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Abstract—Several modern deep learning architectures incor-
porate the operation of pooling in order to achieve sufficient,
minimal and invariant representations. Nevertheless, its impor-
tance has only been verified empirically, without solid theoretical
evidence. This paper presents a comprehensive theoretical anal-
ysis, investigates the mechanism of pooling from the information
theory point of view and proposes a novel pooling operation
based on entropy. In comparison with other versions of pooling,
it automatically adapts to the features and creates more compact
representations. The theoretical outcomes are validated utilizing
both shallow and deep architectures.

Index Terms—Feature Pooling, Deep Learning, Representation
Learning, Information Theory, Entropy, Channel Capacity

I. INTRODUCTION

Feature pooling dates back to the seminal paper about
complex cells in the visual cortex [1]. It is used in many
hand-crafted feature engineering methods such as SIFT [2]
and HOG [3]. Especially max [4] and average pooling [5],
[6] are commonly used in convolutional neural networks.
Stochastic pooling has also shown state-of-the-art results for
regularization of deep convolutional neural networks [7].

Pooling is an integral part of several neural network ar-
chitectures and there is a plethora of examples predicating
its benefits. However, most of the studies are empirical and
there is a lack of a complete theoretical framework. The goal
of this research is to shed light on the dynamics of pooling
operation, using information theoretic concepts. The main con-
tributions of the paper are summarized in the following steps:
a) Scrutinizing pooling operation as an information channel.
b) Understanding max, average and stochastic pooling. c)
Reduction of pooling to a special case of the problem of
max entropy sampling. d) Proposing a novel pooling oper-
ation, named entropy pooling. e) Empirical evaluation of the
theoretical outcomes.

II. RELATED WORK

To the best of the authors’ knowledge, there is only one
theoretical analysis of pooling operation by Boureau et al.
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[8]. It describes the statistical properties of two basic pooling
operations for a two-class categorization problem.

The approach that is followed is simplified considering a
two-class classification problem and assuming the features are
i.i.d. Bernoulli random variables. According to the authors,
the assumption of independence is invalid, since neighbouring
image features are highly correlated. Despite its shortcomings,
the outcomes of the study are still relevant and they are verified
empirically. The two pooling operations under examination are
max and average. The analysis evaluates how the statistical
properties of the two methods affect the capability of a model
to separate two different classes. The underlying reasons that
justify this performance are obscured and are contributed to
several factors, such as the sparsity of the features and the
sample cardinality.

III. POOLING OPERATION AND INFORMATION THEORY

Recent studies have advanced many deep learning tech-
niques using information theoretic principles, including the
generalization of rate distortion theory, named information
bottleneck principle [9]. A generalization of dropout tech-
nique, named information dropout, is proposed and achieves
similar performance to binary dropout [10]. A matrix-based
Rényi’s α-entropy is used to understand the information flow
in stacked autoencoders [11]. A framework, named partial in-
formation decomposition, is introduced to analyze the learning
phase of convolutional neural networks [12].

This paper establishes a connection between pooling opera-
tor and information theory. With this in mind, the function of
pooling is revisited. Although there is no formal definition, it
is widely accepted that the objective is to downsample a given
feature map, while retaining relevant information. Downsam-
pling the data is easy and makes the overall architecture
computationally lighter. However, determining which features
are relevant is hard. It not only depends on the task, but also
on the characteristics of the data.

A. Pooling as an Information Channel

Let’s define the objective of pooling from the perspective
of information theory. Assume a deep neural network with
one pooling operation after hidden layer i. Denote the output
features of hidden layer i as a random variable X. Let X be
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Fig. 1. Markov chain of pooling operation.

the input of the pool and A its output.Then pooling operation
can be considered as an information channel, which can be
represented by the Markov chain in Fig. 1.

H(A|X) =
∑
x

p(x)H(A|X = x) (1)

H(A|X) =
∑
x

p(x)H(1) = 0 (2)

Thereupon, for the case of a deterministic function, the mutual
information depends only on the entropy of the output features
and (4) becomes:

I(X;A) = H(A) (3)

The mutual information I, between the two random variables
X and A and the capacity C of the channel, are defined by the
following equations respectively [13]:

I(X;A) = H(A)−H(A|X) (4)

C = max
p(x)

I(X;A) (5)

, where H(A) is the entropy and H(A|X) the conditional
entropy. The ideal channel would allow all the information
to be transferred, without loss. In the case of pooling, the
goal is to maintain as much relevant information as possible.
Measuring the relevance of information would require prior
knowledge of the task, otherwise our best estimation would
be just a guess. Consequently the best channel is the one that
makes no assumptions which is the channel with maximum
capacity. From (4) it is obvious that I(X;A) is max when H(A)
is maximized and H(A|X) is minimized.

The conditional entropy H(A|X), which is non-negative, can
be equal to zero when pooling is a deterministic function, such
as max and average ones. H(A|X) can be developed as follows:

B. Understanding Pooling

The outcomes about channel capacity of pooling operation
can be used to understand the mechanism of max, average and
stochastic pooling. Using the equations derived in the previous
section and the statistical properties of the variables X and A,
it will be explained how these operations work.

The statistical properties of the input X are the same for each
case of pooling and they are described along these lines. Let
x denote the mean of the joint feature representation XN with
size N and σX its standard deviation. The respective formulas
are:

x =
1

N

N∑
i=1

xi (6)

σX =
1

N

N∑
i=1

(xi − x)2 (7)

1) Max pooling: Max pooling is a function that given a set
of values, it chooses the largest one. Pooling is applied using
kernels, so let Xr be a joint feature representation of a kernel
with r elements, then the function is:

fmax(Xr) = max(x1, x2, ..., xr) (8)

It is a deterministic choice function and the mutual information
between the input and the output, according to (3), is equal to
H(A).

Examining the statistical properties of max pooling will now
clarify how it affects H(A). By definition, it is obvious that
the mean will be increased, thus xA ≥ x . In order to evaluate
the standard deviation, more elaboration is needed. By using
kernels , the standard deviation in (7) is developed as follows:

σX =
1

M

M∑
i=1

1

r

r∑
j=1,xij 6=ai

(xij − x)2 +
1

M ∗ r

M∑
i=1

(ai − x)2 (9)

where M is the number of kernels, r the number of elements
of each kernel and ai the maximum value of each kernel.
It is assumed that there is no overlap during pooling and so
N = r ∗ M . The proof with overlap is similar. Next, the
standard deviation of max pooling is given by:

σA =
1

M

M∑
i=1

(ai − xA)2 (10)

Comparing (9) and (10), it is concluded that the change of
standard deviation depends on the distribution of the values of
the input features. The input also determines the cardinality
of A, which also affect the entropy. From the definition of
entropy, higher cardinality means higher entropy. Thus, max
operation doesn’t control the entropy of the output and there
is no guarantee that it will maximize the capacity of pooling.
The capacity of the channel is proved that it depends on the
input feature distribution and the cardinality of the output A.

2) Average pooling:: Average pooling is analyzed in the
same fashion, because calculating the average is a determin-
istic function.

favg(Xr) =
1

r

r∑
j=1

xj (11)

Therefore, the mutual information is described by 3. The mean
of the original XN and the mean of the output of pooling
AM are equal and will be symbolized as x. Equation (7) is
developed using kernels as in:

σX =
1

M

M∑
i=1

1

r

r∑
j=1

(xij − x)2 (12)

Using (11), let ai = favg(Xi). Then the formula of standard
deviation for the features AM is:

σA =
1

M

M∑
i=1

(ai − x)2 =
1

M

M∑
i=1

[
1

r

r∑
j=1

(xij − x)]2 (13)



From (12) and (13) it is concluded that σA ≤ σ. Consequently,
the distribution of the output A will have smaller standard
deviation and the values of its elements will tend to the
expected value x. These two properties of average pooling,
lead to a more uniform distribution and make it robust to
feature invariance. However, the distribution still depends on
the input data. The maximum unique elements of the final
distribution is M and it happens when each kernel gives
a unique value. The mechanism of average pooling doesn’t
affect the number of unique output values and therefore it
doesn’t guarantee maximization of the entropy.

3) Stochastic pooling:: The case of stochastic pooling is
different, since it is a non deterministic choice function. With-
out loss of generality, let the stochastic function be the equal
probability of selecting one of the features. Therefore, if N is
the cardinality of features, the probability of selection of each
feature is a = 1/N . Next, let’s consider the transition matrix
p(A|X), with rows representing A and columns representing
X. Let −→r be a row of the transition matrix, then (4) becomes:

I(X;A) = H(A)−H(−→r ) (14)

I(X;A) = H(A)− f(a) (15)

The entropy of the row vector is a function depending on the
probability a. The mutual information of stochastic pooling
depends on both H(A) and H(A|X). The first term is still free
of any parameter of the channel and depends on the data. The
difference against max and average pooling is that stochastic
pooling has some control over the mutual information via the
parameter a.

The outcome of the previous analysis is that current pooling
solutions don’t have the properties to handle the entropy H(A)
and their performance is affected by the distribution of the
data. This problem can be addressed by introducing a novel
pooling operation based on max entropy sampling.

IV. ENTROPY POOLING

As it was shown previously, conventional pooling functions
don’t have the properties to manage the entropy of A in (4). A
more advanced approach is required, to accomplish complete
control of the entropy H(A) and minimize the conditional
entropy H(A|X). The latter requirement can be met by defining
a deterministic function. For the former one, we need to
understand the problem in depth and reformulate it.

Maximizing the mutual information in (3) can be reduced to
the problem of maximum entropy sampling [14]. It is defined
as a design problem of selecting a subset T from a set S of N
random variables, with regard to retain as much information
as possible. In the context of pooling, the problem is to choose
the most informative subset, subject to spatial constraints.

Following the variable definitions of the Markov chain in
Fig. 1, let fentr be the required function. According to the
principle of maximum entropy. the probability distribution that
best describes A, is the uniform distribution. Assuming only
that the size of A is predefined and equal to M, the required

function has lower bound equal to zero and upper bound the
entropy of the equivalent uniform distribution.

0 ≤ fentr(X) ≤ log|M | (16)

In line with (16), the output of fentr should approximate a
uniform distribution. Existing solutions for the problem of
maximum entropy sample can be adopted [15]. However, this
would be computationally inefficient for large neural networks
because it is an NP-Hard problem [16]. For the purpose of this
study, a novel algorithm is proposed, named entropy pooling.
The proposed version of entropy pooling is non-optimal, but
computationally efficient and extendable.

The algorithm of entropy pooling computes the probabilities
p for each feature map with size N. Next, the map of
probabilities is divided into regions, according to the specified
kernel size and strides, in the same way as in classic pooling
operations. For each region the element with the smallest
probability is selected. The mathematical formula of entropy
pooling, for a region of size r, is:

fentr(Xr) = Xr[g(Pr)], (17)
g(Pr) = argmin

1≤i≤r
pi (18)

, where Xr is the input feature map and Pr the constructed
map of probabilities. Consequently, (3) gives:

I(X;A) = H(fentr(Xr)) (19)

So far, the desired function is deterministic and selects
features with high sparsity, handling the amount of information
that will be propagated via the neural network. It remains to
explain why choosing sparse features increases the entropy.
The intuition is that rare features cannot be selected several
times and as a result the output will have a flatten distribution
with high cardinality. This is in good agreement with the
finding of Boureau et al. [8], that max pooling is well adopted
to rare activated features.

A more rigorous proof is given considering the bounds in
(16), the property that entropy is concave and the fact that the
final feature map A has no element with p < 1/M . Observing
the graph of a random entropy function such as Fig. 2, the
peak is at p = 1/M and every solution to the right has lower
entropy. As a conclusion, selecting features that are activated
rarely, increases the output entropy of pooling.

V. EXPERIMENTS AND DISCUSSION

The aim of the experiments is twofold. The first goal is
to validate the theoretical outcomes and the second one to
demonstrate that entropy pooling is robust and can perform
on par with other pooling operations. For the purpose of
the experiments, two versions of entropy pooling are used.
One which gives an output with high entropy and one with
low entropy. The former one works as it was described
in the previous section. The latter one selects the most
frequent features instead of the sparse ones. An optimal
solution is not examined because it is out of the scope of
this study and it would be computationally intractable. Thus,



Fig. 2. Diagram of an entropy function.

the experiments are not expected to demonstrate better than
state-of-the-art results. The code of the experiments can be
found at https://github.com/ChristoferNal/pooling-operations-
and-information-theory.

A. Validation of Theoretical Outcomes

1) The effect of pooling operation on images: Considering
pooling as an information channel, pure pooling is applied on
images. Max, average and entropy pooling are examined using
random images from the dataset Cifar10 [17]. The goal is to
observe how the distribution of an image is changed by the
three operators. The pipeline is very simple, a single channel is
introduced to each pooling and then the output is plotted. Then
Shannon entropy, mean and standard deviation are calculated.
Tables I and II present two representative examples with the
respective results of a dark image and a bright one.

The experiments verify the theoretical outcomes. The most
robust operators are entropy and average pooling. The output
of entropy pooling tends to be uniform and its Shannon
entropy is the first or second highest. The output of average
pooling, also tends to be uniform while standard deviation is
always lower than the original and the mean equal to the mean
of the original image. Shannon entropy of average pooling is
very high for the majority of the images of this dataset. This
is explained by the high cardinality of the output due to the
unique results of the function of average.

TABLE I
EFFECT OF POOLING ON A BRIGHT IMAGE

Pooling Properties
Type Cardinality Mean SD Entropy

Original Img 221 176.06 60.35 7.3
Max 115 192.14 54.14 6.56

Average 199 176.06 57.01 7.51
High Entropy 154 168.25 60.9 7.06
Low Entropy 86 182.5 57.37 5.85

According to average function, average pooling is not just
selecting features, it generates new ones and the output space is
not any more integers in [0, 255]. In order to make more direct

TABLE II
EFFECT OF POOLING ON A DARK IMAGE

Pooling Properties
Type Cardinality Mean SD Entropy

Original Img 240 81.19 73.18 7.38
Max 164 105.69 75.43 7.15

Average 221 81.19 68.51 7.71
High Entropy 165 94.38 72.67 7.2
Low Entropy 79 69.66 73.43 5.75

TABLE III
COMPARISON OF LOW AND HIGH ENTROPY

Dataset Low Entropy High Entropy
Cifar10 53.48 +-0.52 59.07 +-0.25

Cifar100 22.76 +-0.32 26.80 +-0.95
MNIST 71.73 +-12.98 72.93 +-16.64

FMNIST 74.54 +-34.19 77.88 +-10.41

the comparison with the other two pooling operators, which
act as selectors, an alternative version of average pooling is
also taken into account. The result of average is rounded to
the closest integer. Then, the output features belong to the
same group with the original ones, e.g. integers in the range
[0, 255]. This new version of average pooling behaves in the
same way. The output features still have high entropy, but at
this time it is lower than the Shannon entropy coming from
entropy pooling. The cardinality is also lower as expected.

The output of max pooling has higher mean value than
the original image. The standard deviation doesn’t show a
consistent behaviour, which confirms the theoretical analysis.
Regarding the entropy it is empirically verified that it depends
on the data. More specifically, it is observed that high entropy
and max pooling have similar behaviour for dark images.
The equivalent entropies have almost the same value. On the
other hand bright images are transformed into a lower entropy
feature representation via max pooling. These observations are
shown in tables I and II.

TABLE IV
IMAGE CLASSIFICATION RESULTS

Neural Image Pooling Operation
Network Dataset Max Average High Entr

LeNet MNIST 98.93 +-0.01 98.64 +-0.01 98.51 +-0.05
FMNIST 99.32 +-0.07 99.18 +-0.04 99.16 +-0.05

ResNet20 Cifar10 49.25 +-39.29 91.87 +-0.11 90.57 +-0.04
Cifar100 64.81 +-0.44 67.77 +-0.16 62.44 +-0.48

ResNet20 cifar10 85.05 +-0.06 87.15 +-0.24 88.57 +-0.22
2P cifar100 56.31 +-0.43 59.41 +-0.81 62.75 +-0.08

2) Increasing information flow in a shallow neural network:
Concerning the complexity of a deep neural network, the
simplest way to investigate how information flows is to build
a very shallow neural network. With this in mind, the simple
neural network consists of a convolutional layer, followed by
a pooling operation and a fully connected layer. The datasets
that are used are: Cifar10, Cifar100, MNIST and FMNIST.



Each of the datasets corresponds to a ten class classification
task, apart from Cifar100 which has one hundred labels. The
model is trained and tested each time with one of the following
pooling operations: high entropy and low entropy. The goal
is to verify that pooling features with higher entropy benefit
classification accuracy regardless of the dataset or the task.

The intuition that lies in this statement is that pooling is a
bottleneck and should maximize the amount of information
that passes to deeper layers. By looking at table III and
comparing low and high entropy operations, it is confirmed
that high entropy pooling always achieves better performance.

B. Comparative Analysis of Pooling Operations
There are many open questions on how a neural network

is trained and it is very difficult to isolate and measure the
impact of a single layer. In order to validate the robustness of
entropy pooling two popular architectures are used.

The first one is LeNet [6] and consists of two sets of
convolutional and pooling layers, followed by two fully-
connected layers and finally a softmax classifier. LeNet is
evaluated on MNIST and FMNIST. Table IV shows that the
best accuracy is achieved by max pooling, whereas average
and high entropy have equivalent accuracy.

The second architecture is ResNet20 [18]. Two variations of
ResNet20 are utilized, one with one pooling operation before
the last fully connected layer and one with one extra pooling
operation after the first convolutional layer. In this paper, the
former one is called ResNet20 1P and the latter one ResNet20
2P. ResNet is trained and validated using Cifar10 and Cifar100.

The accuracy results of ResNet20 1P are presented in table
IV. Among the various pooling operations, average fits the
best. This is not a surprise as the original model is proposed
with average pooling. When it comes to max pooling, the
model doesn’t always converge efficiently. Specifically for
Cifar10, the final accuracy can fluctuate a lot, which can be
attributed to the deficiency that max pooling is sensitive to
feature variability. High entropy pooling demonstrates descent
results for both datasets.

It is worth mentioning that the place of pooling inside this
neural network might be the reason that shows the weakness
of max pooling. Being at the end of the model means that all
features are important and well defined by previous layers. In
accordance to our theoretical conclusions max pooling misses
important information that have small absolute values, whereas
average and high entropy preserve the most important features.

Regarding ResNet20 2P, the pooling operation before the
last fully connected layer is the average one, across all
experiments. The first pooling is replaced with max, average
and high entropy. The maximum accuracy is achieved with
high entropy pooling and the rest of the results are as expected.

VI. CONCLUSION AND FUTURE WORK

This study strengthens the understanding of deep learning,
by scrutinizing pooling operation from the information theory
perspective. Using fundamental information theoretic princi-
ples it is evident how pooling operators enhance the per-
formance of neural networks. Rigorous mathematical proofs

show the strengths and the vulnerabilities of existing pooling
functions, emphasizing the need of a new property of these
functions that controls the information flow. Thereupon, pool-
ing is revisited as a special case of the problem of max entropy
sampling, suggesting a novel robust solution, named entropy
pooling. The theoretical outcomes are validated thoroughly via
practical experiments and the proposed method is empirically
compared to existing approaches.

These findings add to a growing body of literature on
developing a complete theory of deep learning. Further work
is suggested on investigating the behaviour of pooling during
training of a neural network, paying attention to the order of
pooling inside the network. Researchers are highly encouraged
to use entropy pooling, as it can be swapped into to any
existing neural network architecture.
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