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Abstract. We present our current state of research on explaining non-
entailments by �nding isomorphic subtrees of EL-description trees. Our
approach extends the set of abducible axioms that consist only of con-
cepts to role restrictions as well. We argue how our approach could �nd
solutions to abduction problems in scenarios where other methods can-
not, and illustrate this via an example comparing our approach to exist-
ing ones.
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1 Introduction

There has been a signi�cant amount of research done on explanations and on-
tology debugging in the world of OWL and Description Logics (DLs) [1, 2]. In
particular, research has been focused on methods for explaining entailments (in-
ferences) wrt. some background knowledge. One speci�c type of explanations are
so-called justi�cations, which represent a minimal subset of an ontology that is
su�cient enough for an entailment to hold [3]. Similarly, proofs have also been
utilized for explaining DL entailments [4].

However, such methods fall short when explaining non-entailments, i.e. ax-
ioms that do not logically follow from a knowledge base. Some classical ap-
proaches are based on providing counter examples [5], or using abduction [10].
Recently, this topic has received more attention as seen in [6], where explanations
in TBox abduction are formulated by mimicking justi�cations in ontologies, and
[7] in which homomorphisms are used to solve abduction problems. Nonetheless,
the problem of explaining non-entailments is infrequently investigated and there
is still much to be done.

Explaining non-entailments could aid users when updating a terminology
where some new changes can be found not to be entailed by the original knowl-
edge base. For e.g., in medicine, explanations of non-entailments could be used
to derive new relationships among drugs or symptoms of diseases. We propose
that a combination of DLs and graph isomorphisms could yield a standardized
approach. To this end, we investigate using subtree isomorphisms to solve ab-
duction problems in DLs. In this paper, we brie�y review some relevant work
and analyze limitations of existing approaches. Then, we propose how certain
gaps could be �lled and illustrate our approach with an example.
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2 Background and Motivation

Our focus is on the description logic EL based on two disjoint sets: NC consisting
of atomic concepts (or concept names) denoted by Ai, Bi, and NR consisting of
atomic roles (binary predicates or role names) denoted by ri, si for i ≥ 0. Com-
plex EL concept descriptions C,D can be: the top concept (⊤), atomic concepts
(A ∈ NC), conjunction (C ⊓ D), and role restriction (∃r.C). A conjunction of

atomic concepts is expressed as
n⊔

i=0

Ai, for n ≥ 0. Let f(X) =
n⊔

i=0

Ai ⊓ ∃r.(X),

where X is an EL concept. Then, f0(f1(f2(. . . fd(X)))) = f0 ◦f1 ◦f2 ◦ · · · ◦fd(X)
depicts nesting of role restrictions up to depth d, where d ≥ 0. For d = 0 we have

f0(X) =
n
⊓
i=0

Ai ⊓ ∃r0.(X), for d = 1, f0(f1(X)) =
n
⊓
i=0

Ai ⊓ ∃r0.(
m
⊓
i=0

Bi ⊓ ∃r1.(X)),

etc.
A TBox T represents terminological knowledge and is a �nite set of general

concept inclusions (GCIs) of the form C ⊑ D (we say "C is subsumed by D"
with a meaning "C is included in D" or "D includes C"). We sometimes refer
to concept inclusions (CIs) as axioms and denote them as α1, α2, . . . , αn. An
observation, η, is a speci�c GCI (or axiom) that we are interested in. We write
T |= η if an observation is entailed by a Tbox T , and T ̸|= η if an observation is
not entailed by a Tbox T .

The abduction problem we are interested in is de�ned as following:

De�nition 1. Let T be an EL TBox, C1 and C2 concepts de�ned wrt. T . An
abduction problem is a tuple (T , C2 ⊑ C1), where T is called the background
knowledge, C2 ⊑ C1 the observation, and T ̸|= C2 ⊑ C1. A solution to the
abduction problem is a hypothesis H of the form:

H = {α|α := (
n1⊓
i=0

Ai ⊑
n2⊓
i=0

Bi) or (f0 ◦ f1 ◦ · · · ◦ fd1
(X) ⊑ g0 ◦ g1 ◦ · · · ◦ gd2

(X))

or (
n1⊓
i=0

Ai ⊑ f0 ◦ f1 ◦ · · · ◦ fd1
(X)) or (f0 ◦ f1 ◦ · · · ◦ fd1

(X) ⊑
n1⊓
i=0

Ai)}

, and ∀α ∈ H, T ̸|= α and T ∪ H |= C2 ⊑ C1.

Consider some terminological knowledge T , and an observation η s.t. T ̸|= η. A
classical approach to explain this non-entailment is using abduction to generate a
hypothesis H, i.e. a "missing piece", such that when added to the terminological
knowledge the observation becomes entailed. In the case that an observation
should logically follow from a knowledge base, abduction allows us to �nd reasons
why the observation is not entailed and �x the non-entailment. Dependent on
the context of the observation, abduction could be used to explain why CIs are
not entailed by some terminological knowledge (TBox abduction) [6], explain
why assertions are not entailed by some assertive knowledge (ABox abduction)
[8, 9], or a combination of both (knowledge base abduction) [10, 11]. Our focus
is on the TBox, with the purpose of explaining concept inclusions.

A natural approach to abduction is to determine a set of possible abducibles
[9, 11, 6], i.e. concepts or statements we could abduct. There exist common mini-
mality criteria for constructing solutions to abduction problems, such as subset,
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size, and semantic minimality [8]. Still, these criteria do not necessarily provide
useful information for why an observation is not entailed by a knowledge base.
In particular, if we allow abduction of only certain CIs, for e.g. A ⊑ B, and
exclude CIs with role restrictions such as A ⊑ ∃r.B, then a solution to the ab-
duction problem may not be admissible. [6] highlights this challenge and tackles
it by abducting all types of CIs found in prede�ned patters based on justi�ca-
tions. Graph morphisms are also promising in identifying relevant concepts and
relations to abduct. [7] addresses this topic and explanations with low explana-
tory power have been successfully eliminated by utilizing graph homomorphisms.
However, homomorphisms capture entailment through axioms such as A ⊑ B
and do not explicitly include role restrictions in hypotheses. Our approach di�ers
in that it also allows abduction of role restrictions relevant to the observation of
interest, thus covering the cases in which a solution to the abduction problem is
not admissible by homomorphisms.

To illustrate this, consider the following TBoxes:

T1 = {∃employment.ResearchPosition ⊓ ∃quali�cation.Diploma ⊑ Researcher,

∃writes.ResearchPaper ⊑ Researcher,Doctor ⊑ ∃quali�cation.PhD,

Professor ≡ Doctor ⊓ ∃employment.Chair,

T2 = {∃employment.ResearchPosition ⊓ ∃quali�cation.Diploma

⊓ ∃writes.ResearchPaper ≡ Researcher,Doctor ⊑ ∃quali�cation.PhD,

Professor ≡ Doctor ⊓ ∃employment.Chair,

, s.t. T1 is originally taken from [7] and T2 is a modi�ed version to exemplify
how various CIs can impact the solution of the abduction problem.

Consider �rst TBox T1. Here, we have an observation η := Professor ⊑
Researcher, s.t. T1 ̸|= η and T2 ̸|= η. To remedy this, the following axioms need
to be added to T1:

H1 = {Chair ⊑ ResearchPosition,PhD ⊑ Diploma} (1)

The axioms in H1 are the "missing knowledge" for the observation η to become
entailed. Such a hypothesis is an explanation for why an observation does not
logically follow from a background knowledge, even though, in reality, it should.

H1 is produced by �rst representing the concepts in η as EL-description trees
(from now description trees or trees) denoted by T1 and T2 for Researcher and
Professor respectively, which are merely a graphical representation of concept de-
scriptions [12]. Next, a homomorphism φ : T1 7→ T2 is found. Since subsumption
is characterized via homomorphisms between description trees, they are used to
solve the abduction problem and e�ectively omit arbitrary hypotheses [7].

However, there are some cases in which homomorphisms cannot be used to
�nd a solution to an abduction problem. Let us now consider TBox T2. A solution
to the abduction problem now is the following:

H2 = {Chair ⊑ ResearchPosition,PhD ⊑ Diploma,

Doctor ⊑ ∃writes.ResearchPaper}
(2)
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In the second case the description trees of the concepts in η are not homomorphic
due to structural di�erences, and mapping cannot be performed. Thus, a solution
to the abduction problem is not admissible. Structural di�erences are expressed
as axioms in the form of A ⊑ ∃r.B, and are a key part in formulating solutions
to abduction problems in cases such as this one.

Our main contribution is an approach for abduction of axioms that consist of
concepts and role restrictions as well. We argue how subtree isomorphisms can
extended abduction to include concepts as well as role restrictions in hypotheses,
thus confronting the challenges discussed above.

3 Methodology

Our methodology will be described using the example in the previous section.
We generate solutions to abduction problems by identifying isomorphic subtrees
of concepts represented as description trees originally described in [12].

De�nition 2. A description tree is of the form T = (VT , ET , v0, l), where T is
a tree with root v0 whose nodes v ∈ VT are labeled with l(v) ⊆ NC , and (directed)
edges vrω ∈ ET are labeled with role names r ∈ NR. The empty label corresponds
to the top concept.

If we denote the tree with root T (vi), and the corresponding concept CT , we
have CT = CT (v0) and CT (v) = ⊔

v∈V

l(v) ⊓ ⊔
vrω∈E

∃r.CT (ω).

The vertex labels originally contain only atomic concepts and we extend them
in the induced subtrees to role restrictions as well. To include role restrictions,
we start by obtaining induced subtrees of description trees and join vertex labels.

De�nition 3. Given a description tree of the form T = (VT , ET , v0, l), a subtree
S = (V ′

S , E
′
S , v0, l

′) is an induced subtree of T i� V ′
S ⊆ VT , E

′
S ⊆ ET , and ∀v, u ∈

V ′
S if vru ∈ E′

S then vru ∈ ET . The nodes are labeled with l′(v) ⊆ NC ∪ {∃r.C},
where r ∈ NR and C is an EL concept, and (directed) edges are labeled with role
names r ∈ NR. An induced subtree is a description tree itself.

Induced subtrees are formed by removing vertices from the original tree and
embedding them as EL concepts within their parents' labels. For any v ∈ VT −
{u}, if vru ∈ ET , then l′(v) = l(v) ∪ {∃r.( ⊓

u∈VT

l(u))}.

To construct hypotheses we map induced subtrees as following:

De�nition 4. An isomorphism from an induced subtree S1 = (V ′
1 , E

′
1, v0, l

′
1) to

an induced subtree S2 = (V ′
2 , E

′
2, ω0, l

′
2) is a bijective mapping ϕ : V ′

1 7→ V ′
2 such

that ϕ(v0) = ω0 and:

1. vrω ∈ E′
1 ⇔ ϕ(v)rϕ(ω) ∈ E′

2

2. ∀v ∈ V ′
1 , and ω ∈ V ′

2 s.t. ω = ϕ(v), T |= ⊓
ω∈V ′

2

l′2(ω) ⊑ ⊓
v∈V ′

1

l′1(v)
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The �rst point in De�nition 4 is a general notion of graph isomorphisms - preserv-
ing graph connectivity. On top of this notion, the semantics are added through
mapping ϕ(v0) = ω0, and point 2 of De�nition 4 capturing subsumption wrt. a
TBox T . If the labels of mapped vertices are not in a subsumption relation as in
point 2, then we could potentially abduct that relation. We use this to formulate
hypotheses.

De�nition 5. Let T be a Tbox, S1 = (V ′
1 , E

′
1, v0, l

′
1) and S2 = (V ′

2 , E
′
2, v0, l

′
2)

induced subtrees of description trees T1 and T2 for EL concepts C1 and C2,
respectively. Given an abduction problem (T , C2 ⊑ C1) and isomorphism ϕ :
V ′
1 7→ V ′

2 , the hypothesis is de�ned as:

H = { ⊔l′2(ω) ⊑ ⊔l′1(v) | ω = ϕ(v) for v ∈ V ′
1} (3)

The hypothesis in De�nition 5 coheres to De�nition 1 - the abducted subsump-
tion relations ⊔l′2(ω) ⊑ ⊔l′1(v) are in fact axioms of the forms de�ned in De�-
nition 1. This is due to the fact they we map vertices of induced subtrees that
contain concepts and role restrictions in their labels l′1(v) and l′2(ω).

Fig. 1. Description trees of EL concepts from TBox T2 (upper part) and induced sub-
trees with updated labels (lower part). Dashed arcs are potential mappings.

Returning to the example, we discover from the corresponding description
trees (T1 and T2, respectively) of concepts Researcher and Professor that are
neither homomorphic nor isomorphic. This indicates that we cannot map every
vertex from T1 to T2 wrt. De�nition 4. The vertex v3 from T1 cannot be mapped
to any vertex in T2, because the structure will not be preserved - the type of
role connecting v0 to v3 in T1 does not connect any vertices in T2 (Figure 1
(upper part)). However, if we have a look at the induced subtrees of T1 and T2,
we will discover that they are isomorphic and we can �nd a mapping ϕ(v0) =
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ω0, ϕ(v1) = ω1, ϕ(v2) = ω2 (Figure 1 (lower part)). Thus, from De�nition 5 we
obtain the hypothesis from eq. 2 and T2 ∪H2 |= Professor ⊑ Researcher.

4 Conclusion

We presented work in progress of an approach for generating solutions to abduc-
tion problems, by identifying isomorphic subtrees of graphical representations
of EL concepts. We do this by �rst generating the description trees of EL con-
cepts. Further, the induced subtrees are constructed and vertex labels are joined
accordingly. Finally, the hypothesis is formulated by discovering isomorphisms
between the induced subtrees.

Currently, we are investigating further the use of subtree isomorphisms to
obtain solutions to abduction problems. Regarding complexity, in a more gen-
eral sense the subtree isomorphism problem is NP-complete. On the other hand,
in the restricted case of EL-description trees testing for existence of homomor-
phisms can be done in polynomial time [12], which may indicate that the subtree
isomorphism problem could also be solved in polynomial time. This investigation
is part of our future steps.
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