive (Datalog) rule engine that supports 

SWRL with minimal built-in support for math and string functions, and SWRL2COOL (Rigas 

et al., 2012) a translator of SWRL rules into CLIPS production rules to accompany the O-De-

vice production rule-based OWL reasoner (Meditskos & Bassiliades, 2008), with also limited 

support for math and comparison built-ins.  

There are also approaches (Hirankitti & Xuan, 2011; Samuel et al., 2008) to integrate OWL 

axioms and SWRL rules into backward chaining rule engines, such as Prolog, which also have 

limited built-in support. Furthermore, the SWRL-IQ plugin (Elenius, 2012) for Protégé 3.x sup-

ported backward chaining querying of OWL ontologies and SWRL rule reasoning based on 

XSB Prolog. SWRL-IQ supports 47 SWRL built-ins, including List built-ins. 

Expand an existing OWL-DL reasoner based on the tableaux algorithm. Most popular DL-

reasoners, such as Pellet (Sirin et al., 2007), HermiT (Glimm et al., 2014), Racer (Haarslev et 

al., 2012), do support SWRL reasoning for DL-safe rules. Pellet supports all the SWRL built-

ins except for Lists and provides support for only the first 5 Built-ins for Date, Time, and Du-

ration. Pellet will almost certainly never support the List built-ins because of OWL DL re-

strictions. However, all Date, Time, and Duration built-ins could be provided in the future. 

HermiT also supports SWRL DL-safe rules, but with no built-in support (Glimm et al., 2009). 

Racer (Haarslev et al., 2012) supports processing of rules in a SWRL-based syntax by translat-

ing them into nRQL rules; there is no evidence as to whether SWRL built-ins are supported. 

Protégé 5.2 (“Protégé”, n.d.) includes a Rules view in its Ontology Views that supports SWRL 

rules through the above DL reasoners. 

KAON2 (Motik, n.d.), a rather different DL-reasoner based on reducing a SHIQ(D) 

knowledge base to a disjunctive Datalog program also supports the so-called DL-safe subset 

(Motik et al., 2005) of SWRL, but again without any evidence for built-in support. KAON2 can 

be integrated to Protégé through a DIG interface (Bechhofer, 2003). 
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Stardog (Stardog Union, 2018) is an RDF database or triplestore that rewrites queries to 

answer questions using SWRL inferences. Stardog supports two different syntaxes for defining 

rules. The first is native Stardog Rules syntax based on SPARQL. The second is the de facto 

standard RDF/XML syntax for SWRL. It has the advantage of being supported in many tools; 

but it’s syntax is awkward. Stardog supports 55 SWRL built-ins. 

Finally, there are some works (Milanovic et al., 2009; Wang et al., 2010) that translate 

SWRL rules into a rule meta-model for rule interchange reasons among various rules formats, 

such as R2ML (REWERSE Rule Markup Language) (Milanovic et al., 2009; REWERSE, 

2006) and RIF (Kifer & Boley, 2013; Wang et al., 2010). The purpose of these translations is 

merely the interchange of rules, preserving the basic SWRL atom semantics, but without cov-

ering the built-ins which are left to the implementer.  

In a completely opposite setting, (Woensel et al., 2014) implemented a cross-platform per-

formance benchmark framework for mobile reasoning engines that supplies 1) a generic, stand-

ards-based Semantic Web layer on top of existing mobile reasoning engines; and 2) a bench-

mark engine to investigate and compare mobile reasoning performance. The above platform 

supports the SPIN rule language as a uniform rule language and RDF as a uniform data model 

and language. The supplied benchmark rulesets and datasets are converted by the platform to 

the custom rule and data formats of the various supported reasoning engines, namely AndroJena 

(“Androjena”, n.d.), RDFQuery (“RDFQuery”, n.d.), RDFStore-JS (“RDFStore-JS”, n.d.) and 

Nools (“Nools”, n.d.). Therefore, the purpose of (Woensel et al., 2014) is to translate SPIN rules 

to other rule formats, whereas in our case SPIN is the target language of the translation. How-

ever, our SWRL2SPIN tool could play the role of the bridge between existing SWRL rule bases 

that need to be deployed on one of the reasoning engines supported by (Woensel et al., 2014). 

In this case, SWRL2SPIN would translate SWRL rules to SPIN rules and then the Mobile 

Benchmark Framework of (Woensel et al., 2014) would translate SPIN rules into the corre-

sponding mobile reasoning engine rule format. 

3. Semantic Web Rule Language 

The Semantic Web Rule Language (SWRL) (Horrocks et al., 2004) is a proposed language 

for the Semantic Web that can be used to express rules, combining OWL DL or OWL Lite with 

the Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language. SWRL ex-

tends the set of OWL axioms to include Horn-like rules. It thus enables Horn-like rules to be 

combined with an OWL knowledge base. SWRL has the full power of OWL DL, but at the 

price of decidability and practical implementations. However, decidability can be regained by 

restricting the form of admissible rules, typically by imposing a suitable safety condition (Motik 

et al., 2005).  

Rules are of the form of an implication between an antecedent (body) and consequent 

(head). The intended meaning can be read as: whenever the conditions specified in the anteced-

ent hold, then the conditions specified in the consequent must also hold. Both the antecedent 

(body) and consequent (head) consist of zero or more atoms. An empty antecedent is treated as 

trivially true (i.e. satisfied by every interpretation), so the consequent must also be satisfied by 

every interpretation; an empty consequent is treated as trivially false (i.e., not satisfied by any 

interpretation), so the antecedent must also not be satisfied by any interpretation. Multiple at-

oms are treated as a conjunction. Note that rules with conjunctive consequents could easily be 

transformed (via the Lloyd-Topor transformations (Lloyd, 1987)) into multiple rules each with 

an atomic consequent. Atoms in these rules can be of the form C(x), P(x,y), sameAs(x,y) or 

differentFrom(x,y), where C is an OWL class description, P is an OWL property, and x, y are 

either variables, OWL individuals or OWL data values. 
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SWRL has various representation syntaxes: abstract, human readable, XML concrete and 

RDF concrete. Listing 1 shows an SWRL rule example in human readable syntax that states 

“when a student ?s attends a course ?c that is taught by a professor ?f, then the student ?s knows 

the professor ?f”. This SWRL rule extends the ontology shown in Figure 1, consisting of classes 

Student and Professor (subclasses of Person) and Course. Notice that we will use this rule 

throughout the paper as a running example for the transformation procedure of SWRL2SPIN. 

 
uni:Student(?s) ∧ uni:attends(?s,?c) ∧ uni:isTaughtBy(?c,?f) →  

uni:knows(?s,?f) 

Listing 1. Sample SWRL rule in human readable syntax 

uni:s a swrl:Variable . 

uni:c a swrl:Variable . 

uni:f a swrI:variable . 

[ rdf:type swrl:Imp ; 

    swrl:body [ a swrl:AtomList ; 

      rdf:first [  

        a swrl:ClassAtom ; 

        swrl:classPredicate uni:Student ; 

        swrl:argument1 uni:2 

      ] ; 

      rdf:rest [  

        a swrl:AtomList ; 

        rdf:first [  

          a swrl:IndividualPropertyAtom ; 

          swrl:propertyPredicate uni:attends ; 

          swrl:argument1 uni:s ; 

          swrl:argument2 uni:c 

        ] ; 

        rdf:rest [  

          a swrl:AtomList ; 

          rdf:first [  

            a swrl:IndividualPropertyAtom ; 

            swrl:propertyPredicate uni:isTaughtBy ; 

            swrl:argument1 uni:c ; 

            swrl:argument2 uni:f 

          ] ; 

          rdf:rest rdf:nil 

        ] 

      ] 

    ] ; 

    swrl:head [  

      a swrl:AtomList ; 

      rdf:first [  

        a swrl:IndividualPropertyAtom ; 

        swrl:propertyPredicate uni:knows ; 

        swrl:argumentl uni:s ; 

        swrl:argument2 uni:f 

      ] ; 

      rdf:rest rdf:nil 

    ] 

] . 

Listing 2. Sample rule in SWRL RDF concrete syntax 

Listing 2 shows how this rule is represented in the RDF concrete syntax. Rules are instances 

of the swrl:Imp class. The head and body of the rule are lists of atoms (swrl:AtomList); each 

atom can be one of classAtom, IndividualPropertyAtom, DatavaluedPropertyAtom, SameIndi-

vidualAtom, DifferentIndividualsAtom, or BuiltinAtom. All but the built-in atoms have one or 

two arguments (properties swrl:argumentNN); additionally, classAtom has a classPredicate 
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property, whereas the PropertyAtoms have a propertyPredicate property. The BuiltinAtom con-

struct has a list of arguments instead and the name of the built-in function. Arguments can be 

variables, declared as instances of the swrl:Variable class, datatype constants, in the 

Value^^Datatype format, or individuals, i.e. instances of an OWL class. 

 

Figure 1. The ontology used in the example of Listing 1. 

4. SPARQL Inferencing Notation 

Modeling languages for the semantic web, such as RDF Schema (Brickley & Guha, 2014) 

and OWL (Hitzler et al., 2012), provide mechanisms for capturing the static structure of data, 

i.e. they are used to define classes, properties and relationships between these conceptual enti-

ties. While they define axiomatic definitions of data structures, describing general computa-

tional behavior of objects is not within their scope. On the other hand, object oriented languages 

provide well-known mechanisms for defining object behavior by describing classes and asso-

ciating methods with class members. Object oriented methods often formalize how the modifi-

cation of one attribute implies changes to other attributes. Another common purpose of methods 

is to capture constraints to ensure that the state of the objects remains within the bounds that 

the class designer had intended. 

The SPARQL Inferencing Notation (SPIN) (Knublauch et al., 2011) combines concepts 

from object oriented languages, query languages, and rule-based systems to describe object 

behavior on the semantic web. One of the basic ideas of SPIN is to link class definitions with 

SPARQL queries to capture constraints and rules that formalize the expected behavior of those 

classes. SPARQL is used because it is an existing WC3 standard (Harris & Seaborne, 2013) 

with well-formed query semantics across RDF data, has existing widespread use amongst most 

RDF query engines and graph stores, and provides sufficient expressivity for both queries and 

general computation of data. To facilitate storage and maintenance, SPARQL queries are rep-

resented in RDF triples, using the SPIN SPARQL Syntax (Knublauch, 2011b). 

The SPIN Modeling Vocabulary (Knublauch, 2011a) defines a collection of properties and 

classes that can be used to link RDFS and OWL classes with SPARQL queries. For example, 

the class ex:Department can define a property spin:rule that points to a SPARQL CONSTRUCT 

query that computes the value of ex:studentProfessorRatio based on the values of ex:en-

rolledStudents and ex:numberOfFaculty. These properties follow existing SPARQL standards, 

and the execution of these constructs can be efficiently handled by any SPARQL processor. 

Since SPIN is entirely represented in RDF, rules and constraints can be shared on the web 

together with the class definitions they are associated with. The attachment of rules to classes 
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also encourages a style in which rules are locally scoped and thus easier to maintain, avoiding 

the spaghetti code of "flat" rule languages, such as SWRL. 

Other important features of SPIN include (a) SPIN templates, which are parameterized 

SPARQL queries, and (b) SPIN functions, i.e. user-defined SPARQL functions. Both are not 

further discussed in the scope of this paper, since SWRL2SPIN does not use them. 

The SPIN class description vocabulary defines several RDF properties that can be used to 

attach SPARQL queries to classes. The property spin:rule can be used by SPIN reasoning en-

gines to construct inferred RDF triples from the currently asserted information in the model. 

The SPARQL queries referenced by the SPIN properties are interpreted in the context of the 

associated class. At run-time, the SPARQL variable ?this is (by default) pre-bound with in-

stances of the class and its sub-classes. Typically, the query itself does not need to bind ?this to 

any value in the WHERE clause. The execution context (e.g., inference engine) will do this 

before the query is executed.  

SPIN takes an object-oriented world view on Semantic Web models, in which SPARQL 

queries play a similar role to functions and methods. Inheritance (expressed using rdfs:subClas-

sOf) is treated in the sense that any query/rule defined for super-classes will also be applied to 

subclasses. In other words, SPIN class descriptors can only "narrow down" and further restrict 

what has been defined further up in the class hierarchy. In this spirit, global class descriptions 

are those that are attached to the root class rdfs:Resource or its OWL equivalent owl:Thing. 

Those global queries may not even mention ?this at all. 

The property spin:rule links an rdfs:Class with a SPARQL CONSTRUCT query that de-

fines an inference rule that determines how additional triples can be inferred from what is stated 

in the WHERE clause. For each binding of the pattern in the WHERE clause of the rule, the 

triple templates from the CONSTRUCT clause are instantiated and added as inferred triples to 

the underlying model. At query execution time, the SPARQL variable ?this is bound to the 

current instance of the class. 

The example in Listing 3 defines a SPIN rule (in textual SPARQL format), attached to class 

uni:Student via the spin:rule property, that infers the value of the uni:knows property from 

values of uni:attends and uni:isTaughtBy. Listing 4 shows how the same rule is represented 

using the SPIN modeling vocabulary. Notice that this SPIN rule is equivalent to the SWRL rule 

at Listing 1 and it is the result of the SWRL2SPIN translation procedure that will be presented 

in Section 5. 

 
uni:Student 

  a rdfs:Class ; 

  spin:rule 

    [ a sp:Construct ; 

      sp: text """ 

        CONSTRUCT { 

          ?this uni:knows ?faculty . 

        } 

        WHERE { 

        ?this uni:attends ?course . 

        ?course uni:isTaughtBy ?faculty 

        }""" 

    ]. 

Listing 3. Sample SPIN rule 

[ a sp:Construct ; 

  sp:templates ([ sp:object spin:_this; 

                  sp:predicate uni:knows ; 

                  sp:subject sp:_faculty 

                ]) ; 
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  sp:where ([ sp:object spin:_this ; 

              sp:predicate uni:attends ; 

              sp:subject sp:_course 

            ] 

            [ sp:object sp:_course; 

              sp:predicate uni:knows ; 

              sp:subject sp:_faculty 

            ]) 

] 

Listing 4. Sample rule using the SPIN modeling vocabulary 

SPIN rules are instances of the sp:Construct class; the rule “head” is defined with the 

sp:templates property whereas the sp:where property defines the rule “body”. The above prop-

erties contain lists of triple patterns (sp:subject, sp:predicate, sp:object). Other SPARQL query 

elements contained in rule “body” can be TriplePath, Filter, Bind, SubQuery, Optional, Union, 

NamedGraph, NotExists, Minus, Service, and Values. In the following we only present in detail 

the first four, since they are the only ones used in the SWRL2SPIN tool.  

A TriplePath is similar to a triple pattern, but instead of an sp:predicate, has an sp:path 

property, whose value can be one of several types, sp:SeqPath being the most usual one. The 

sequential steps of the path are represented through consecutive sp:pathNN properties. The rep-

resentation is more complex when arbitrary length path matching is involved, i.e. when the * 

operator is used.  

Filter elements are blank nodes, instances of sp:Filter that have property sp:expression, 

pointing to an expression that can be evaluated to true or false. Expressions are actually function 

calls which are represented as instances of the function's URI. All other properties of expres-

sions (or function calls) are interpreted as arguments, using consecutive sp:argNN properties. 

However, other property names can be used as well, depending in the function. Arguments can 

be either datatype constants or variables, which are blank nodes with an sp:varName property 

whose value is a string. E.g. the FILTER (?y > 30) expression is shown in Listing 5. 

The BIND keyword assigns a computed value to a variable. Bind assignments in the rule 

“body” are represented as instances of the class sp:Bind, having an sp:variable property to point 

at the variable on the right side of the assignment. The property sp:expression points to the root 

of the expression tree that delivers the computed value, in much a similar way to filter expres-

sions (i.e. function calls). E.g., the expression BIND ((?x * 2) AS ?y) is shown in Listing 

6. 

 
 [ rdf:type sp:Filter ; 

   sp:expression [  rdf:type sp:gt ; 

       sp:arg1 [ 

           sp:varName "y"^^xsd:string ; 

         ] ; 

       sp:arg2 "30"^^xsd:int ; 

     ] ; 

 ] 

Listing 5. Filter expression in SPIN modeling vocabulary 
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 [ rdf:type sp:Bind ; 

   sp:expression [  rdf:type sp:mul ; 

       sp:arg1 [ sp:varName "x" ; ] ; 

       sp:arg2 2 ; 

     ] ; 

   sp:variable [ sp:varName "y" ; ] ; 

 ] 

Listing 6. Bind expression in SPIN modeling vocabulary 

The SubQuery element is used to embed SPARQL queries within other queries to achieve 

results, such as limiting the number of results from some sub-expression within the query. Alt-

hough conditions are flat in SWRL and no embedding is possible, in SWRL2SPIN the 

SubQuery element is used to translate the swrlb:length built-in (see Section 5.3). Sub-queries 

are represented as blank instances of the class sp:SubQuery. The property sp:query points to 

the nested query, which is a blank instance of the appropriate SPARQL query type, e.g. sp:Se-

lect, with properties sp:resultVariables for representing the projection variables and sp:where 

for the body of the query. 

The rest of the SPARQL query elements were not needed for the translation, at least as far 

as the current implementation of SWRL built-in functions concerns. A brief explanation for 

each element is given below. The Optional element is used for optional triple patterns in the 

graph, whereas all SWRL atoms are mandatory. The Union element would represent disjunc-

tion in the rule body; however, SWRL does not allow disjunction. The NamedGraph element 

is used to query graphs other than the default, whereas SWRL does not support such an option. 

The NotExists and Minus elements are used to support negation in SPARQL, whereas SWRL 

is a monotonic rule language with no negation support at all. The Service element is used to 

instruct a federated query processor to invoke a portion of a SPARQL query against a remote 

SPARQL endpoint. Such distributed rule execution features are not possible in SWRL. Finally, 

the Values element is used to assign variables with pre-specified constant values in a SPARQL 

query. Such a feature is not present in SWRL, where variables can only take values from match-

ing ontology terms.  

Concluding, compared to SWRL, SPIN offers the following advantages  

• It is based on SPARQL, a well-established query language and protocol, which is well-

supported by numerous engines and databases. This means that SPIN rules can be directly 

executed on the databases and no intermediate engines with communication overhead need 

to be introduced.  

• It is more expressive, because SPARQL has various features such as UNION and FILTER 

expressions.  

• It has an object-oriented model that leads to better maintainable models and faster rule ex-

ecution than SWRL's flat rule lists. Specifically, the SPIN rule engine does not have to 

check all rules at all times, as it is the case for SWRL, but instead rules are checked incre-

mentally when new instances of a certain class are inserted (or modified) in the ontology. 

This leads to better rule execution performance. 

• It provides means to express constraints and to define new functions and templates, besides 

being a mere rule language. 

A more detailed presentation of the SPIN modelling vocabulary and syntax can be found 

at the respective references and are out of the scope of this paper.  
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5. SWRL2SPIN 

The SWRL2SPIN tool accepts at its input an OWL ontology with SWRL rules embedded 

in the ontology using the RDF concrete syntax of SWRL, as exported by tools such as Protégé 

combined with the SWRLtab plugin. The tool produces at its output an OWL ontology (just 

copying the input one) extended by SPIN rules that have been created by translating the SWRL 

rules. SPIN rules are embedded inside their corresponding classes, following the OO nature of 

SPIN, instead of having a flat rule base as in SWRL. Furthermore, the ?this variable of SPIN is 

used to identify instances of the rule-embedding class, therefore SWRL condition elements that 

identify the class of the corresponding instances are removed, speeding-up, thus, rule execution. 

Finally, the same SWRL may involve instances of multiple classes, so our tool generates mul-

tiple versions / views of a rule, optimized for each of the classes, separately. 

Formally, in SWRL2SPIN the input is an ontology Oinp = < C, P, I, Rswrl >, where C is the 

set of classes of the ontology, P is the set of properties, I is the set of instances, and Rswrl is the 

set of SWRL rules, and the output is the ontology Oout = < C’, P, I, Rspin >, where C’ is the set 

of the modified classes of the input ontology and Rspin is the set of SPIN rules that have been 

translated from SWRL rules and linked from within the classes in C’. Therefore, it holds that: 

𝐶′ = {< 𝑐, {𝑟1
𝑐 , 𝑟2

𝑐 , … , 𝑟𝑛
𝑐} > |𝑐 ∈ 𝐶 ∧ (∀𝑖, 𝑟𝑖

𝑐 ∈ 𝑅𝑠𝑝𝑖𝑛) 

The above means that a class maybe linked to several SPIN rules according to the transla-

tion procedure that we will present below. The translation procedure is a mapping from a single 

SWRL rule to one or more SPIN rules: 
TrnslRule: Rswrl → ℘(𝑅𝑠𝑝𝑖𝑛) 

The main procedure for translating a SWRL rule into a SPIN rule involves mapping classes 

and properties of the RDF concrete syntax of SWRL into corresponding classes and properties 

of the SPIN modeling vocabulary, in a recursive way starting from swrl:Imp instances, follow-

ing an almost one-to-one mapping scheme shown in Table 1. The only exception to the straight-

forward mapping is the SWRL built-ins whose translation is customized for each function. We 

will discuss translation of built-ins in section 5.3. 

 

Table 1. Correspondence between SWRL and SPIN constructs 

SWRL SPIN 

swrl:Imp sp:Construct 

swrl:head sp:templates 

swrl:body sp:where 

swrl:ClassAtom 

swrl:classPredicate <Class> 

swrl:argument1 <Arg> 

sp:subject <Arg> 

sp:predicate rdf:type 

sp:object <Class> 

swrl:IndividualPropertyAtom 

swrl:propertyPredicate <Prop> 

swrl:argument1 <Arg1> 

swrl:argument2 <Arg2> 

sp:subject <Arg1> 

sp:predicate <Prop> 

sp:object <Arg2> 

swrl:SameIndividualAtom 

swrl:argument1 <Arg1> 

swrl:argument2 <Arg2> 

sp:subject <Arg1> 

sp:predicate owl:sameAs 

sp:object <Arg2> 

swrl:DifferentIndividualsAtom 

swrl:argument1 <Arg1> 

swrl:argument2 <Arg2> 

sp:subject <Arg1> 

sp:predicate owl:differentFrom 

sp:object <Arg2> 

swrl:DatavaluedPropertyAtom 

swrl:propertyPredicate <Prop> 

swrl:argument1 <Arg1> 

swrl:argument2 <Arg2> 

sp:subject <Arg1> 

sp:predicate <Prop> 

sp:object <Arg2> 
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SWRL SPIN 

swrl:BuiltinAtom 

swrl:builtin <Fun> 

swrl:arguments <Args> 

Customized translation 

swrl:Variable <Var> sp:varName “<Var>” 

<Value> ^^ <DataType> <Value> ^^ <DataType> 

<Individual> <Individual> 

 

Formally, each SWRL rule consists of a body and a head, each of which consists of one or 

more SWRL atoms. 

 
𝑟𝑠𝑤𝑟𝑙 = 〈ℎ𝑒𝑎𝑑𝑠𝑤𝑟𝑙 , 𝑏𝑜𝑑𝑦𝑠𝑤𝑟𝑙〉 

ℎ𝑒𝑎𝑑𝑠𝑤𝑟𝑙 = {𝑎𝑡𝑜𝑚𝑠𝑤𝑟𝑙|𝑎𝑡𝑜𝑚𝑠𝑤𝑟𝑙 . 𝑡𝑦𝑝𝑒 ∈ 𝐴𝑡𝑜𝑚𝑇𝑦𝑝𝑒𝑠𝑠𝑤𝑟𝑙} 
𝑏𝑜𝑑𝑦𝑠𝑤𝑟𝑙 = {𝑎𝑡𝑜𝑚𝑠𝑤𝑟𝑙|𝑎𝑡𝑜𝑚𝑠𝑤𝑟𝑙 . 𝑡𝑦𝑝𝑒 ∈ 𝐴𝑡𝑜𝑚𝑇𝑦𝑝𝑒𝑠𝑠𝑤𝑟𝑙} 

 

𝐴𝑡𝑜𝑚𝑇𝑦𝑝𝑒𝑠𝑠𝑤𝑟𝑙 =

{
 
 

 
 

𝐶𝑙𝑎𝑠𝑠𝐴𝑡𝑜𝑚,
𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐴𝑡𝑜𝑚,
𝑆𝑎𝑚𝑒𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐴𝑡𝑜𝑚,

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝐴𝑡𝑜𝑚,
𝐷𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒𝑑𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐴𝑡𝑜𝑚,

𝐵𝑢𝑖𝑙𝑡𝑖𝑛𝐴𝑡𝑜𝑚 }
 
 

 
 

 

 

On the other hand, each SPIN rule consists of a CONSTRUCT clause (head) and a WHERE 

clause (body). The former consists of one or more of triple patterns, where the latter includes 

also TriplePath, Filter and Bind patterns, as explained in Section 4. 

 
𝑟𝑠𝑝𝑖𝑛 = 〈𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠𝑝𝑖𝑛, 𝑤ℎ𝑒𝑟𝑒𝑠𝑝𝑖𝑛〉 

𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠𝑝𝑖𝑛 = {𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖|𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 ∈ {𝑇𝑟𝑖𝑝𝑙𝑒𝑃𝑡𝑟}} 

𝑤ℎ𝑒𝑟𝑒𝑠𝑝𝑖𝑛 = {𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖|𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 ∈ {𝑇𝑟𝑖𝑝𝑙𝑒𝑃𝑡𝑟, 𝑇𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡ℎ𝑃𝑡𝑟, 𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑡𝑟, 𝐵𝑖𝑛𝑑𝑃𝑡𝑟}} 

 

The translation procedure (ignoring temporarily the fact that one SWRL rule can be trans-

lated to multiple SPIN rules, due to class embedding), consists of the following translation 

functions: 

 
𝑇𝑟𝑛𝑠𝑙𝑅𝑢𝑙𝑒(𝑟𝑠𝑤𝑟𝑙) ≔ 〈𝑇𝑟𝑛𝑠𝑙𝐴𝑡𝑜𝑚𝑠(ℎ𝑒𝑎𝑑𝑠𝑤𝑟𝑙), 𝑇𝑟𝑛𝑠𝑙𝐴𝑡𝑜𝑚𝑠(𝑏𝑜𝑑𝑦𝑠𝑤𝑟𝑙) 〉 

 

𝑇𝑟𝑛𝑠𝑙𝐴𝑡𝑜𝑚𝑠(𝐴𝑡𝑜𝑚𝑠𝑠𝑤𝑟𝑙) ≔ {𝑝𝑡𝑟𝑖|𝑝𝑡𝑟𝑖 ≔ 𝑇𝑟𝑛𝑠𝑙𝐴𝑡𝑜𝑚(𝑎𝑡𝑜𝑚𝑖,𝑠𝑤𝑟𝑙) ∧ 𝑎𝑡𝑜𝑚𝑖,𝑠𝑤𝑟𝑙 ∈ 𝐴𝑡𝑜𝑚𝑠𝑠𝑤𝑟𝑙} 

 

Each SWRL atom is translated into SPIN constructs according to the mappings of Table 1. 

For example, the ClassAtom is translated as follows: 

 
𝑇𝑟𝑛𝑠𝑙𝐴𝑡𝑜𝑚(𝑎𝑡𝑜𝑚|𝑎𝑡𝑜𝑚. 𝑡𝑦𝑝𝑒 = 𝐶𝑙𝑎𝑠𝑠𝐴𝑡𝑜𝑚):=

⟨𝑇𝑟𝑛𝑠𝑙𝐴𝑟𝑔(𝑎𝑡𝑜𝑚. 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡1), 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑛𝑠𝑙𝐴𝑟𝑔(𝑎𝑡𝑜𝑚. 𝑐𝑙𝑎𝑠𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒)⟩  
 

where <x,y,z> denotes a SPARQL triple pattern and the notation a.p denotes the property p of 

the RDF instance a. 

 

Another example is the IndividualPropertyAtom which is translated as follows: 

 
𝑇𝑟𝑛𝑠𝑙𝐴𝑡𝑜𝑚(𝑎𝑡𝑜𝑚|𝑎𝑡𝑜𝑚. 𝑡𝑦𝑝𝑒 = 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐴𝑡𝑜𝑚 ): =

〈𝑇𝑟𝑛𝑠𝑙𝐴𝑟𝑔(𝑎𝑡𝑜𝑚. 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡1), 𝑎𝑡𝑜𝑚. 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 , 𝑇𝑟𝑛𝑠𝑙𝐴𝑟𝑔(𝑎𝑡𝑜𝑚. 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡2)〉  
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The rest of the SWRL atoms have similar translation patterns and are omitted for brevity. 

The only different translation pattern is that of built-in atoms, which are presented in Section 

5.3. 

Finally, SWRL arguments are translated to their SPARQL equivalents, i.e. variables 

datatype values, individuals and classes remain unchanged, whereas variables are translated by 

prefixing them with a question mark.  

In the following, we give an example of translating a SWRL rule without built-ins to a 

SPIN rule. Consider our running example, the SWRL rule at Listing 1 that is translated into the 

SPIN rule at Listing 7. The actual translation is performed between the RDF representations of 

the SWRL and SPIN rules, shown in Listing 8 and Listing 9, respectively. However, the above 

abstract description of the translation is still valid since there is one-to-one mapping between 

the abstract /textual syntaxes and the RDF representations for both rule languages. 

 
CONSTRUCT { 

    ?x :knows ?z . 

} 

WHERE { 

    ?x rdf:type :Student . 

    ?x :attends ?y . 

    ?y :isTaughtBy ?z . 

} 

Listing 7. Translation of SRWL rule of Listing 1 into SPIN 

:x rdf:type swrl:Variable .  

:y rdf:type swrl:Variable .  

:z rdf:type swrl:Variable . 

[ rdf:type swrl:Imp ; 

  swrl:body [ rdf:type swrl:AtomList ; 

              rdf:first [ rdf:type swrl:ClassAtom ; 

                          swrl:classPredicate :Student ; 

                          swrl:argument1 :x   ] ; 

              rdf:rest [ rdf:type swrl:AtomList ; 

              rdf:first [ rdf:type swrl:IndividualPropertyAtom ; 

                          swrl:propertyPredicate :attends ; 

                          swrl:argument1 :x ; 

                          swrl:argument2 :y   ] ; 

              rdf:rest [ rdf:type swrl:AtomList ; 

              rdf:first [ rdf:type swrl:IndividualPropertyAtom ; 

                          swrl:propertyPredicate :isTaughtBy ; 

                          swrl:argument1 :y ; 

                          swrl:argument2 :z   ] ; 

              rdf:rest rdf:nil  

           ]]] ; 

  swrl:head [ rdf:type swrl:AtomList ; 

              rdf:first [ rdf:type swrl:IndividualPropertyAtom ; 

                          swrl:propertyPredicate :knows ; 

                          swrl:argument1 :x ; 

                          swrl:argument2 :z   ] ; 

              rdf:rest rdf:nil   

]] . 

Listing 8. Example of an input SWRL rule in RDF concrete syntax 
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  spin:rule [ 

      rdf:type sp:Construct ; 

      sp:templates ( 

          [ sp:object [ sp:varName "z" ;] ; 

            sp:predicate :knows ; 

            sp:subject [ sp:varName "x" ; ] ; ]   ) ; 

      sp:where ( 

          [ sp:object :Student ; 

            sp:predicate rdf:type ; 

            sp:subject [ sp:varName "x" ; ] ; ] 

          [ sp:object [ sp:varName "y" ; ] ; 

            sp:predicate :attends ; 

            sp:subject [ sp:varName "x" ; ] ; ] 

          [ sp:object [ sp:varName "z" ; ] ; 

            sp:predicate :isTaughtBy ; 

            sp:subject [ sp:varName "y" ; ] ; ]  ) ; 

  ] ; 

Listing 9. Example of an output SPIN rule in SPIN modelling vocabulary 

5.1 Embedding SPIN rules in Classes 

One of the unique features of SPIN compared to SWRL is the ability to embed rules into 

classes and treat them in an OO way as inheritable behaviors (aka methods). By doing so, in-

stances of the embedding class can be identified by variable ?this. We do this in SWRL2SPIN 

as follows: 

1. We identify variables in the rule body that refer to class instances that play the role of the 

“subject” in the triple patterns by collecting all the variables in the rule body that are: argu-

ments of a ClassAtom construct or first arguments of an IndividualPropertyAtom or a 

DatavaluedPropertyAtom construct. The rationale behind this is that subjects of triple pat-

terns can only play the role of the “referenced object”, i.e. the object that exhibits the class 

behavior. Formally, in step 1 we build the set ThisVars as follows: 

 
𝑇ℎ𝑖𝑠𝑉𝑎𝑟𝑠(𝑏𝑜𝑑𝑦𝑠𝑤𝑟𝑙):=

{〈𝑎𝑡𝑜𝑚. 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡1, 𝑎𝑡𝑜𝑚〉|

𝑎𝑡𝑜𝑚 ∈ 𝑏𝑜𝑑𝑦𝑠𝑤𝑟𝑙 ∧

𝑎𝑡𝑜𝑚. 𝑡𝑦𝑝𝑒 ∈ {
𝐶𝑙𝑎𝑠𝑠𝐴𝑡𝑜𝑚,

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐴𝑡𝑜𝑚,
𝐷𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒𝑑𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐴𝑡𝑜𝑚

}
}  

 

2. We identify the classes these variables refer to by: (a) checking if they are arguments of a 

ClassAtom construct or (b) retrieving the domain of arguments of IndividualPropertyAtom 

or DatavaluedPropertyAtom constructs. Formally, we build the set ThisClasses as follows: 

 
𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝑏𝑜𝑑𝑦𝑠𝑤𝑟𝑙):= {𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠(𝑇ℎ𝑖𝑠𝑉𝑎𝑟)|𝑇ℎ𝑖𝑠𝑉𝑎𝑟 ∈ 𝑇ℎ𝑖𝑠𝑉𝑎𝑟𝑠(𝑏𝑜𝑑𝑦𝑠𝑤𝑟𝑙)}  
 
𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠(𝑇ℎ𝑖𝑠𝑉𝑎𝑟):=

{

𝑇ℎ𝑖𝑠𝑉𝑎𝑟. 𝑎𝑡𝑜𝑚. 𝑐𝑙𝑎𝑠𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑇ℎ𝑖𝑠𝑉𝑎𝑟. 𝑎𝑡𝑜𝑚. 𝑡𝑦𝑝𝑒 = 𝐶𝑙𝑎𝑠𝑠𝐴𝑡𝑜𝑚

𝑇ℎ𝑖𝑠𝑉𝑎𝑟. 𝑎𝑡𝑜𝑚. 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 . 𝑑𝑜𝑚𝑎𝑖𝑛, 𝑇ℎ𝑖𝑠𝑉𝑎𝑟. 𝑎𝑡𝑜𝑚. 𝑡𝑦𝑝𝑒 ∈ {
𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐴𝑡𝑜𝑚,
𝐷𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒𝑑𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐴𝑡𝑜𝑚

}
  

 

3. We generate as many rules as the number of the different classes “discovered” in step 2. By 

doing so, we rewrite each rule of step 3 so that: (a) corresponding variable names are re-

placed by ?this, (b) rdf:type triple patterns that refer to ?this are removed from the rule body, 
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(c) triple patterns in the rule body are re-ordered so that the order of triple patterns is optimal. 

Actually, the TrnsRule function that has been defined above, should be re-defined as follows: 

 
𝑇𝑟𝑛𝑠𝑙𝑅𝑢𝑙𝑒(𝑟𝑠𝑤𝑟𝑙) ≔

{〈𝑇ℎ𝐶𝑙, 𝑟𝑒𝑝𝑙(𝑇ℎ𝐶𝑙, 𝑇𝑟𝑛𝑠𝑙(ℎ𝑒𝑎𝑑𝑠𝑤𝑟𝑙)), 𝑒𝑚𝑏(𝑇ℎ𝐶𝑙, 𝑇𝑟𝑛𝑠𝑙(𝑏𝑜𝑑𝑦𝑠𝑤𝑟𝑙))〉|𝑇ℎ𝐶𝑙 ∈ 𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝑏𝑜𝑑𝑦𝑠𝑤𝑟𝑙)}  
 

The emb function performs steps 3(a)-3(c) discussed above: 

 

𝑒𝑚𝑏(𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠):= 𝑜𝑝𝑡(𝑟𝑒𝑚(𝑟𝑒𝑝𝑙(𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠))) 

 

Step 3(a) is implemented by the repl function, which replaces occurrences of variables in 

the CONSTRUCT or the WHERE clause of the SPIN rule, with the variable ?this, when the class 

that the rule is embedded coincides with the class of the variable: 

 
𝑟𝑒𝑝𝑙(𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) ≔

{〈𝑠′, 𝑝, 𝑜′〉|
〈𝑠, 𝑝, 𝑜〉 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ∧ 𝑠′ = {

? 𝑡ℎ𝑖𝑠, 𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠(𝑠) = 𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠
𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∧ 𝑜′ = {
? 𝑡ℎ𝑖𝑠, 𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠(𝑜) = 𝑇ℎ𝑖𝑠𝐶𝑙𝑎𝑠𝑠

𝑜, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  

 

Step 3(b) is implemented by the rem function which removes all triple patterns of the form 

<?this,rdf:type,Class> from the WHERE clause of the SPIN rule: 

 
𝑟𝑒𝑚(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) ≔ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 − {〈? 𝑡ℎ𝑖𝑠, 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒, 𝑜〉|〈? 𝑡ℎ𝑖𝑠, 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒, 𝑜〉 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠} 

 

Finally, function opt that implements step 3(c) is discussed in Section 5.2.  

For our running example of the SWRL rule at Listing 1, the variables that belong to set 

ThisVars are: 

1. variable ?x, due to the Student(?x) class atom  

2. variable ?y, due to the isTaughtBy(?y,?z) individual property atom. 

These variables belong to classes Student and Course, respectively. The former is discov-

ered from the Student(?x) class atom, while the latter is discovered from the domain of the 

isTaughtBy(?y,?z) individual property atom. Thus, the SWRL rule is actually converted into 

two SPIN rules embedded at classes Student (Listing 10) and Course (Listing 11), respectively: 

 
CONSTRUCT {    # @Student 

 ?this  :knows ?z .  

}  

WHERE {  

 ?this  :attends ?y .  

 ?y  :isTaughtBy ?z .  

} 

Listing 10. SPIN rule embedded at class Student 

CONSTRUCT {    # @Course 

 ?x  :knows ?z .  

}  

WHERE {  

 ?x rdf:type  :Student .  

 ?x  :attends ?this .  

 ?this  :isTaughtBy ?z .  

} 
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Listing 11. SPIN rule embedded at class Course 

The rationale for generating multiple SPIN rules from a single SWRL rule is the following. 

The SWRL rule example we use involves in its condition multiple objects belonging to multiple 

classes (Student, Course and Professor). A straightforward translation would create just one 

rule that is stored at the owl:Thing class and inherited by any class of the ontology. This would 

mean that the rule will be checked by any update in any of the classes, resulting in lower rule 

execution performance. Since in SPIN we can exploit the embedding of rules inside classes, we 

can speedup rule execution by allowing only rules that are relevant to each class to be checked. 

In our example, the SWRL rule could be embedded in any of the involved classes. However, if 

it is embedded in only one class, e.g. Student, then it would only be considered when new 

Student instances are created and linked to the instances of the other classes. Using our approach, 

the same rule is also created for class Course, so that when a new course is created the rule runs 

as well.  

The rule is not created for class Professor, because Professor instances do not appear as 

subjects in the SWRL condition. If there was a rule for class Professor, it would look like the 

one in Listing 12, where it is evident that this rule would be very inefficient to check, since any 

new instance of class Professor should be joined with all instances of class Course and all 

instances of class Student. Therefore, we have decided not to create OO SPIN rules that would 

not bring any execution performance advantage.  

 
CONSTRUCT {    # @Professor 

 ?x  :knows ?this .  

}  

WHERE {  

 ?x rdf:type  :Student .  

 ?x  :attends ?y .  

 ?y  :isTaughtBy ?this .  

} 

Listing 12. SPIN rule NOT created for class Professor 

Concluding, it is more efficient to create multiple SPIN rules embedded in all associated 

classes so that inserting objects in all associated classes will trigger the rule, rather than keeping 

a single flat rule, as in SWRL, and checking the rules with multiple joins at all times. Further-

more, we refrain from creating SPIN rules for classes their objects do not stand as subjects in 

the triple patterns of the SPARQL query, in order to avoid expensive joins, as well. 

5.2 Optimizing SPIN rules 

In the example of Section 5.1 at Listing 11, the body of the SPIN rule at class Course has 

two triple patterns that contain variable ?this and one triple pattern for variable ?x ranging over 

all instances of class Student, following the initial ordering of the atoms at the body of the 

SWRL rule. However, it is evident that this ordering leads to a very inefficient SPARQL query 

execution, since variable ?x can be instantiated with many values, whereas variable ?this in-

stantiates each time with only one value. So, SWRL2SPIN re-orders the triple patterns in the 

body of converted / embedded SPIN rules (according to the step 3(c) in Section 5.1) using the 

following heuristics: 

1. Triple patterns that contain variable ?this at the subject of the triple pattern are placed first; 

2. Triple patterns that contain variable ?this at the object of the triple pattern are placed second; 

3. Triple patterns that contain the properties owl:sameAs or owl:differentFrom are placed after 

the triple patterns that instantiate the variables of their subject and object; 
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4. The order of all other triple patterns remains unchanged, so as not to alter the condition 

sequence of the original SWRL rule too much. 

Formally, the algorithm of function opt (see Section 5.1) is given at Listing 13. This func-

tion uses the following auxiliary functions, that implement the above heuristics.  

 
𝑜𝑝𝑡1(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) ≔ {〈? 𝑡ℎ𝑖𝑠, 𝑝, 𝑜〉|〈? 𝑡ℎ𝑖𝑠, 𝑝, 𝑜〉 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠} 

 
𝑜𝑝𝑡2(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) ≔ {〈𝑠, 𝑝, ? 𝑡ℎ𝑖𝑠〉|〈𝑠, 𝑝, ? 𝑡ℎ𝑖𝑠〉 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠} 

 

𝑜𝑝𝑡3(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) ≔ {〈𝑠, 𝑝, 𝑜〉|〈𝑠, 𝑝, 𝑜〉 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ∧ 𝑝 ∈ {𝑠𝑎𝑚𝑒𝐴𝑠 , 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑚 }} 

 
𝑜𝑝𝑡4(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) ≔ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 − 𝑜𝑝𝑡𝑖1(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) − 𝑜𝑝𝑡2(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) − 𝑜𝑝𝑡3(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) 

 

Function opt5 generates a sequence of patterns in the SPIN rule body, where triples patterns 

of heuristics 1, 2 and 3 are placed. The ∥ operator denotes the concatenation of two sequences. 

 
𝑜𝑝𝑡5(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) ≔ 𝑜𝑝𝑡𝑖1(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) ∥ 𝑜𝑝𝑡2(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) ∥ 𝑜𝑝𝑡4(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) 

 

Then, the foreach loop in the body of the opt function iterates over all owl:sameAs or 

owl:differentFrom triples (heuristic 3), and places each triple in the next position in the se-

quence after the triple that contains the first occurrence of the subject or object of the triple, 

whichever comes later in the sequence. In Listing 13 we use the following auxiliary functions, 

whose implementation is trivial: Function first-pos(<s,p,o>,Patterns) returns the position of the 

first occurrence of the triple <s,p,o> in the sequence of triple Patterns, function max(N1,N2) 

returns the maximum of two numbers, and function insert(<s,p,o>,Pos,Patterns) inserts the 

<s,p,o> triple in the Patterns sequence at position Pos. 

 
Function opt(Patterns) 

 PatternsIn := opt5(Patterns) 

 Foreach <s,p,o>  opt3(Patterns) 

  Pos1 := first-pos(<s,p’,o’>, PatternsIn) 

  Pos2 := first-pos(<s’’,p’’,o>, PatternsIn) 

  Pos := max(Pos1, Pos2) 

  PatternsIn := insert(<s,p,o>, Pos+1, PatternsIn) 

 Return PatternsIn 

Listing 13. The optimization function for the SPIN rule body 

According to the above, the triple patterns of the body of the SPIN rule at class Course 

(Listing 11) are re-ordered as shown in Listing 14. 
 

CONSTRUCT {    # @Course 

 ?x  :knows ?z .  

}  

WHERE {  

 ?this  :isTaughtBy ?z .  

 ?x  :attends ?this .  

 ?x rdf:type  :Student .  

} 

Listing 14. Optimized SPIN rule at class Course 
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Notice that using the above algorithm, we try to change the order of the original SWRL 

rule condition elements as little as possible. The SWRL rules have been created by people hav-

ing a specific understanding of the ontology domain and the order of the rule condition elements 

represents the understanding of the developer about how class instances logically interrelate. 

So, if the translated SPIN rules have a random or a completely different order of condition 

elements then the same developer that will pick up the translated rule base in SPIN will have a 

hard time comprehending the rules he/she has developed. 

5.3 Implementing SWRL built-ins 

The translation of the SWRL built-ins does not follow the straightforward approach of the 

rest of the SWRL atoms and it depends on the nature of each function and the existence of 

equivalent SPIN or SPARQL functions. More specifically, SWRL specification (Horrocks et 

al., 2004) has defined 78 built-in functions classified across the categories: Comparisons, Math-

ematics, Boolean Values, Strings, Date, Time and Duration, URIs, and Lists. Currently, 

SWRL2SPIN implements more than half of the SWRL built-ins (41), mostly in the categories: 

Comparisons, Mathematics, Strings, and Lists. For the Date, Time and Duration category, we 

implemented only the swrlb:date function.  

Table 2 contains all the supported built-ins, the category they belong to and how their con-

version to SPIN/SPARQL was achieved. As it can be observed, the conversion of the built-ins 

falls into ten categories: binary filter, associative infix assign, binary infix assign, unary assign, 

assign function, filter function, magic property, complex assign, complex filter, and complex 

expression. Filter-type conversions lead to SPARQL FILTER Boolean expressions, whereas 

assign-type conversions lead to BIND expressions. Simple mathematical comparisons and op-

erations are treated as binary infix mathematical operations, such as >= or -. Addition and mul-

tiplication in SWRL built-ins can have an arbitrary number of arguments, so they are treated as 

associative binary infix operators. Finally, there are also simple unary operators, e.g. minus.  

The general atom transformation function (presented at the beginning of Section 5) for the 

case of built-in atoms is specialized as follows: 

 
𝑇𝑟𝑛𝑠𝑙𝐴𝑡𝑜𝑚(𝑎𝑡𝑜𝑚|𝑎𝑡𝑜𝑚. 𝑡𝑦𝑝𝑒 = 𝐵𝑢𝑖𝑙𝑡𝑖𝑛𝐴𝑡𝑜𝑚):=

𝑇𝑟𝑛𝑠𝑙𝐹𝑢𝑛(𝑐𝑜𝑛𝑣𝐶𝑎𝑡(𝑎𝑡𝑜𝑚. 𝑏𝑢𝑖𝑙𝑡𝑖𝑛), 𝑎𝑡𝑜𝑚. 𝑏𝑢𝑖𝑙𝑡𝑖𝑛, 𝑎𝑡𝑜𝑚. 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠)  
 

where the convCat function returns the conversion category (column 3) of the built-in function 

(column 1), as indicated in Table 2. 

Below we give the definition of the TrnslFun function for two representative cases: binary 

filter and binary infix assign. 
 

𝑇𝑟𝑛𝑠𝑙𝐹𝑢𝑛("𝑏𝑖𝑛𝑎𝑟𝑦 𝑓𝑖𝑙𝑡𝑒𝑟", 𝑓𝑢𝑛, 𝑎𝑟𝑔𝑠) ≔ 
"𝐹𝐼𝐿𝑇𝐸𝑅 ("&𝑇𝑟𝑛𝑠𝑙𝐴𝑟𝑔(𝑎𝑟𝑔𝑠[1])&𝑇𝑟𝑛𝑠𝑙𝑂𝑝(𝑓𝑢𝑛)&𝑇𝑟𝑛𝑠𝑙𝐴𝑟𝑔(𝑎𝑟𝑔𝑠[2])&")" 

 

where & is the string concatenation operator, a[n] is a notation that returns the n-th element of 

a list a and TrnslOp is a function that returns the operator (column 5) of the built-in function 

(column 1), as indicated in Table 2. The function TrnslArg has been discussed at the beginning 

of Section 5. 

For the binary infix assign conversion category, the translation function is defined simi-

larly: 

 
𝑇𝑟𝑛𝑠𝑙𝐹𝑢𝑛("𝑏𝑖𝑛𝑎𝑟𝑦 𝑖𝑛𝑓𝑖𝑥 𝑎𝑠𝑠𝑖𝑔𝑛", 𝑓𝑢𝑛, 𝑎𝑟𝑔𝑠) ≔ 
"𝐵𝐼𝑁𝐷 (("&𝑇𝑟𝑛𝑠𝑙𝐴𝑟𝑔(𝑎𝑟𝑔𝑠[2])&𝑇𝑟𝑛𝑠𝑙𝑂𝑝(𝑓𝑢𝑛)&𝑇𝑟𝑛𝑠𝑙𝐴𝑟𝑔(𝑎𝑟𝑔𝑠[3])&") 𝐴𝑆 "&𝑇𝑟𝑛𝑠𝑙𝐴𝑟𝑔(𝑎𝑟𝑔𝑠[1])&")" 
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Table 2. SWRL2SPIN support for SWRL built-ins 

SWRL Conversion category SPIN / SPARQL 

Built-in Function Category  function op expression 

greaterThan(?x,?y) Compare binary filter sp:gt > FILTER (?x > ?y) 

greaterThanOrEqual(?x,?y) Compare binary filter sp:ge >= FILTER (?x >= ?y) 

lessThan(?x,?y) Compare binary filter sp:lt < FILTER (?x < ?y) 

lessThanOrEqual(?x,?y) Compare binary filter sp:le <= FILTER (?x <= ?y) 

equal(?x,?y) Compare binary filter sp:eq = FILTER (?x = ?y) 

notEqual(?x,?y) Compare binary filter sp:ne != FILTER (?x != ?y) 

add(?y,?x1,?x2,…,?xn) Math associative infix assign sp:add + BIND ((((?x1 + ?x2) +…) + ?xn) AS ?y) 

multiply(?y,?x1,?x2,…,?xn) Math associative infix assign sp:mul * BIND ((((?x1 * ?x2) * …) * ?xn) AS ?y) 

subtract(?z,?x,?y) Math binary infix assign sp:sub - BIND ((?x - ?y) AS ?z) 

divide(?z,?x,?y) Math binary infix assign sp:divide / BIND ((?x / ?y) AS ?z) 

unaryPlus(?y,?x) Math unary assign sp:unaryPlus + BIND ((+?x) AS ?y) 

unaryMinus(?y,?x) Math unary assign sp:unaryMinus - BIND ((-?x) AS ?y) 

abs(?y,?x) Math assign function sp:abs  BIND (abs(?x) AS ?y) 

ceiling(?y,?x) Math assign function sp:ceil  BIND (ceil(?x) AS ?y) 

floor(?y,?x) Math assign function sp:floor  BIND (floor(?x) AS ?y) 

round(?y,?x) Math assign function sp:round  BIND (round(?x) AS ?y) 

mod(?z,?x,?y) Math assign function spif:mod  BIND (spif:mod(?x, ?y) AS ?z) 

stringConcat(?y,?x1,?x2,…,?xn) Strings assign function sp:concat  BIND (CONCAT(?x1,…, ?xn) AS ?y) 

stringLength(?y,?x) Strings assign function sp:strlen  BIND (STRLEN(?x) AS ?y) 

upperCase(?y,?x) Strings assign function sp:ucase  BIND (UCASE(?x) AS ?y) 

lowerCase(?y,?x) Strings assign function sp:lcase  BIND (LCASE(?x) AS ?y) 

substringBefore(?y,?x1,?x2) Strings assign function sp:strbefore  BIND (STRBEFORE(?x1, ?x2) AS ?y) 

substringAfter(?y,?x1,?x2) Strings assign function sp:strafter  BIND (STRAFTER(?x1, ?x2) AS ?y) 

substring(?y,?x,?s,?l) Strings assign function sp:substr  BIND (SUBSTR(?x, ?s, ?l) AS ?y) 

replace(?y,?str,?s1,?s2) Strings assign function sp:replace  BIND (REPLACE(?str, ?s1, ?s2) AS ?y) 

endsWith(?x,?y) Strings filter function sp:strends  FILTER STRENDS(?x, ?y) 

startsWith(?x,?y) Strings filter function sp:strstarts  FILTER STRSTARTS(?x, ?y) 

contains(?x,?y) Strings filter function sp:contains  FILTER CONTAINS(?x, ?y) 

matches(?x,?y) Strings filter function sp:regex  FILTER REGEX(?x, ?y) 

tokenize(?x,?y,?z) Strings magic property spif:split  ?x spif:split ( ?y ?z ) . 

integerDivide(?z,?x,?y) Math complex assign   BIND (spif:cast(?x / ?y, xsd:integer) AS ?z) 

pow(?pow,?x,?n) Math complex assign   BIND (spif:cast((((?x1 * ?x2) * …) * ?xn), xsd:integer) AS ?pow) . 
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SWRL Conversion category SPIN / SPARQL 

Built-in Function Category  function op expression 

normalizeSpace(?y,?x) Strings complex assign   BIND (REPLACE(REPLACE(REPLACE(?x, "\\s+", " "), "^\\s+", ""), 

"\\s+$", "") AS ?y) 

date(?y,?year,?month,?day) Date, 

Time, Du-

ration 

complex assign   BIND (spif:cast(CONCAT(spif:cast(?year, xsd:string), "-", 

spif:cast(?month, xsd:string), "-", spif:cast(?day, xsd:string)), xsd:date) 

AS ?y) 

containsIgnoreCase(?s1,?s2) Strings complex filter   FILTER CONTAINS(LCASE(?s1),LCASE(?s2)) 

stringEqualIgnoreCase(?s1,?s2) Strings complex filter   FILTER (LCASE(?s1) = LCASE(?s2)) 

empty(?list) Lists complex filter   FILTER (?list = rdf:nil) 

first(?e,?list) Lists complex expr   ?list rdf:first ?e . 

rest(?e,?list) Lists complex expr   ?list rdf:rest ?e . 

member(?e,?list) Lists complex expr   ?list (rdf:rest)*/rdf:first ?e . 

length(?length,?list) Lists complex expr   { 

      SELECT ?x ?list (COUNT(?e) AS ?length) 

      WHERE { 

          ?list (rdf:rest)*/rdf:first ?e . 

      } 

      GROUP BY ?x ?list 

} .   # ?x is an instance with a property whose value is the list ?list 
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The translation functions for the rest of the conversion categories will not be presented for 

brevity. We believe that the reader can easily follow the conversion patterns between the first 

and the last columns of Table 2. 

Another large category is SWRL built-in functions with an exact equivalent SPIN / SPARQL 

function, as e.g. round, replace, and contains. The conversion of these functions is straightfor-

ward; as in the FILTER case, all arguments of the SWRL built-in become arguments of the SPIN 

/ SPARQL function, whereas in the BIND case the first argument of the SWRL built-in becomes 

the variable to be bound in the SPIN / SPARQL BIND expression, whereas the rest of the argu-

ments of the SWRL built-in become the arguments of the SPIN / SPARQL function.  

As discussed in Section 4, FILTER and BIND expressions both have an sp:expression prop-

erty that contains the mathematical or functional SPARQL expression; BIND also has an sp:var-

iable for the assigned variable. All expressions belong to a type, which is the name of the main 

SPARQL function in the expression, e.g. sp:gt, sp:lcase, etc. In the case of the complex func-

tional expressions, the outer function is the type of the FILTER expression, e.g. sp:contains in 

the case of the containsIgnoreCase SWRL built-in. The argument list of the SWRL built-in 

(property swrl:arguments) is treated as explained above, generating sp:argNN properties of the 

SPARQL expression / function. The only exception is the spif:cast function, whose second ar-

gument is represented by an arg:datatype property. The values of the sp:argNN properties can 

be SPIN variables, datatype constants, individuals or nested SPARQL functions / expressions. 

As an example, consider the SWRL rule in Listing 15 which is translated in the SPIN rule at 

class Person (Listing 16). Specifically, the RDF concrete syntax for the SWRL built-in atom is 

shown in Listing 17, whereas the converted SPIN / SPARQL expression is shown in Listing 18. 

 
Person(?x) ∧ firstName(?x, ?y) ∧ lastName(?x, ?z) ∧  

swrlb:stringConcat(?a, ?y, " ", ?z) →   
fullName(?x, ?a) 

Listing 15. Sample SWRL rule with built-in 

CONSTRUCT {    # @Person 

    ?this  :fullName ?a . 

} 

WHERE { 

    ?this  :firstName ?y . 

    ?this  :lastName ?z . 

    BIND (CONCAT(?y, " ", ?z) AS ?a) . 

} 

Listing 16. Sample SWRL built-in translated to SPIN/SPARQL 

[ rdf:type swrl:BuiltinAtom ; 

  swrl:builtin swrlb:stringConcat ; 

  swrl:arguments [ rdf:type rdf:List ; 

            rdf:first  :a ; 

            rdf:rest [ rdf:type rdf:List ; 

            rdf:first  :y ; 

            rdf:rest [ rdf:type rdf:List ; 

            rdf:first " "^^xsd:string ; 
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            rdf:rest (  :z ) ] ] ] 

] ; 

Listing 17. RDF syntax for the SWRL built-in example 

[  rdf:type sp:Bind ; 

   sp:expression [  rdf:type sp:concat ; 

           sp:arg1 [ sp:varName "y" ; ] ; 

           sp:arg2 " " ; 

           sp:arg3 [ sp:varName "z" ; ];]; 

   sp:variable [ sp:varName "a" ; ] ; 

] 

Listing 18. RDF syntax for the converted example of Listing 17 

The rest of the SWRL built-ins are treated as Complex cases, meaning that their translation 

involves the combination of more than one simple functions, as discussed above. Complex cases 

can be filters, assignments or general SPARQL expressions (graph patterns) and they are treated 

in an ad-hoc manner. For example, the integerDivide built-in is translated as a division and a cast 

to integer, whereas the pow built-in is translated as repetitive multiplication using recursion. List 

built-ins are of special interest because their translation cannot be performed using 

SPIN/SPARQL functions, but can be treated using SPARQL path expressions. For example, the 

member built-in is translated into a recursive path expression combining rdf:first and rdf:rest. 

The translation of the length built-in is the most complicated one because it requires a SPARQL 

subquery that counts all the elements in the list, i.e. all possible iterations of the rdf:rest property 

in the rdf:rest* recursive path.  

A special case is magic properties which are supported by many SPARQL engines to dy-

namically compute values at query time. A magic property usually is implemented by a calcula-

tion function that determines bindings of the variables on the left or right side of the predicate. 

SPIN enables users to define such magic properties, in a very similar way as SPIN Functions, 

but providing greater flexibility. In contrast to BIND/FILTER functions, magic properties can 

return multiple values. Furthermore, any input or output variable may be unbound; it is the task 

of the magic property to find their potential bindings. The magic property spif:split is used in 

SWRL2SPIN to translate the swrlb:tokenize SWRL built-in. The first variable of the SWRL 

built-in generates multiple bindings. When the spif:split magic property is used, the subject of 

the “triple pattern” generates multiple alternative bindings. Magic properties are treated in an ad-

hoc manner in SWRL2SPIN, since their definition and behavior does not follow a regular pattern.  

The rest of the SWRL built-ins will be implemented as a future work, most probably as 

complex conversion cases or as user-defined magic properties. We notice here that the only other 

SWRL related tool supporting functions for RDF lists is the SWRL-IQ plugin (Elenius, 2012) 

for Protégé 3.x. 
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6. Evaluation 

To evaluate SWRL2SPIN we have initially generated use cases of a University ontology 

with various SWRL rules in Protégé (“Protégé”, n.d.), using the SWRLTab editor (O’Connor et 

al., 2005), including all the SWRL-built-ins of Table 2, except for built-ins not supported by 

Protégé SWRLTab. Then we have used the SWRLDroolsTab (“SWRL Drools Tab”, 2012) to 

run SWRL rules and to identify and record all the rule inferences. Consequently, we have con-

verted the SWRL use cases through SWRL2SPIN and we have tested the generated SPIN rules 

using TopSPIN in TopBraib Composer FE (TopQuadrant, n.d.) for equivalent inferences. The 

results were found identical for all use cases, except the ones that could not be run in SWRL-

Drools. 

Furthermore, we present below some performance tests we have conducted in order to eval-

uate the efficiency of the translation procedure and the efficiency of the generated rules. All tests 

were performed on a Windows 10 PC with Intel i7-4770 @ 3.40GHz, 8 GB RAM and SSD. 

First, we have performed a scalability test for the translation time of SWRL2SPIN tool. Re-

sults shown in Figure 2 indicate that the translation time is linear to the number of rules, which 

was expected since each rule is translated individually, even if there are common variables or 

other constructs among SWRL rules. Rule 1 is the rule shown at Listing 1, with 3 atoms in the 

rule body, while Rule 2 (shown at Listing 19) has 6 atoms in the body, including one built-in 

atom. The translation time per rule also depends on the number of atoms and the number and 

type of built-ins. The average translation time per rule is about 0,72 msec for Rule 1 and 2,82 

msec for Rule 2. 

 

Figure 2. Rule translation time scalability. 

Student(?x)∧attends(?x,?y)∧isTaughtBy(?y,?z) ∧ firstName(?z,?f) ∧  

lastName(?z,?l) ∧ swrlb:stringConcat(?fn,?f, " ", ?l) ->  
knowsName(?x, ?fn) 

Listing 19. Sample SWRL rule in human readable syntax 
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The second test evaluates the performance of executing at TopBraid the SPIN rules embed-

ded in a class against flat rules, as in SWRL. Specifically, we have tested the flat rule at Listing 

7 against the rule at Listing 10 which is embedded at class Student. Results are shown in Table 

3 and Figure 3. It is evident that rules embedded in a class perform faster than their flat equiva-

lents. The speed improvement is 14% for an ontology with 100K Student instances that all attend 

the same course with one teacher and 32% for 1M instances and it is statistically significant with 

a p-value less than 0,01. 

 

Table 3. Execution time (in msec) of a flat SPIN rule vs. a rule embedded in a class. 

 100K instances 1M instances 

Flat rule 1674 38098 

Embedded rule 1438 25846 

Improvement 14% 32% 

 

 

Figure 3. Performance comparison of a flat SPIN rule vs. a rule embedded in a class. 

The third test tries to prove the point made at Section 5.1 that SPIN rules are embedded only 

at classes that their instances play the role of subjects at rule condition triple patterns and not at 

classes whose instances appear only as “referenced objects”, i.e. they appear at triple patterns 

only as objects, due to performance issues. Specifically, we have tested the rule at Listing 10 

which is embedded at class Student (we call this “subject” class) against the rule at Listing 12 

which would have been embedded at class Professor (we call this “object” class), if we have 

decided to embed a rule into all references classes. Results are shown in Table 4 and Figure 4. It 

is evident that rules embedded in a “subject” class perform faster than rules embedded in an 

“object” class. The speed difference is 14% for an ontology with 100K Student instances and 

35% for 1M instances and it is statistically significant with a p-value less than 0,01. 
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Table 4. Execution time (in msec) of a SPIN rule embedded in a “subject” class vs. a rule embedded in 

an “object” class. 

 100K instances 1M instances 

Rule embedded in “object” class 1677 39714 

Rule embedded in “subject” class 1438 25846 

Improvement 14% 35% 

 

 

Figure 4. Performance comparison of a SPIN rule embedded in an “object” class vs. a rule embedded in 

a “subject” class. 

Finally, the fourth test evaluates the performance of the optimized SPIN rules (section 5.2) 

of SWRL2SPIN against their non-optimized version. Specifically, we have tested the non-opti-

mized rule at Listing 11 against the optimized rule at Listing 14 rule, both embedded at class 

Course. Results are shown in Table 5 and Figure 5. It is evident that optimized rules perform 

faster than their non-optimized equivalents. The speed improvement is 11% for an ontology with 

100K instances and 30% for 1M instances and it is statistically significant with a p-value less 

than 0,03. 

 

Table 5. Execution time (in msec) of an optimized SPIN rule vs. an non-optimized rule. 

 100K instances 1M instances 

Non-optimized rule 1413 29508 

Optimized rule 1257 20683 

Improvement 11% 30% 
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Figure 5. Performance comparison of a non-optimized SPIN rule vs. an optimized rule. 

7. Conclusions 

In this paper we have argued that SPIN is a more promising de-facto industrial standard for 

the future of combining ontologies and rules, because it builds upon the widespread use of 

SPARQL. Furthermore, SWRL has been around for quite a while, not being able to achieve a 

W3C recommendation status. SPIN also offers more expressivity than SWRL due to constructs 

like NOT EXISTS, FILTER, OPTIONAL and UNION, and also offers object-orientation by 

being able to store rules to classes as behaviors to be inherited through the class hierarchy. Thus, 

we believe that existing large SWRL projects can benefit from being translated into SPIN rules. 

To this end we have developed in Prolog and presented in this paper the SWRL2SPIN pro-

totype tool (available at: https://github.com/nbassili/SWRL2SPIN) that translates ontologies 

with SWRL rules into ontologies with SPIN rules. The main contribution of the paper is that the 

transformation translates flat SWRL rules to object-oriented SPIN rules, embedded in the appro-

priate ontology classes and optimized for maximum rule execution performance. The novelty of 

SWRL2SPIN lies on the fact that, to the best of our knowledge, there is no other tool in the 

literature that does that. 

We have tested the tool using ontologies and SWRL rule bases edited (and tested for reason-

ing) by Protégé and we have successfully imported the translated ontologies and SPIN rules into 

the TopBraid Composer, having exactly the same inference results. We have also evaluated the 

scalability of the conversion tool, which is linear, and the effectiveness of the generated SPIN 

rules in terms of performance. Results have clearly confirmed all our claims: a) rules embedded 

in classes perform better than flat rules, b) rules embedded in classes that their instances play the 

role of “subjects” in the triple patterns of the condition perform better than rules that their in-

stances play the role of “objects”, and c) optimized embedded rules perform better than non-

optimized ones. The performance improvement also depends on the size of the ontology, so for 

large numbers of instances our choices regarding the embedded rules perform even better.  

SWRL2SPIN currently supports 41 SWRL built-ins, including built-ins for lists which are 

usually not supported, but we have provided a structured methodology for supporting more in 

the future. Notice that our translation methodology is based on direct RDF-to-RDF translation 
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between the SWRL and SPIN RDF vocabularies; therefore, it is not dependent on the implemen-

tation language we have choose for SWRL2SPIN.  

As for future work, we plan to make our tool available for public testing, to evaluate it for 

converting large SWRL rule bases, to support more SWRL built-ins and to be able to automate 

the translation process, which currently must be run from within the Prolog environment, possi-

bly as an add-on to some SPIN rule engine. Finally, with the emergence of the SHACL language 

(Shapes Constraint Language) (Knublauch & Kontokostas, 2017), our future aim is to extend the 

tool in order to convert SWRL rules also to SHACL rules (Knublauch et al., 2017), when the 

latter becomes part of the SHACL recommendation. We believe that RDF validation using rule-

based approaches will become really important in the future (Arndt et al., 2017) as more Linked 

Open Datasets become available. 
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