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Abstract. The predominant method of developing trading strategies
is technical analysis on historical market data. Other financial analysts
monitor the public activity towards cryptocurrencies, in order to fore-
cast upcoming trends in the market. Until now, the best cryptocurrency
trading models rely solely on one of the two methodologies and attempt
to maximize their profits, while disregarding the trading risk. In this pa-
per, we present a new machine learning approach, named TraderNet-CR,
which is based on deep reinforcement learning. TraderNet-CR combines
both methodologies in order to detect profitable round trips in the cryp-
tocurrency market and maximize a trader’s profits. Additionally, we have
added an extension method, named N-Consecutive Actions, which exam-
ines the model’s previous actions, before suggesting a new action. This
method is complementary to the model’s training and can be fruitfully
combined, in order to further decrease the trading risk. Our experiments
show that our model can properly forecast profitable round trips, despite
high market commission fees.
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1 Introduction

Cryptocurrency tokens have become particularly interesting trading assets, due
to their high volatility [I2]. Many professional investors and financial analysts are
turning to technical analysis, in order to estimate the future prices of cryptocur-
rencies and spot trading opportunities. Unlike fundamental analysis, which re-
quires a company’s financial position, technical analysis merely requires a math-
ematical formula to be applied to prior market data. Technical analysis provides
pattern-based indicators of the momentum, volatility and trend of an asset. [14].

Algorithmic trading i.e. the use of computer programs to automate quantita-
tive trading methods, is an essential step towards a more exact specification and
implementation of technical analysis. Although algorithmic trading is beneficial
due to the speed with which orders are executed, it is primarily reliant on tech-
nical indicators, which are prone to producing false buy/sell signals and market
trends. To overcome this issue, traders consider combinations of indicators, how-
ever it has yet to be determined which combinations are the most effective in
each circumstance.
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Various studies attempted to apply machine learning techniques to cryp-
tocurrency trading, based on algorithmic trading, as detailed in more depth in
the related works Section. The same works prove that especially Deep Reinforce-
ment Learning (DRL), which is a sub-field of machine learning, has the potential
to outperform traditional trading strategies. However, our research revealed that
past studies have overlooked three critical characteristics of cryptocurrency trad-
ing. Firstly, numerous popular and widely used indicators were missing from the
training data. They also lack a public activity index which, as we prove later in
the paper, contains valuable information about the prices. Finally, several previ-
ous models that aim to optimize a portfolio’s wealth disregard the trading risk,
which is an important aspect of a trading strategy, as also highlighted in section

In this paper we present TraderNet-CR, a DRL agent E| which relies on both
technical analysis and hourly public activity towards cryptocurrency assets. Our
agent’s actions are intended to exploit potentially beneficial round trips in a
market E| with low risk. The remaining of the paper is structured as follows.
Section[2]describes the related work, while Section [3]describes the methodological
framework in detailed steps. Then, Section [4] discusses the empirical results and
finally, Section [5] concludes this study and presents future research avenues and
possible improvements of the algorithm.

2 Related Work

In this Section, we exclusively review works that apply DRL to find optimal trad-
ing strategies in a cryptocurrency market. Satarov et al. [I6] applied the Deep
Q-Learning (DQN) algorithm in order to identify profitable trading points. In
this work, their agent was rewarded only during sell actions, with the reward
being a subtraction between the current selling price and the most recent buying
price. In addition, penalties were given to the same sequential actions. Consid-
ering trading fees of 0.15 percent, the work demonstrated that the Reinforce-
ment Learning (RL) approach performed better than three traditional technical
strategies.

Jiang et al. [8] formulated a multi-asset portfolio management problem of
high-volumed cryptocurrencies, with a DRL setting that was implemented for
both Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) and parameter sharing between different assets. The external state is
represented as a tensor of historical price ratios for every considered asset. The
internal state includes the portfolio weight vector that specifies the current allo-
cation of capital, has length equal to the considered assets and a total sum equal
to 1. The immediate rewards of their agent are expressed as the 1-period logarith-
mic return of the portfolio. Commission fees of 0.25 percent are integrated with

1 A DRL agent utilizes a deep learning model in order to learn to behave optimally
in its environment.

2 A round trip is a pair of two opposite orders placed one after the other (buy-sell or
sell-buy), that aims to take advantage of price differences in order to produce profit.
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the introduction of a penalty analogous to the change in the portfolio weights.
18]

While the previous work considers a single RL agent to manage the entire
portfolio, Lucarreli and Borrotti [T1] employed a multi-agent framework by train-
ing local RL agents for each financial asset (Bitcoin, Etherium, LiteCoin, Riple).
The performance of the each local agent produced a local reward signal, which
is combined with the rest signals to formulate a global reward signal. The goal
of this multi-agent framework was the maximization of the global reward signal,
in order to achieve optimal portfolio management. The state space consisted of
closing prices across all assets. Even though they achieved very promising results,
they completely disregarded the commissions fees.

To finish with this short related work review, a major problem of the exist-
ing literature is that the current state of the art DRL methodologies operate on
low commission fees. Additionally, in their works, they prioritized in maximiz-
ing the investment profits, rather than minimizing its risk. In our work, we aim
to improve upon existing literature by (a) including new features such as tech-
nical indicators and public activity indicators, (b) experimenting with a more
advanced deep RL algorithm design, (c) adding a trading rule as an extension of
our main algorithm, which customizes the agent’s trading behavior and further
reduces the trading risk.

3 Methodology

Cryptocurrency trading poses several challenges for reinforcement learning for
various reasons. First of all, since the cryptocurrency market involves non-
stationary and noisy time series data, the prediction of future prices and direc-
tional movements becomes a quite difficult task [9]. Additionally, an RL agent
will make a sequence of actions in order to maximize its rewards, however it is
hard to reward that sequence of actions before the end of the evaluation period,
which often leads to the sparse rewards problem EL In this Section, we discuss
some of the methods that are used to tackle the above challenges in cryptocur-
rency trading. Additionally, we propose a new method, named N-Consecutive
actions method, which is used to further reduce the trading risk.

3.1 Problem Formulation

Unlike prior efforts, we omit the portfolio’s wealth from the agent’s input state
to simplify the complexity of the stochastic nature of trading. Rather than at-
tempting to maximize its initial wealth, the agent is trained to earn profits by
spotting profitable round trips and taking the appropriate hourly actions. This is
accomplished by utilizing a reward function that compensates the agent’s actions
based on the maximum future profit they may generate, as described in more

3 The sparse reward problem happens when an environment rarely produces a reward.
This usually slows down the training process of a DRL agent. [15]
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detail later in this Section. There are three available actions to our agent. At
each timestep, our agent may either suggest to BUY or SELL a unit or HOLD.
State Space. Our state space is represented with a matrix s = [¢,v,t,g,d]
of S-dimensional columns, where S denotes a timeframe size, which is used to
define the number of previous feature rows that are included in the current state.
In our experiments, we found that S = 20 is an ideal timeframe size for every
cryptocurrency asset. Each row represents the state of a time step (the state in a
previous hour) as a vector g, $1, ..., S18, With s19 as the current state. The state
includes the close differences ¢ € R of consecutive hours, the volume differences
v € R, the 24-hour time index ¢ € [0, 23], the google trends score g € [0, 100],
and the technical indicators, based on the past data d € R”.

Public Activity. Public activity may occasionally foreshadow impending bullish
or bearish signals ﬂ We define as public activity the time of the day which the
trading takes place, as well as the google trends score in that specific hour.
Google trends, is a 0 to 100 scale that measures the online traffic of searched
terms. The terms that we used in our experiments were the names of the cryp-
tocurrency assets. This indication could be highly valuable in cases where the
online presence of influencers causes unexpected spikes or drops of the prices
and volumes.

Technical Indicators. At each state, we compute the technical indicators using
prior market data. The indicators are listed as follows:

— Exponential Moving Average (FM A): a moving average indicator that
was serves as a building block for several other indicators [3].

— Double Exponential Moving Average (DEM A): a moving average in-
dicator that is used to reduce market noise in price charts. Unlike EM A, it
contains less lag and it is consider more responsive. [13].

— Moving Average Convergence Divergence (M ACD): a trend indicator
that compares the the EM As of two different windows. [5].

— Volume-Weighted Average Pricing (VIWAP): a weighted average tech-
nical indicator that is computed by adding up the close price for every trans-
action, mainly used by financial institutions and funds. [3].

— Relative Strength Index (RSI): a momentum indicator that measures
the magnitude of recent price changes to assess overbought or oversold
conditions. [4].

— Intraday Momentum Index (IM1I): an alternative indicator to RSI that
considers the relationship between the opening and thec losing price over the
course of the day[I0].

— Average Directional Index (ADX): a trend strength indicator that is
bounded between 0 and 100, just like RST and IMI [4].

— Commodity Channel Index (CCI): an indicator which can gauge an
overvalued or undervalued market. In contrast to other oscillators that range
in a bounded interval [I].

4 A signal is called bullish when the close price begins to rise. On the other hand, a
signal is called bearish when the close price starts to drop.
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— On-balance volume (OBV): a momentum indicator that relies on patterns
of volume flow to predict changes in price. [7].

— Accumulation/Distribution Indicator (A/D): an indicator which can
estimate if volume flow is adequate for the continuation of a trend, or whether
a reversal is about to take place [6].

— Bollinger Bands (BBands): It is a technical analysis tool that defines a
interval specified by adding and subtracting 2 moving standard deviations
from a Simple Moving Average (SMA) signal [2].

Architecture. We selected the Proximal Policy Optimization (PPO) algorithm
as the agent’s architecture, because it is fast, stable and has been proven to
achieve state of the art results in many RL environments. For the actor network,
we used a convolutional neural network to represent the policy. The convolutional
layer with 32 filters, kernel size of 5 and stride of 1, which ends up in a fully
connected network. The fully connected network includes two hidden layers of
256 units each and relu activation functions. The same architecture was used for
the critic network, which uses the Adam optimizer to update its weights with
Learning Rate Lr = 0.00025. As in the original paper [I7], we set the clipping
parameter € = 0.3, without parameter sharing between the two networks. We
set each mini-batch of samples to be trained for 40 epochs. The architectures for
the general PPO agent and TraderNet-CR actor-critic networks are provided in
Figures [ and [f] of Appendix A respectively.

Reward Function. In cryptocurrency trading, small increases or drops in the
price of a cryptocurrency asset would result in unprofitable investments, due to
high commission costs for each transaction. As it is quite improbable that the
close price would change drastically during the first few hours of a transaction,
the agent would have to wait many steps to determine whether an action that
was suggested was correct be rewarded or penalized otherwise. This eventually
leads to the sparse rewards problem. In order to detect profitable round trips,
within the next k hours.

To address this issue, we designed the reward function in such a manner
that the agent is rewarded based on the maximum return that an action can
generate within the next K (hours). This eventually trains the internal layers
of the agent’s architecture to estimate the future price fluctuations within the
near future. Given that f is the fee percentage, the reward function can be
mathematically modeled as:

Cmax - Ct - f(Cmax + Ct) BUY
Tt = Ct - Cmin - f(szn + Ct) SELL (1)
—maz(T4(q,)) HOLD
with
a; € {BUY,SELL, HOLD).

where
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Cmax = max{C’t_H, Ct+27 ceey Ct+k} (23“)
Cmin = min{Ciy1,Ciyo, ..., Coyp} (2b)

The above reward function ensures that if the agent anticipates a spectacular
increase in the price when buying or a huge drop in the price when selling, then it
receives a favourable reward. In cases where an action would lead to unintended
losses, then it is penalized, in order to be discouraged of suggesting the same
actions in similar states.

In many previous works, no reward was used (r; = 0), during the holding
time. However, in our investigation we have found out that the agent could
sometimes prefer to converge to holding its position and avoiding any type of
transaction, due to early negative returns. We encourage the agent to avoid
holding, by penalizing it if it wrongly holds its position.

3.2 N-Consecutive Actions

Small price fluctuations in the market could possible distort the overall trend.
Even with the use of technical analysis and public activity, the agent could
be tricked by the market noise and suggest unprofitable actions. An indication
of generating misleading actions could be in cases where the agent switches
between BUY and SELL actions in consecutive timesteps. To avoid such cases,
we defined a rule during the exploitation period, in which an action a; will be
accepted only if the N previously suggested actions by the agent are identical
(a; = at—1 = ag—2 = ... = a;—n). This method increases the probability that
a generated action is profitable and thus reduces the trading risk. Furthermore,
this method does not interfere with the agent’s training and can be used as a
safety mechanism that operates alongside with the agent’s decision system.

4 Results

In this Section we analyze the importance of public activity and its correlation
with the market data. Finally, we review the performance evaluation of the
proposed approach. The experimental code supporting the results presented is
publicly available and can be found on Github E The training data consist of
OHLCV E| data from the last 5 years of six popular cryptocurrencies (Bitcoin,
Ethereum, Solana, Cardano, Monero, Polygon) and were extracted from Crypto
Data Download [l

% lhttps://anonymous.4open.science/r/Finance- AT-08C2

5 OHLCV datasets consist of five columns: Open, High, Low, Close, Volume of a
market at a specific time.

" https://www.cryptodatadownload.com /data/
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4.1 Public Activity Importance

Throughout our research, we discovered that the close and volume features of
our datasets are associated with the public activity. As shown in Plots (a), (b)
of Figure [I] there are distinct hours during the day when the most transactions
occur. The plot (1c) also shows that there are considerable fluctuations in the
direction of the close price throughout the same hours. Also, it is worth men-
tioning that the trend scores also seem to be correlated with the time of day,
as plotted in (1d). In order to correctly plot these correlations, we first stan-
darized the data using a window of 24 hours and calculated the mean values of
the features for each hour.
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Fig. 1. Correlation analysis between the public activity and Bitcoin data

4.2 TraderNet-CR Evaluation

Our agent was trained separately in each market and was evaluated in the 15
latest successive days of the market dataset. The evaluation performance for each
market can be seen in Figure [2} For each agent, we measured its mean rewards
per hour, its theoretical maximum profit or loss (PNL) percentage and its risk
at the end of the evaluation. The first metric measures the mean reward that
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the agent is receiving from the environment. The second metric measures the
theoretical maximum profit percentage at the end of the evaluation period, if we
always liquidate the shares that are generated by the agent’s previous actions
at the right time. Finally, the risk is defined as the percentage of the profitable
transactions. To measure the agent’s performance, we used commission fees of
0.5% and 1.0%. The Table [1] shows the performance of each agent for different
commission fees.

Rewards - Ethereum - 1.0% Env Rewards - Solana - 1.0% Env Rewards - Bitcoin - 1.0% Env

o s0 100 150 200 250 300 o s0 100 150 200 250 00 o 50 100 150 200 250 300
Rerations Rerations Rerations

Rewards - Cardano - 1.0% Env Rewards - Polygon - 1.0% Env Rewards - Monero - 1.0% Env

n
1 !
10

50 100 150 200 250 300 o 50 100 150 200 250 300 o 50 100 150 200 250 00
kerations Rerations Rerations

Fig. 2. The mean reward of the agent in each market. Commissions of 1.0 percent were
used in each market.

Even though the Theoretical PNL indicates the maximum possible profit
of the agent within a trading period, some traders might also be interested in
the profit achievable with an actual trading strategy. In order to compute the
profit, we used a trading strategy during the 15-day evaluation period, named
Greedy PNL, in which we liquidated all the agent’s shares generated by its
previous actions, once they become profitable. Even though this strategy doesn’t
guarantee the maximum possible profit per round trip, it ensures that the agent
doesn’t miss profitable opportunities. The performance of this strategy can be
show in Figure [3] and Table [I}

From our experiments, it is clear that our approach is profitable in every
market that the agent was evaluated. In addition, we observe that the agent
performed best in cryptocurrency markets with low trading volumes, such as
Solana, Cardano and Polygon markets. To the best of our knowledge, these
markets have not been included in previous DRL trading approaches.
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Table 1. The metrics of the expertiments for each cryptocurrency asset.

Crypto Env  Mean Reward Theoretical PNL % Greedy PNL % Risk %

Bitcoin 0.5% 10.12 248.96 2.6 0.15
Bitcoin 1.0% 7.36 15.84 0.63 0.26
Ethereum 0.5% 12.77 351.28 3.87 0.11
Ethereum 1.0% 9.42 123.91 0.97 0.2
Monero 0.5% 13.46 693.23 5.73 0.06
Monero 1.0% 10.43 339.52 1.24 0.18
Polygon 0.5% 13.46 702.71 7.83 0.06
Polygon 1.0% 10.43 336 2.83 0.18
Cardano 0.5% 15.71 662.63 33.69 0.04
Cardano 1.0% 12.73 229.79 7.47 0.17
Solana 0.5% 16.38 130.51 76.23 0.07
Solana 1.0% 13.27 58.72 19.58 0.16
Solana - Greedy PNL Cardano - Greedy PNL . Polygon - Greedy PNL
1 oy o] Z oy | — e hr
2 i
B g ) H | Iy
| St |

o s 100 1% 200 250 0 30 o s 10 150 200 25 %0 350 o o 100 150 200 250 .0 330

Monero - Greedy PNL Ethereum - Greedy PNL

— Greedy Wealth
o] — GreeaypuL ,_\\VA
s

— Greedy Wealth
—— Gready PNL

— Greedy Wealth
—— Greedy PNL

Fig. 3. The greedy PNL measurements for each experiment using the 2-Consecutive
Actions rule

4.3 Optimizing Risk with N-Consecutive Actions

Every investor’s principal aim is to generate as much profit as possible with the
least amount of risk. However, some traders may prefer to trade only in situations
where the likelihood of profiting from an investment is quite high. Using the "N-
Consecutive Actions" rule, which is described in Section [3} we demonstrate how
the risk can drop even further. As shown in Table [2] a decent window size of 2,
can drastically decrease the trading risk in all markets. However, one should keep
in mind that lowering an investment’s risk may result in lower profit returns.
This implies that the greater the window size, the lower the returns, but also
the associated risks.
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Table 2. The analytical trading risk for each agent, using window sizes ranging from
0 to 5. Zero length implies that no rule was used.

Window Size (N)
Crypto (1.0%) N=0 N=1 N=2 N=3 N=4 N=5

Bitcoin 026 027 025 026 021 0.19
Ethereum 0.2 0.18 0.17 0.14 0.10 0.08
Monero 0.18 0.17 0.15 0.16 0.14 0.16
Polygon 0.18 015 013 014 012 0.12
Cardano 0.17 0.16 0.14 0.09 0.13 0.15
Solana 0.16 0.13 0.07 0.09 011 0.11

5 Conclusion

In this paper, we adopted a state of the art RL algorithm, named PPO, in
order to detect profitable round trips with low trading risk. We used features
from OHLCV market data, technical analysis and public activity indicators to
represent the states of the environment. Additionally, we designed an intelli-
gent reward function that boosts the agent’s learning capability. After the train-
ing process, we applied the N-Consecutive Actions method, which increases the
quality of the suggested actions. We tested our methodology in six popular cryp-
tocurrencies for 15 successive evaluation days, using fees of 0.5% and 1.0%, in
which the agent outputs an action every hour. Even with heavy commission fees
and the most greedy liquidating strategy, the agent managed to deliver profits.
In continuations of this work, we would like to investigate if portfolio wealth
optimization can be improved using our methods, as well as add more rules to
create a stronger end-to-end trading agent.
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Fig. 4. A typical PPO Agent architecture
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Fig. 5. The TraderNet-CR actor-critic network architecture
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