
  

1 

Abstract—This paper presents a study on polyadenylation site 
prediction in mRNA sequences. We describe a method, called 
PolyA-EP, that we developed for predicting polyadenylation 
sites and we present a systematic study of the problem of 
recognizing mRNA 3΄ ends which contain a polyadenylation site 
using the proposed method. PolyA-EP exploits the advantages of 
emerging patterns, namely high understandability and 
discriminating power and can be used for both descriptive and 
predictive analysis. In particular, PolyA-EP is a 
parameterizable tool that can be used in order to extract 
interesting emerging patterns for describing or predicting 
polyadenylation sites. Moreover, the extracted emerging 
patterns can span across many elements around the 
polyadenylation site. We discuss the results of the experiments 
we conducted with Arabidopsis thaliana sequences drawing 
important conclusions and finally we propose a framework that 
improves the accuracy of polyadenylation site prediction.  

I. INTRODUCTION 
OLYADENYLATION is a process that occurs after 

transcription termination. It involves cleavage of the new 
transcript (mRNA), followed by template-independent 
addition of adenines at its newly synthesized 3΄ end. The 
cleavage site is called polyadenylation site (poly(A) site). 
Polyadenylation is considered to be part of the larger process 
of producing mature mRNA for translation. The aim of the 
polyadenylation process is to protect the mRNA in order to 
reach intact the protein synthesis site. 

The most important factors that are involved in the process 
of polyadenylation are the cis-regulatory elements and the 
trans-acting factors. The cis-regulatory elements are RNA 
sequences consisting from 2 to 10 nucleotides and their role 
is to help the trans-action factors define the poly(A) site. The 
most prominent cis-element is the hexamer AAUAAA or a 
close variant. This hexamer is located 10 – 35 nt upstream of 
the cleavage site (poly(A)-site) and it can be found in about 
50% of human genes [5] but only in 10% of Arabidopsis 
genes [8]. The trans-acting factors are a protein complex 
which also includes a specificity factor (Cleavage and 
Polyadenylation Specificity Factor - CPSF), an 
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endonuclease, and Poly(A) Polymerase (PAP). The trans-
acting factors are responsible for the cleavage at the 
appropriate site (poly(A) site) and the addition of the about 
200 adenine residues (poly(A) tail) to the 3΄ end [11]. 

Nowadays, the research in this field is focused on 
discovering new cis-regulatory elements and on predicting 
the poly(A) site accurately. The accurate prediction of 
poly(A) site is a crucial step to define gene boundaries and 
get an insight in transcription termination in eukaryotes, 
which is a process less well understood. 

Poly(A) site prediction is a challenging problem. In many 
organisms, such as in Arabidopsis thaliana there are not 
many highly conserved signals or patterns around the 
poly(A) site and consequently the recognition of the poly(A) 
site is not trivial. The discrimination of mRNA 3΄ ends that 
contain a poly(A) site from intronic or 5΄ UTR sequences 
without a poly(A) site seems to be very difficult (especially 
with intronic sequences) and the performance of the up to 
now proposed approaches is moderate. On the other hand, 
mRNA 3΄ ends can be easily discriminated from coding 
sequences. This variability in the difficulty of discrimination 
has motivated our work and guided us to an effort to study 
this problem and define an approach that can improve 
prediction accuracy.  

Our contribution is a method that exploits the twofold 
advantage of emerging patterns, namely their high 
interpretability and discriminating power. The method we 
propose can be parameterized and trained in order to deal 
with poly(A) site prediction in any organism. Beyond the 
proposed method we draw important conclusions on the 
problem of discriminating mRNA 3΄ ends with poly(A) sites 
from other sequences without a poly(A) site.   

II. RELATED WORK 
An early approach to the problem of poly(A) site 

prediction was the work of A.A. Salamov and V.V. Solovyev 
[9] who developed a software called POLYAH and an 
algorithm for the identification of 3΄-processing sites of 
human mRNA precursors. The algorithm was based on a 
linear discriminant function (LDF) trained to discriminate 
real poly(A) signals from the other regions of human genes 
possessing the AATAAA sequence which is most likely non 
functional. The accuracy of the method has been estimated 
on a set of 131 poly(A) regions and 1466 regions of human 
genes having the AATAAA sequence. When the threshold 
was set to predict 86% of poly(A) regions correctly, 
specificity of 51% and correlation coefficient of 0.62 had 
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been achieved. 
In 1999 Tabaska and Zhang [10] developed polyadq, a 

program for detection of human polyadenylation signals. The 
program finds poly(A) signals using two discriminant 
functions: one specific for AATAAA type poly(A) sites and 
the other for ATTAAA type poly(A) sites. Polyadq predicts 
poly(A) signals with a correlation coefficient of 0.413 on 
whole genes and 0.512 in the last two exons of genes. 

In 2000 Van Helden et al. [4] approached the poly(A) site 
prediction problem with statistical methods. Other interesting 
approaches on this problem was the Hidden Markov Model 
approaches by Graber et al. [2] and Hajarnavis et al. [3].  

In 2003 Liu et al. [7] proposed a machine learning method 
to predict polyadenylation signals in human RNA sequences 
by analyzing features around them. The method consists of 
three steps: (1) Generating candidate features from the 
original sequence data using k-gram nucleotide patterns or 
amino acid patterns. (2) Selecting relevant features using an 
entropy-based algorithm. (3) Integrating the selected features 
by SVMs to build a system to recognize poly(A) sites. 

In 2005 Hu et al. [5] developed a program named PROBE 
(Polyadenylation-Related Oligonucleotide Bidimensional 
Enrichment) to identify cis-elements that may play regulatory 
roles in mRNA polyadenylation. They found 15 cis-elements 
in the area of 100 nt upstream and downstream the poly(A) 
site. Another important conclusion of this work was that cis-
elements occurring in yeast and plants also exist in human 
poly(A) regions. They suggested that many cis-elements are 
evolutionarily conserved among eukaryotes and human 
poly(A) sites have an additional set of cis elements that may 
be involved in the regulation of mRNA polyadenylation. 

A year later Cheng et al. [1] from the same lab tried to 
address whether those 15 cis-elements could be used to 
predict poly(A) sites. So they developed a program called 
Polya_svm which used support vector machines in order to 
predict poly(A) sites exploiting these 15 cis-elements. 
Polya_svm achieved higher sensitivity and similar specificity 
when compared with polyadq. 

One of the most recent projects in the scientific area of 
polyadenylation site prediction was published in 2007 by Ji 
et al. [6]. Ji and his co-workers exploited the conclusions of 
Loke’s study [8] and developed a program named PASS 
(Poly(A) site sleuth) which used a Generalized Hidden 
Markov Model based algorithm in order to predict 
polyadenylation sites in Arabidopsis. Additionally, 
researchers from the same lab recently published a work in 
which they developed a program called Pass-Rice and 
predicts poly(A) sites in rice data [13]. 

Another approach to the poly(A) site prediction problem 
was made by C. Koh and L. Wong [12]. Their prediction 
model uses a machine learning approach which consists of 
four sequential steps: feature generation, feature selection, 
feature integration and a cascade support vector machine 
classifier.  

III. PRELIMINARIES 

A. Frequent Itemsets 
The term “frequent itemset” has been proposed in the 

framework of association rules mining. Association rules 
[14] have attracted the attention of the data mining research 
community since the early 90s, as a means of unsupervised, 
exploratory data analysis. The association rule mining 
paradigm involves searching for co-occurrences of items in 
transaction databases. Such a co-occurrence may imply a 
relationship among the items it associates. The task of mining 
association rules consists of two main steps. The first one 
includes the discovery of all the frequent itemsets contained 
in a transaction database. In the second step, the association 
rules are generated from the discovered frequent itemsets. A 
formal statement of the concept of frequent itemsets is 
presented in the following paragraph. 

Let I = {i1, i2, …, iN} be a finite set of binary attributes 
which are called items and D be a finite multiset of 
transactions, which is called dataset. Each transaction T∈D 
is a set of items such that T⊆ I. A set of items is usually 
called an itemset. The length or size of an itemset is the 
number of items it contains. It is said that a transaction T∈D 
contains an itemset X⊆ I, if X⊆ T. The support of itemset X 
is defined as the fraction of the transactions that contain 
itemset X over the total number of transactions in D: 
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Given a minimum support threshold (0,1]σ ∈ , an itemset X 

is said to be σ-frequent, or simply frequent in D, if 
( )Dsupp X σ≥ .  

B. Emerging Patterns 
Emerging patterns [16] are itemsets whose supports 

increase significantly from one dataset to another.  
Given two datasets D1 and D2, the growth rate of an 

itemset X from D1 to D2 is defined as (indices 1 and 2 are 
used instead of D1 and D2): 
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Given a minimum growth rate threshold ρ > 1, an itemset 

X is said to be ρ-emerging pattern, or simply emerging 
pattern, from D1 to D2, if 1 2 ( )gr X ρ→ ≥ . D1 is usually called 
background dataset and D2 is usually called target dataset. 

The strength of an emerging pattern X from D1 to D2 is 
defined as: 
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Emerging patterns in contrast to other patterns or models 

are easily interpretable and understood. Moreover, emerging 
patterns, especially those with a large growth rate and 
strength, provide a great potential for discriminating 
examples of different classes. This twofold benefit of 
emerging patterns makes them a useful tool for exploring 
domains that are not well understood, providing the means 
for descriptive and predictive analysis as well.  

However, a disadvantage of emerging pattern mining is 
that the number of emerging patterns may be huge, especially 
when minimum support and minimum growth rate thresholds 
are set very low. Increasing the thresholds is not an ideal 
solution, since valuable emerging patterns may not be 
discovered. For example, if minimum support threshold is set 
high, then those emerging patterns with a low support, but 
with a high growth rate will be lost. Conversely, if minimum 
growth rate threshold is set high, then those emerging 
patterns with a low growth rate, but with a high support will 
be lost. There have been proposed some interestingness 
measures in order to reduce the number of mined emerging 
patterns without sacrificing valuable emerging patterns, or at 
least sacrificing as less as possible. Such an interestingness 
measure includes a special kind of emerging patterns, called 
Chi Emerging Patterns [18], that are defined as follows.  

Given a background dataset D1 and a target dataset D2, an 
itemset X is called a chi emerging pattern if all the following 
conditions are true: 

1) 2( )supp X σ≥ , where σ is a minimum support 
threshold. 

2) 1 2( )gr X ρ→ ≥ , where ρ is a minimum growth rate 
threshold. 

3) 1 2 1 2, ( ) ( )Y X gr Y gr X→ →∀ ⊂ <  
4) 1 | | >1 ( | | = | | -1 ( , ) ),X Y X Y X chi X YX η= ∨ ∧ ∀ ⊂ ∧ ∧ ≥

 where η = 3.84 is a minimum chi value threshold and 
chi(X, Y) is computed using chi-squared test.  

The first condition ensures that the mined emerging 
patterns will have at least a minimum coverage over the 
training dataset in order to generalize well on new instances. 
The second condition ensures that the mined emerging 
patterns will have an adequate discriminating power. The 
third condition is used in order to filter out those emerging 
patterns that have a subset with higher or equal growth rate 
and higher or equal support (any itemset has equal or greater 
support than any of its supersets). Since the subset has fewer 
items, there is not any reason to keep this emerging pattern. 
Finally, the fourth condition ensures that an emerging pattern 
has a significantly (95%) different support distribution in 
target and background datasets than the distributions of its 
immediate subsets. 

IV. OUR METHOD 
In this paragraph we describe the method (PolyA-EP) we 

have developed for dealing with the problem of 
polyadenylation site prediction in Arabidopsis thaliana 
mRNA sequences. Although in this study we have 
concentrated on a plant that poses great challenges due to 
low conservation of poly(A) signals, the method we propose 
is abstract and can be re-trained and parameterized for 
studying different organisms. PolyA-EP has been 
implemented in JAVA and consists of a number of steps that 
are presented in detail below. 

A. Extraction of Elements 
There is a number of different elements around the 

cleavage site of an mRNA 3΄ end that have been recognized 
in previous studies (Figure 1). These elements are composed 
by different nucleotide frequencies and consequently may 
contain fairly different patterns. This indicates that one has to 
search for patterns separately in each element. However, a 
promising idea is to study the associations among the 
patterns of the different elements in order to discover 
possible relationships among them. This could lead to new 
“extended” patterns that are possibly more informative and 
have higher discriminating power than the single patterns 
found in each element separately. In our study we deal with 
this kind of “extended” patterns. The three basic elements 
located around Arabidopsis 3΄ end poly(A) sites have been 
proposed in previous studies (see for example [8]) and 
include the Far Upstream Element (FUE), the Near Upstream 
Element (NUE) and the Cleavage Element (CE). The 
downstream region of Arabidopsis poly(A) sites is not 
considered particularly important, however we have included 
a Near Downstream Element (NDE) in our study, in order to 
investigate its importance. 
 

 
Fig. 1. A model for poly(A) signals in Arabidopsis mRNA 3΄ ends. 
 

At the first step of our method the elements specified by 
the user are extracted. In our study we have used the 
elements that are presented in Figure 1.  

B. Extraction of k-Grams  
Each of the sequence elements that are extracted at the first 

step will be represented by a vector that contains the 
frequencies of 5460 nucleotide patterns (k-grams). These 
patterns include all nucleotide combinations of length k, 
where 1 2 6{ , ,..., }k ∈ . So, each initial sequence from now on 
will be represented by a number of vectors, one for each of 
the specified elements (i.e. FUE, NUE, CE, NDE). The user 
of PolyA-EP can specify a different k. 
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C. Binary Discretization 
The discretization method used in our approach is based 

on information entropy. For each k-gram pattern a cut point 
is sought among all pattern frequencies and the one that has 
the maximum information gain is finally selected. The k-
gram vectors that were previously constructed are 
transformed into a transaction of items. The items of the 
transaction are those k-grams that have a frequency value 
greater than the corresponding cut point, which has been 
calculated. In this step the data are transformed in a format 
that permits the extraction of emerging patterns. 

D. Mining Interesting Emerging Patterns 
At this step the transactional data that have been produced 

in the previous step can be mined for interesting emerging 
patterns. For this reason we have extended the FP-Growth 
algorithm [15] that is used for mining frequent itemsets. The 
extended algorithm receives as input two datasets, the 
background and the target dataset, and discovers all chi 
emerging patterns, based on the parameters specified by the 
user (minimum support threshold and minimum growth rate 
threshold). At this point it is worthwhile to repeat that the 
patterns that are mined by PolyA-EP are “extended”, since 
these patterns can include itemsets of different elements.   

E. Classification Using Interesting Emerging Patterns 
The extracted chi emerging patterns can be used in order 

to discriminate instances of different classes. Given two 
datasets of sequences D+ and D- that contain sequences with 
a poly(A) site (positive sequences) and sequences without a 
poly(A) site (negative sequences) respectively, two sets of 
emerging patterns E+ and E- are mined. For mining E+, D- 
will be the background dataset and D+ will be the target 
dataset. In contrast for mining E-, D+ will be used as the 
background dataset and D- as the target dataset. When a new 
instance has to be classified it is transformed in a transaction 
T as described previously. Then, the following scores are 
calculated. 
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The first score indicates if T is positive and the second if it 

is negative. The final decision could be made by comparing 
the values of the two scores and assigning the sequence to 
the class with the higher score. However, due to the fact that 
the sizes of E+ and E- could be quite different the scores have 
to be justified. We have studied three alternative methods: 

1) The first method was presented in [17]. It calculates 
two base scores, base+ and base-, for positive and 
negative classes respectively. The base+ score is found 
by calculating the positive score (using E+) for each of 
the instances of the positive training set, and selecting 
the median of the scores to be base+. Similarly is 

calculated base-, using negative training instances and 
E- instead. The two scores that are calculated for a 
new instance are divided by the corresponding base 
scores and the instance is finally assigned to the class 
with the greatest justified score. 

2) We studied the use of information entropy in order to 
select a threshold for the following fraction 

( , )
( , )

score T
score T

+
−

. This fraction is calculated for all of the 

training (positive and negative) instances and a cut 
point, entropy_thres, which maximizes information 
gain is found. A new instance is assigned to positive 
class if the above fraction exceeds entropy_thres. 

3) We studied a combination of the above two score 
justification methods and propose another threshold 
for the fraction in 2. This threshold is defined as 
follows: 
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The experiments we have conducted (not presented here 

due to space limitations) indicated that the justification 
method presented in 1 tends to favor the class with the 
smallest number of training instances, whereas the method in 
2 tends to favor the class with the majority of training 
instances. For this reason we propose the score justification 
method in 3 that balances the previous two methods. 

V. EXPERIMENTS 
In this section we describe the datasets we have used as 

well as the experiments we have conducted in order to 
evaluate our method. 

A. Datasets 
In our study we have used four sets of Arabidopsis 

thaliana sequences. One of them contains 6209 positive 
examples, namely mRNA 3΄ end sequences that contain a 
poly(A) site, whereas the other three contain negative 
examples (1581 intronic, 864 5΄ UTR, and 1501 coding 
sequences). These data have been used in previous studies 
[6], [12]. The set of positive sequences will be called positive 
dataset and the set of all negative sequences will be called 
negative dataset. All sequences have a length of 400 nt. Each 
positive sequence has an EST-supported poly(A) site at 
position 301. The positive sequences underwent pair-wise 
global alignment against every other sequence [12] in order 
to reduce similarity among all sequences. Particularly, there 
are not any two sequences in the positive dataset that have 
more than 70% similarity.  This was done for minimizing 
biasness due to similarity of sequences. More details about 
these datasets can be found in [6]. 



  

B. Results 
We have conducted a number of experiments using the 

above datasets. For evaluating our method, we have 
randomly selected 2/3 of each of the four sets of sequences 
for training and left the remaining sequences for testing.  

Table I presents the experimental results of mining chi 
emerging patterns using all the training negative examples 
(i.e. intronic, 5΄ UTR and coding) together. As shown in the 
table a lower minimum support threshold and a lower 
minimum growth rate threshold result a larger number of 
mined chi emerging patterns. This is expected, but it is not 
always the case. If simple emerging patterns are mined, then 
lower thresholds will always lead to equal or larger number 
of mined emerging patterns. Because of conditions 3 and 4 in 
the definition of chi emerging patterns, it is not certain that 
lower thresholds guide to equal or greater number of chi 
emerging patterns. An important conclusion that can be 
drawn based on Table I is that when the number of mined 
emerging patterns is greater, then higher classification 
accuracy is achieved. However, experiments have shown that 
a number of at least 1000 chi emerging patterns for each 
class are adequate for getting good classification 
performance. It is worthwhile to mention that in contrast to 
simple emerging patterns, chi emerging patterns are not 
redundant and thus a larger number of chi emerging patterns 
almost always improves classification accuracy. 

 
TABLE I 

RESULTS OF MINING INTERESTING EMERGING PATTERNS USING TRAINING 
POSITIVE AND ALL TRAINING NEGATIVE SEQUENCES 

support 
threshold 

growth rate 
threshold 

 # positive 
chi EPs 

# negative 
chi EPs 

sensitivity specificity 

2 25715 4752 0.875 0.7500.1 
5 6135 1323 0.878 0.747
2 5755 406 0.859 0.7380.2 
5 533 9 0.861 0.678

 
Table II presents the number of chi emerging patterns that 

were mined using all the training positive examples and the 
three negative datasets separately. The minimum support 
threshold was set to 0.1 and the minimum growth rate varied 
between 2 and 5. As shown in the table, this support 
threshold is too high for mining an adequate number of chi 
emerging patterns with the intronic negative dataset. 
However, it guides to a very large number of chi emerging 
patterns with the coding negative dataset. Support threshold 
is also high for 5΄ UTRs, but not as high is for introns. Table 
II provides useful information that could not be discovered 
when all negative examples were dealt together. The 
important conclusion is that one cannot adequately 
discriminate positive sequences from intronic and 5΄ UTR 
sequences. Moreover, we can also conclude that the problem 
of discriminating introns and 5΄ UTRs from mRNA 3΄ ends is 
quite difficult, whereas discriminating mRNA 3΄ ends from 
coding sequences is much easier. 

 

TABLE II 
NUMBER OF INTERESTING EMERGING PATTERNS USING THE THREE 

NEGATIVE DATASETS SEPARATELY (MINIMUM SUPPORT THRESHOLD = 0.1) 
negative dataset growth rate threshold  # positive chi 

EPs 
# negative chi 

EPs 
2 50 431 intronic 
5 21 1 
2 409 2946 5΄ UTR 

5 300 760 
2 32623 17996 coding 
5 32377 31162 

 
In an effort to further investigate why the number of chi 

emerging patterns differs so much among the three negative 
datasets we plotted the distributions of nucleotides for each 
dataset. Figure 2 presents the distribution of each nucleotide 
from positions -200 to +100 with respect to the poly(A) site 
in Arabidopsis mRNA 3΄ ends. The differences in nucleotide 
distributions among different elements are very clear. Figures 
3, 4, and 5 depict the nucleotide distributions of intronic, 5΄ 
UTR, and coding Arabidopsis sequences. These figures 
clearly depict why the discrimination between positive 
sequences and negative intronic sequences is very difficult, 
whereas the discrimination between positive and negative 
coding sequences is easy. Comparing figures 2 and 3, we can 
see that there are many similarities in nucleotide distributions 
of mRNA 3΄ end sequences and introns. In intronic 
sequences, uracil is the most frequent nucleotide, followed 
by adenine, then guanine, and finally cytosine. This is also 
the case with the upstream region up to the NUE of the 
mRNA 3΄ end. In contrast, the nucleotide distribution of 
coding sequences is very different than the one of mRNA 3΄ 
ends. Finally, 5΄ UTR sequences have also similar nucleotide 
distribution with this of introns, but they differ from mRNA 
3΄ ends more than introns do. That is the reason, why 5΄ 
UTRs can be discriminated easier from mRNA 3΄ ends. 
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Fig. 2. Nucleotide distribution from positions -200 to +100 with respect to 
poly(A) site in Arabidopsis mRNA 3΄ end. 
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Fig. 3. Nucleotide distribution in Arabidopsis intronic sequences. 
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Fig. 4. Nucleotide distribution in Arabidopsis 5΄ UTR sequences. 

 

1 50 100 150 200 250 300
0

10

20

30

40

50

60

position

pe
rc

en
ta

ge

 

 

A
C
G
U

 
Fig. 5. Nucleotide distribution in Arabidopsis coding sequences. 
 

The results presented previously guided us to deal with the 
three negative datasets separately. Table III shows the results 
of mining chi emerging patterns with minimum growth rate 
of 2 and different minimum support thresholds for each of 
the three cases. If the minimum support threshold is set to 
0.02, a relatively large number of chi emerging patterns is 
mined in the case of intronic data. However, when the 
minimum support threshold is lowered too much, the risk of 
mining chi emerging patterns that over-fit the training data 
emerges and consequently the generalization error increases. 
However, dealing with the three negative datasets separately 
improved the overall classification performance (sensitivity: 
0.891 and specificity: 0.874). 
 

TABLE III 
NUMBER OF  INTERESTING EMERGING PATTERNS USING THREE NEGATIVE 

DATASETS SEPARATELY (MINIMUM GROWTH RATE THRESHOLD = 2) 
negative dataset support threshold  # positive chi 

EPs 
# negative chi 

EPs 
intronic 0.02 2543 10073 
5΄ UTR 0.05 2144 12647 
coding 0.1 32623 17996 

VI. CONCLUSION 
Polyadenylation site prediction is a challenging problem 

that has not yet been sufficiently dealt. Nowadays, the 
research in this field is focused on discovering new cis-
regulatory elements and on predicting the poly(A) site 
accurately. The difficulties on poly(A) site prediction are 
basically derived by the absence of highly conserved signals 
around the poly(A) site. In this work we studied the problem 
of poly(A) site prediction and proposed a method (PolyA-
EP) that can be used for both descriptive and predictive 
analysis. PolyA-EP exploits emerging patterns and 
eventually provides a framework for increasing prediction 
accuracy. 

In the future we are considering to incorporate in our 
method patterns of larger lengths (in this work we used 
patterns of length 1 to 6), as well as to allow the patterns to 

include wildcards. However, in these cases we will have to 
deal with the high computational cost. But the incorporation 
of such patterns is considered to provide more interesting 
emerging patterns with higher discriminative power, 
something that is quite important, especially in the hard 
problem of discriminating mRNA 3΄ ends from intronic 
sequences. Finally, our future plans include the 
experimentation with mRNA sequences of other organisms. 

The datasets we used and the tool we developed are 
available at http://mlkd.csd.auth.gr/PolyA/index.html. 
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