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Abstract 
This paper presents a study on polyadenylation site prediction, which is a very important problem in 

bioinformatics and medicine, promising to give a lot of answers especially in cancer research. We 

describe a method, called PolyA-iEP, that we developed for predicting polyadenylation sites and we 

present a systematic study of the problem of recognizing mRNA 3΄ ends which contain a polyadenylation 

site using the proposed method. PolyA-iEP is a modular system consisting of two main components that 

both contribute substantially to the descriptive and predictive potential of the system. In specific, PolyA-

iEP exploits the advantages of emerging patterns, namely high understandability and discriminating 

power and the strength of a distance-based scoring method that we propose. The extracted emerging 

patterns may span across many elements around the polyadenylation site and can provide novel and 

interesting biological insights. The outputs of these two components are finally combined by a classifier 

in a highly effective framework, which in our setup reaches 93.7% of sensitivity and 88.2% of specificity. 

PolyA-iEP can be parameterized and used for both descriptive and predictive analysis. We have 

experimented with Arabidopsis thaliana sequences for evaluating our method and we have drawn 

important conclusions. 
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1 Introduction 

During the last decades two main scientific areas, namely biology and computer science have 

been characterized by major advances that have attracted the interest of all humanity. The 

growth of World Wide Web and the completion of Human Genome Project are two 

representative examples that reflect the extent of the development of these two scientific areas. 

However, biology and computer science have not grown separately. The need of the 

collaboration between biologists and computer scientists has been grown year by year as the 

two areas have been progressing and new scientific questions have been arising. Bioinformatics 

is a novel research area that has emerged as a solution to the aforementioned need. It is a very 

 
 



  

promising field that aims to provide the means to analyze and explain the vast amounts of 

biological data, contributing thereby to the development of other related areas like medicine.  

Two relative subfields of computer science strongly related to artificial intelligence, 

namely data mining and machine learning, have provided biologists, as well as experts from 

other areas, a powerful set of tools to analyze new data types in order to extract various types of 

knowledge efficiently and effectively. These tools combine powerful techniques of artificial 

intelligence, statistics, mathematics, and database technology. This fusion of technologies aims 

to overcome the obstacles and constraints posed by the traditional statistical methods. A lot of 

interesting applications of artificial intelligence in bioinformatics is presented in (Ezziane, 

2006). 

In this paper we deal with polyadenylation site (or poly(A) site) prediction. Poly(A) site 

prediction is a challenging problem and the last years has attracted the attention of the scientific 

community, because the successful cure of this problem promises to provide a lot of answers in 

various fields of medicine, like cancer research. In many organisms, such as in Arabidopsis 

thaliana, which is a plant model organism, there are not many highly conserved signals or 

patterns around the poly(A) site and consequently the recognition of the poly(A) site is not 

trivial. The discrimination of mRNA 3΄ ends that contain a poly(A) site from intronic or 5΄ UTR 

sequences without a poly(A) site seems to be very difficult (mainly with intronic sequences) and 

the performance of the up to now proposed approaches is moderate. On the other hand, mRNA 

3΄ ends can be easily discriminated from coding sequences. This variability in the difficulty of 

discrimination has motivated our work and guided us to an effort to study this problem and 

define an approach that can improve prediction accuracy. Nowadays, the research in this field is 

focused on discovering new patterns around poly(A) site and on predicting the poly(A) site 

accurately. The method we propose can be used for both, pattern discovery and accurate 

prediction. 

The prediction of poly(A) sites can be divided into two sub-problems. The first sub-

problem deals with the discrimination of the sequences that contain a poly(A) site from the ones 

that do not and the second deals with the prediction of the position of a poly(A) site inside a 

sequence. The advantage of this approach is double. Firstly, a large number of irrelevant 

sequences are filtered out before searching for the position of a poly(A) site inside a sequence 

increasing notably the prediction accuracy. Secondly, a more specific method for predicting the 

position of a poly(A) site inside a sequence that focuses only in sequences that contain a 

poly(A) site leading in better models can be used. This approach can provide an increased 

performance against a more general method that deals concurrently with the discrimination of 

sequences and the prediction of poly(A) sites inside a sequence. The first sub-problem of the 



  

approach described above has not been studied yet. In this paper we focus on this sub-problem. 

Our contribution is an approach that combines the concept of emerging patterns (Dong & 

Li, 1999) and more specifically the interesting ones with a novel distance based scoring method. 

Our approach maintains the high interpretability of emerging patterns and offers a high 

prediction performance. The extracted emerging patterns may span across many elements 

around the polyadenylation site and can provide novel and interesting biological insights. Our 

method increases significantly the performance of poly(A) site prediction and reaches 93.7% of 

sensitivity and 88.2% of specificity. Moreover, The method we propose can be parameterized 

and re-trained in order to deal with poly(A) site prediction in any organism. Beyond the 

proposed method we draw important conclusions on the problem of discriminating mRNA 3΄ 

ends with poly(A) sites from other sequences without a poly(A) site.   

This paper is organized as follows. Section 2 provides the necessary background 

knowledge. Section 3 presents a concise review of the research area that is related to the 

problem dealt in this study. Section 4 provides some preliminary technical terminology and 

section 5 is dedicated to the detailed description of our approach. The results of the experiments 

that were conducted in order to evaluate our method are presented in section 6 and finally, the 

paper is concluded in section 7.  

2 Background Knowledge 

Two families of molecules are responsible for the structure and functioning of every living 

organism, as well as for the carriage of the genetic information. These are proteins and nucleic 

acids, which both are linear polymers of smaller molecules (monomers). The term “sequence” is 

used to refer to the order of monomers in a polymer. A sequence is represented as a string of 

different symbols, one for each monomer. There are twenty protein monomers called amino 

acids and five nucleic acid monomers called nucleotides. A nucleotide is characterized by the 

nitrogenous base it contains: adenine (A), cytosine (C), guanine (G), thymine (T), or uracil (U). 

The most common nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). 

DNA may contain a combination of A, C, G, and T. In RNA, U appears instead of T. 

DNA contains the genetic instructions used in the development and functioning of all 

known living organisms and some viruses. The processes related with DNA are described by the 

central dogma of molecular biology, which deals with the detailed residue-by-residue transfer of 

sequential information (Figure 1). It states that information cannot be transferred back from 

protein to either protein or nucleic acid (Crick, 1970). 



  

 

Figure 1: The Central Dogma of Molecular Biology 

DNA replication, the basis for biological inheritance, is a fundamental process occurring in all 

living organisms to copy their DNA. Transcription is the process by which the information 

contained in a section of DNA is transferred to a newly assembled piece of messenger RNA 

(mRNA). In contrast, reverse transcription is the transfer of information from RNA to DNA (the 

reverse of normal transcription). This is known to occur in the case of retroviruses, such as HIV 

that causes acquired immunodeficiency syndrome (AIDS). RNA replication is the copying of 

one RNA to another. Many viruses replicate this way. Finally, translation is the production of 

proteins by decoding mRNA produced in transcription. 

The process of polyadenylation occurs after transcription termination. It involves cleavage 

of the new transcript (mRNA), followed by template-independent addition of adenines at its 

newly synthesized 3΄ end. The cleavage site is called polyadenylation site (poly(A) site). 

Polyadenylation is considered to be part of the larger process of producing mature mRNA for 

translation. The aim of the polyadenylation process is to protect the mRNA in order to reach 

intact the protein synthesis site. 

The most important factors that are involved in the process of polyadenylation are the cis-

regulatory elements and the trans-acting factors. The cis-regulatory elements are RNA 

sequences consisting of 2 to 10 nucleotides and their role is to help the trans-action factors 

define the poly(A) site. The most prominent cis-element is the hexamer AAUAAA or a close 

variant. This hexamer is located 10 – 35 nt upstream of the cleavage site (poly(A)-site) and it 

can be found in about 50% of human genes (Hu et al., 2005) but only in 10% of Arabidopsis 

genes (Loke et al., 2005). The trans-acting factors are a protein complex which also includes a 

specificity factor (Cleavage and Polyadenylation Specificity Factor - CPSF), an endonuclease, 

and Poly(A) Polymerase (PAP). The trans-acting factors are responsible for the cleavage at the 

appropriate site (poly(A) site) and the addition of the about 200 adenine residues (poly(A) tail) 

to the 3΄ end (Lewin, 2004). 

Nowadays, the research in this field is focused on discovering new cis-regulatory elements 

and on predicting the poly(A) site accurately. The accurate prediction of poly(A) site is a crucial 

step to define gene boundaries and get an insight in transcription termination in eukaryotes, 

which is a process less well understood. 

 

DNA 
 

RNA 
Replication 

Translation Transcription 

Reverse 
Transcription 

Replication 

Protein 



  

3 Related Work 

An early approach to the problem of poly(A) site prediction was the work of Salamov and 

Solovyev (1997) who developed a software called POLYAH and an algorithm for the 

identification of 3΄-processing sites of human mRNA precursors. The algorithm was based on a 

linear discriminant function (LDF) trained to discriminate real poly(A) signals from the other 

regions of human genes possessing the AATAAA sequence which is most likely non functional. 

The accuracy of the method has been estimated on a set of 131 poly(A) regions and 1466 

regions of human genes having the AATAAA sequence. When the threshold was set to predict 

86% of poly(A) regions correctly, specificity of 51% and correlation coefficient of 0.62 had 

been achieved. 

In 1999 Tabaska and Zhang developed polyadq, a program for detection of human 

polyadenylation signals. The program finds poly(A) signals using two discriminant functions: 

one specific for AATAAA type poly(A) sites and the other for ATTAAA type poly(A) sites. 

Polyadq predicts poly(A) signals with a correlation coefficient of 0.413 on whole genes and 

0.512 in the last two exons of genes. 

In 2000 Van Helden et al. approached the poly(A) site prediction problem with statistical 

methods. Other interesting approaches on this problem was the Hidden Markov Model 

approaches by Graber et al. (2002) and Hajarnavis et al. (2004).  

In 2003 Liu et al. proposed a machine learning method to predict polyadenylation signals 

in human RNA sequences by analyzing features around them. The method consists of three 

steps: (1) Generating candidate features from the original sequence data using k-gram 

nucleotide patterns or amino acid patterns. (2) Selecting relevant features using an entropy-

based algorithm. (3) Integrating the selected features by SVMs to build a system to recognize 

poly(A) sites. 

Hu et al. (2005) developed a program named PROBE (Polyadenylation-Related 

Oligonucleotide Bidimensional Enrichment) to identify cis-elements that may play regulatory 

roles in mRNA polyadenylation. They found 15 cis-elements in the area of 100 nt upstream and 

downstream the poly(A) site. Another important conclusion of this work was that cis-elements 

occurring in yeast and plants also exist in human poly(A) regions. They suggested that many 

cis-elements are evolutionarily conserved among eukaryotes and human poly(A) sites have an 

additional set of cis elements that may be involved in the regulation of mRNA polyadenylation. 

A year later Cheng et al. (2005) from the same lab tried to address whether those 15 cis-

elements could be used to predict poly(A) sites. So they developed a program called Polya_svm 

which used support vector machines in order to predict poly(A) sites exploiting these 15 cis-



  

elements. Polya_svm achieved higher sensitivity and similar specificity when compared with 

polyadq. 

One of the most recent projects in the scientific area of polyadenylation site prediction was 

published in 2007 by Ji et al. Ji and his co-workers exploited the conclusions of a previous study 

(Loke et al., 2005) and developed a program named PASS (Poly(A) site sleuth) which used a 

Generalized Hidden Markov Model based algorithm in order to predict polyadenylation sites in 

Arabidopsis. Additionally, researchers from the same lab recently published a work in which 

they developed a program called Pass-Rice and predicts poly(A) sites in rice data (Shen et al., 

2008). 

Another approach to the poly(A) site prediction problem was made by Koh and Wong 

(2007). Their prediction model uses a machine learning approach which consists of four 

sequential steps: feature generation, feature selection, feature integration and a cascade support 

vector machine classifier.  

The most recent publication that deals with the polyadenylation problem generally is the 

project of Ahmed and his co-workers (Ahmed et al., 2009). They developed a machine learning 

approach in order to predict polyadenylation signals in DNA sequences. More specifically they 

developed Support Vector Machines (SVM) models in order to predict polyadenylation signals 

in DNA sequences using 100 nucleotides, both upstream and downstream of this signal.  

In a previous work of ours (Tzanis et al., 2008) we have presented a preliminary work 

dealing with poly(A) site prediction using the approach of interesting emerging patterns. The 

basic extensions over our past work, that are presented in this paper, include the use of 

wildchars in k-gram patterns, the incorporation of a distance-based scoring model, the use of a 

final classifier that combines the scores of the other components and a thorough 

experimentation. The improvement in effectiveness of our current approach is significant. 

4 Preliminaries 

This section provides the technical terminology that is necessary for understanding the details of 

our approach. The terms of frequent and emerging patters are defined, and the use of the last in 

classification is presented.   

4.1 Frequent Itemsets 

The term “frequent itemset” has been proposed in the framework of association rules mining. 

Association rules (Agrawal et al., 1993) have attracted the attention of the data mining research 

community since the early 90s, as a means of unsupervised, exploratory data analysis. The 

association rule mining paradigm involves searching for co-occurrences of items in transaction 



  

databases. Such a co-occurrence may imply a relationship among the items it associates. The 

task of mining association rules consists of two main steps. The first one includes the discovery 

of all the frequent itemsets contained in a transaction database. In the second step, the 

association rules are generated from the discovered frequent itemsets. A formal statement of the 

concept of frequent itemsets is presented in the following paragraph. 

Let I = {i1, i2, …, iN} be a finite set of binary attributes which are called items and D be a 

finite multiset of transactions, which is called dataset. Each transaction T∈D is a set of items 

such that T⊆ I. A set of items is usually called an itemset. The length or size of an itemset is the 

number of items it contains. It is said that a transaction T∈D contains an itemset X⊆ I, if X⊆ T. 

The support of itemset X is defined as the fraction of the transactions that contain itemset X over 

the total number of transactions in D: 
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Given a minimum support threshold (0,1]σ ∈ , an itemset X is said to be σ-frequent, or 

simply frequent in D, if ( )Dsupp X σ≥ .  

4.2 Emerging Patterns 

Emerging patterns (Dong & Li, 1999) are itemsets whose supports increase significantly from 

one dataset to another.  

Given two datasets D1 and D2, the growth rate of an itemset X from D1 to D2 is defined as 

(indices 1 and 2 are used instead of D1 and D2): 
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Given a minimum growth rate threshold ρ > 1, an itemset X is said to be ρ-emerging 

pattern, or simply emerging pattern, from D1 to D2, if 1 2 ( )gr X ρ→ ≥ . D1 is called background 

dataset and D2 is called target dataset. 

The strength of an emerging pattern X from D1 to D2 is defined as: 
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Emerging patterns in contrast to other patterns or models are easily interpretable and 

understood. Moreover, emerging patterns, especially those with a large growth rate and 

strength, provide a great potential for discriminating examples of different classes. This twofold 

benefit of emerging patterns makes them a useful tool for exploring domains that are not well 

understood, providing the means for descriptive and predictive analysis as well. 

4.3 Interesting Emerging Patterns 

A disadvantage of emerging pattern mining is that the number of emerging patterns may be 

huge, especially when minimum support and minimum growth rate thresholds are set very low. 

Increasing the thresholds is not an ideal solution, since valuable emerging patterns may not be 

discovered. For example, if minimum support threshold is set high, then those emerging patterns 

with a low support, but with a high growth rate will be lost. Conversely, if minimum growth 

rate threshold is set high, then those emerging patterns with a low growth rate, but with a high 

support will be lost. There have been proposed some interestingness measures in order to reduce 

the number of mined emerging patterns without sacrificing valuable emerging patterns, or at 

least sacrificing as less as possible. Such an interestingness measure includes a special kind of 

emerging patterns, called Chi Emerging Patterns (Fan, 2004), which are defined as follows.  

Given a background dataset D1 and a target dataset D2, an itemset X is called a chi 

emerging pattern, if all the following conditions are true: 

1) 2( )supp X σ≥ , where σ is a minimum support threshold. 

2) 1 2( )gr X ρ→ ≥ , where ρ is a minimum growth rate threshold. 

3) 1 2 1 2, ( ) ( )Y X gr Y gr X→ →∀ ⊂ <  

4) 1 | | >1 ( | | = | | -1 ( , ) ),X Y X Y X chi X YX η= ∨ ∧ ∀ ⊂ ∧ ∧ ≥  where η = 3.84 is a minimum chi value 

threshold and chi(X, Y) is computed using chi-squared test.  

The first condition ensures that the mined emerging patterns will have at least a minimum 

coverage over the training dataset in order to generalize well on new instances. The second 

condition ensures that the mined emerging patterns will have an adequate discriminating power. 

The third condition is used in order to filter out those emerging patterns that have a subset with 

higher or equal growth rate and higher or equal support (any itemset has equal or greater 

support than any of its supersets). Since the subset has fewer items, there is not any reason to 

keep this emerging pattern. Finally, the fourth condition ensures that an emerging pattern has a 



  

significantly (95%) different support distribution in target and background datasets than the 

distributions of its immediate subsets. 

4.4 Classification Using Emerging Patterns 

Emerging patterns or interesting (e.g. chi) emerging patterns can be used in order to 

discriminate instances of different classes. Given two sets of instances D+ and D-, for example 

transactions that represent sequences with a poly(A) site (positive instances) and without a 

poly(A) site (negative sequences) respectively, two sets of emerging patterns E+ and E- can be 

mined. For mining E+, D- will be the background dataset and D+ will be the target dataset. In 

contrast, for mining E-, D+ will be used as the background dataset and D- as the target dataset. 

When a new instance (transaction) T has to be classified, the following scores are calculated: 
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The first score indicates if T is positive and the second if it is negative. The final decision 

could be made by comparing the values of the two scores and assigning the instance to the class 

with the higher score. However, due to the fact that the sizes of E+ and E- could be quite 

different, the scores have to be justified. In (Tzanis et al.; 2008) we have studied three 

alternative methods: 

1) The first method was presented in (Dong et al., 1999). It calculates two base scores, base+ 

and base- for positive and negative classes respectively. The base+ score is found by 

calculating the positive score (using E+) for each of the instances of the positive training 

set, and selecting the median of the scores to be base+. Similarly base- is calculated, using 

negative training instances and E- instead. The two scores that are calculated for a new 

instance are divided by the corresponding base scores and the instance is finally assigned 

to the class with the greatest justified score. 

2) Another method (Tzanis et al., 2008) uses information entropy in order to select a 

threshold for the following fraction ( , )
( , )

score T
score T

+
−

. This fraction is calculated for all of the 

training (positive and negative) instances and a cut point, entropy_threshold, which 

maximizes information gain is found. A new instance is assigned to positive class if the 

above fraction exceeds entropy_threshold. 

3) Finally, we have studied a combination of the above two score justification methods and 



  

proposed another threshold for the fraction in 2. This threshold is defined as follows: 

 

_
_

2

+

−

+
=

baseentropy threshold
baseentropy base  (5)

 
The justification method presented in 1 tends to favor the class with the smallest number of 

training instances, whereas the method in 2 tends to favor the class with the majority of training 

instances. For this reason we have proposed the score justification method in 3 that balances the 

previous two methods. 

4.5 Classification Evaluation Metrics 

The effectiveness of a classifier is evaluated according to some standard performance metrics. In 

this paper three metrics are used. Sensitivity or TP Rate measures the proportion of the correctly 

classified positive instances over the total number of positive instances: 

 
TPSensitivity = 

TP + FN
 (6)

 
Specificity or TN Rate measures the proportion of the correctly classified negative instances 

over the total number of negative instances: 

 
TNSpecificity = 

TN + FP
 (7)

 
TP (True Positives) are the positive instances classified as positives and FP (False Positives) are 

the negative instances classified as positives. Respectively, TN (True Negatives) are the 

negative instances classified as negatives and FN (False Negatives) are the positive instances 

classified as negatives. Accuracy measures the proportion of the correctly classified instances 

over the total number of instances. However, accuracy is skew sensitive. Thus, it may guide to 

misleading conclusions when the dataset is skewed (imbalanced), namely when one class has 

significantly more instances than the other. An alternative performance metric that is not skew 

sensitive is adjusted accuracy.  

 

Sensitivity + SpecificityAdjusted Accuracy = 
2

 (8)

 

The dataset we use in our setup is imbalanced, thus we use adjusted accuracy instead of 

accuracy.  



  

5 Our Approach 

In this paragraph we describe the method (PolyA-iEP) we have developed for dealing with the 

problem of polyadenylation site prediction in Arabidopsis thaliana mRNA sequences. Although 

in this study we have concentrated on a plant that poses great challenges due to low 

conservation of poly(A) signals, the method we propose can be re-trained and parameterized for 

studying different organisms. PolyA-iEP has been implemented in JAVA and consists of a 

number of steps that are shown in Figure 2 and presented in detail below. 

 

 
Figure 2: The architecture of PolyA-iEP 

5.1 Extraction of Elements 

There is a number of different elements around the poly(A) site of an mRNA 3΄ end that have 

been recognized in previous studies (Cheng et al., 2006). These elements are composed by 

different nucleotide frequencies and consequently may contain fairly different patterns. This 

indicates that one has to search for patterns separately in each element. However, a promising 

idea is to study the associations among the patterns of the different elements in order to discover 

possible relationships among them. This could lead to new “extended” patterns that are possibly 

more informative and have higher discriminating power than the single patterns found in each 

element separately. In our study we deal with this kind of “extended” patterns. The three basic 

elements located around Arabidopsis 3΄ end poly(A) sites have been proposed in previous 

studies (see for example Loke et al., 2005) and include the Far Upstream Element (FUE), the 

Near Upstream Element (NUE) and the Cleavage Element (CE). The downstream region of 

Arabidopsis poly(A) sites is not considered particularly important, however we have included a 

Near Downstream Element (NDE) in our study, for the shake of completeness. Figure 3 

summarizes the elements that are used in our approach. 
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Figure 3: A model for poly(A) signals in Arabidopsis mRNA 3΄ ends. 

5.2 Extraction of k-Grams  

Each of the sequence elements that are extracted at the first step will be represented by a 

vector that contains the frequencies of nucleotide patterns (k-grams). These patterns include all 

nucleotide combinations of length k, where in our setup 1 2 6{ , ,..., }k ∈ . Moreover, a number of 

patterns including wildcard characters (wildchars) have been utilized as an extension to original 

k-gram patterns. The length of these patterns is also of length k. The alphabet for generating 

every pattern is presented in Table 1. The last six rows of the table represent all possible 

wildchars that are used in our approach. For example, “AWT” is a valid pattern, which 

represents either AAT or ATT. So, each initial sequence after this step will be represented by a 

number of vectors (each element of these vectors corresponds to the frequency of one valid 

pattern), one for each of the specified elements (i.e. FUE, NUE, CE, NDE). The user of PolyA-

iEP can specify a different k. 

 

Table 1: generating patterns (based on IUPAC notions) 
Alphabet Letter Nucleotides 

A A Adenine 

C C Cytocine 

G G Guanine 

T T Thymine 

R A or G puRine 

Y C or T pYrimidine 

M A or C aMino 

K G or T Keto 

S C or G Strong (3 H bonds) 

W A or T Weak (2 H bonds) 
 

5.3 Binary Discretization 

The discretization method used in our approach is based on information entropy. For each k-

gram pattern a cut point is sought among all pattern frequencies and the one that has the 

NUE 
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maximum information gain is finally selected. Given a set of training examples S, entropy (E) is 

defined by the following equation: 

 

2
1

( ) log ( )
=

= −∑
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where c is the number of classes and pi is the proportion of examples in S that belong in class i. 

By definition, if pi is zero, then the term 2log ( )i ip p  is set to zero. 

Given an ordered set of candidate N cut points T={t1,…,tN} for the values of an attribute A, 

that partition the set of examples in N+1 subsets (S1,…,SN+1), the information gain (G) is defined 

by the following equation: 
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where 1{ | [ ] [ , )}+= ∈ ∈i i i iS s S s A t t .  

In our approach we use binary discretization, so there is only one cut point. This cut point 

is sought among all attribute values and the one that has the maximum information gain is 

finally selected. The k-gram vectors that were previously constructed are transformed into a 

transaction of items. The items of the transaction are those k-grams that have frequency greater 

than the corresponding cut point, which was previously calculated. In this step the data have 

been transformed in a format that permits the extraction of emerging patterns. 

5.4 Mining Interesting Emerging Patterns 

The transactional data that have been produced in the previous step can be mined for interesting 

emerging patterns. For this reason we have extended the FP-Growth algorithm (Han et al., 

2000) that is used for mining frequent itemsets. The extended algorithm receives as input two 

datasets, the background and the target dataset, and discovers all chi emerging patterns, based 

on the parameters specified by the user (minimum support threshold and minimum growth rate 

threshold). At this point it is worthwhile to repeat that the patterns that are mined by PolyA-iEP 

are “extended”, since these patterns can include itemsets of different elements. At this step two 

sets of emerging patterns E+ and E-, are generated for the positive and the negative class 

respectively. In our setup we have used a dataset that contains 3 types of negative sequences (5’ 

UTR, coding, and intronic), that present quite different nucleotide distributions. If all negatives 

are dealt as a whole, then the effectiveness of classification is moderate. For this reason, we 

have mined 4 pairs of E+/E- sets of emerging patterns, one for the discrimination of positives 

from all negatives and three for discriminating positives from each type of negatives separately. 



  

An example of an “extended” interesting emerging pattern, than can be mined by PolyA-iEP is 

the following: 

 

{FUE_TGGA, NUE_CT, NDE_CYG}: 0.32 

 

The above interesting emerging pattern associates the occurrence of pattern “TGGA” in the Far 

Upstream Element, with pattern “CT” in the Near Upstream Element, and with pattern “CYG” 

in the Near Downstream Element. The strength of this interesting emerging pattern is 0.32. Note 

the use of “Y” wildchar in the third pattern.  

Scoring Using Interesting Emerging Patterns 

As already described in preliminaries, emerging patterns can be used in order to discriminate 

instances of different classes. At this step the E+/E- pairs of sets of emerging patterns that were 

previously generated, are used for scoring an instance as being positive or negative. For this 

reason, pairs of scores are calculated as described by equations (4). The total number of scores 

that are produced in this step is 8. Two scores (one for positive and one for negative class) are 

assigned to each of the following discriminations: positives/all negatives, positives/5΄ UTR 

negatives, positives/coding negatives, and positives/intronic negatives.  

5.5 Distance-Based Scoring 

Distance-based scoring is independent from the previous steps. At this step the frequencies of 

nucleotides at each position of a sequence are calculated and a nucleotide frequency matrix is 

constructed for each class, as shown in Table 2. For example, nucleotide A has 0.15 frequency 

is position1 of the sequences used to generate the matrix presented in Table 2. Then, for each 

position in the sequence the rankings of the nucleotides are calculated according to their 

frequency at this particular position (Table 3). In our setup five nucleotide frequency ranking 

matrices are constructed, one for each of the following categories: positives, all negatives, 5΄ 

UTR negatives, coding negatives, and intronic negatives. 

 



  

Table 2: An example of a nucleotide frequency matrix for sequences of length 5 

position in sequence 
nucleotide 

1 2 3 4 5 

A 0.15 0.08 0.28 0.10 0.10 

C 0.20 0.22 0.22 0.30 0.30 

G 0.40 0.33 0.25 0.40 0.30 

T 0.25 0.37 0.25 0.20 0.30 
 

Table 3: The nucleotide frequency ranking matrix that corresponds to Table 1 data 

position in sequence 
nucleotide 

1 2 3 4 5 

A 4 4 1 4 4 

C 3 3 4 2 2 

G 1 2 2.5 1 2 

T 2 1 2.5 3 2 
 

In order to calculate the distance of a sequence from a class or subclass (5΄ UTR, intronic, 

or coding), first, the sequence is converted into a nucleotide frequency ranking vector using the 

nucleotide frequency matrix of the class or subclass. Then, the distance from the unary vector is 

calculated and divided by the length of sequence. For example, given the ranking matrix in 

Table 3, the ranking vector that corresponds to the sequence “ATGGC” is <4, 1, 2.5, 1, 2>. The 

distance (Manhattan distance is used in our setup) of this vector from the unary vector <1, 1, 1, 

1, 1> is 5.5. Dividing this distance by the length of the sequence, namely 5, the mean nucleotide 

distance is finally calculated to be 1.1. This is the mean nucleotide distance of the above 

sequence from the category to which the nucleotide frequency matrix in Table 3 belongs. 

5.6 Classification 

The scores calculated in previous steps are used as input to a classifier that makes the final 

decision and classifies the entered sequence either as positive or as negative (i.e. containing or 

not a poly(A) site). In particular, a total number of 13 scores are used as input to the classifier, 

including the eight scores calculated at the emerging patterns mining step and the five distance 

based scores. 

Any classification algorithm that can deal with real-valued numeric attributes and binary 

class attributes can be utilized for building the classifier. Our study has been focused on a 

number of state-of-the-art classification algorithms including (neural networks, support vector 



  

machines, classification trees, and instance-based learning). 

6 Experiments 

In this section we describe the datasets we have used as well as the experiments we have 

conducted in order to evaluate our method. 

6.1 Datasets 

We have used four sets of Arabidopsis thaliana sequences. One of them contains 6209 positive 

examples, namely mRNA 3΄ end sequences that contain a poly(A) site, whereas the other three 

contain negative examples (864 5΄ UTR, 1501 coding, and 1581 intronic sequences). These data 

have been used in previous studies (Ji et al., 2007; Koh & Wong, 2007; Tzanis et al., 2008). The 

set of positive sequences will be called positive dataset and the set of all negative sequences will 

be called negative dataset. All sequences have a length of 400 nt. Each positive sequence has an 

EST-supported poly(A) site at position 301. The positive sequences underwent pair-wise global 

alignment against every other sequence (Koh & Wong, 2007) in order to reduce similarity 

among all sequences. Particularly, there are not any two sequences in the positive dataset that 

have more than 70% similarity. This was done for minimizing biasness due to similarity of 

sequences. More details about these datasets can be found in (Ji et al., 2007).  

Table 4 describes the datasets used in our setup. For the purposes of experimentation we 

have divided the initial set of sequences into a number of datasets based on two criteria. The 

first criterion, which has been already mentioned above, is the intrinsic characteristics of the 

sequences (e.g. negative sequences are coding, 5΄ UTR, or intronic sequences). This split of the 

data is represented by different rows in Table 4.  

Table 4: Datasets 

 All 
Sequences EP Mining Training Test  

Positive Sequences EST Supported 6209 2794 2173 1242 
5΄ UTR 864 389 302 173 
Coding 1501 676 525 300 
Intronic 1581 712 553 316 

Negative Sequences 

Total Negative 3946 1777 1380 789 
Total Sequences (Positive + Negative) 10155 4571 3553 2031 

 

The second criterion is the procedure that should be used in order to build and evaluate the 

proposed method. For this reason the sequences have also been randomly divided into three 

parts, one for mining interesting emerging patterns (EP Mining), one for training the classifier 



  

(Training) and one for evaluation (Test). The percentage of sequences contained in each of the 

three parts was decided in a way that provides an adequate number of data for extracting 

emerging patterns and training the classifier. This split of the data is represented by different 

columns in Table 4. 

6.2 Exploratory Analysis 

In an effort to further investigate why the number of chi emerging patterns differs so much 

among the three negative sub-classes we plotted the distributions of nucleotides for the positive 

and each negative dataset. Figure 4 presents the distribution of each nucleotide from positions -

200 to +100 with respect to the poly(A) site in Arabidopsis mRNA 3΄ ends. The differences in 

nucleotide distributions among different elements are very clear. Figures 5, 6, and 7 depict the 

nucleotide distributions of intronic, 5΄ UTR, and coding Arabidopsis sequences. These figures 

clearly depict why the discrimination between positive sequences and negative intronic 

sequences is very difficult, whereas the discrimination between positive and negative coding 

sequences is easy. Comparing figures 4 and 5, we can see that there are many similarities in 

nucleotide distributions of mRNA 3΄ end sequences and introns. In intronic sequences, uracil is 

the most frequent nucleotide, followed by adenine, then guanine, and finally cytosine. This is 

also the case with the upstream region up to the NUE of the mRNA 3΄ end. In contrast, the 

nucleotide distribution of coding sequences is very different than the one of mRNA 3΄ ends. 

Finally, 5΄ UTR sequences have also similar nucleotide distribution with this of introns, but they 

differ from mRNA 3΄ ends more than introns do. That is the reason, why 5΄ UTRs can be 

discriminated easier from mRNA 3΄ ends. 
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Figure 4: Nucleotide distribution (position -200, +100 around poly(A) site) in mRNA 3΄ end 
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Figure 5: Nucleotide distribution in intronic sequences 
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Figure 6: Nucleotide distribution in 5΄ UTR sequences 
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Figure 7: Nucleotide distribution in coding sequences 

6.3 Contribution of Wildchars 

In order to evaluate the contribution of k-gram patterns that include wildchars, we have 

compared our approach, which includes patterns with wildchars, against a baseline approach 

that includes only the typical (without wildchars) k-gram patterns. The strongest chi emerging 

patterns for both positives and negatives (E+ and E-) of each of the two approaches have been 

plotted according to their strength that was calculated as in equation (3). The plots of the various 

discriminations: Positive/5΄ UTR, positive/coding, positive/intronic, and positive/all negative 

are presented in Figure 8. 

As shown in all plots, our method, that includes patterns with wildchars, provides stronger 

chi emerging patterns, when considering the first N patterns. This means, that if we take under 



  

consideration the N strongest chi emerging patterns, then our method, will provide a set of 

stronger chi emerging patterns. For this reason the incorporation of k-grams with wildchars in 

our approach, improves the quality of the mined chi-emerging patterns. Another interesting 

observation that confirms the results of our exploratory analysis presented above is that the 

strongest chi emerging patterns are mined for the positives/coding, whereas the less strong are 

mined for positives/intronic negatives. 
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Figure 8: Contribution of wildchars 

6.4 Evaluation of Chi Emerging Patterns 

In order to evaluate the classification performance of the sets of chi-emerging patterns we have 

conducted a number of experiments using various numbers of the strongest chi emerging 

patterns. For classifying the test instances equations (4) and (5) for calculating the scores and 

the threshold were used. The results are presented in Figure 9. As it is observed the accuracy 

increases with the number of the included chi-emerging patterns. However, the increase in 

accuracy is small after a critical number of the top strongest chi-emerging patterns (around 500) 

have been included. Once again, the positive/intronic discrimination problem appears as the 



  

more difficult, whereas the positive/coding discrimination problem appears as the easiest one. 

Mention that the positive/all negative discrimination has also a low performance. 
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Figure 9: Emerging pattern classification performance 

6.5 Evaluation of Distance-Based Scoring 

Figure 10 presents the mean distances of positive class with all classes and sub-classes. In 

particular five nucleotide frequency ranking matrices were generated using five different 

training datasets (positive, 5΄ UTR, coding, intronic, and all negative). Then, using the positive 

test dataset, the mean distances of test positives were calculated.  
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Figure 10: Mean distances of all classes (and sub-classes) from positive class  

 

As shown in Figure 10 the class that is nearest to positives is positive. The next nearest 

sub-class is the intronic, whereas the more distant sub-class is the coding. These results, also, 

confirm our exploratory analysis. An important observation is that the distance of positives to 

all negatives is almost equal to the distance between positives and intronic negatives. This 



  

indicates that the discrimination between positives and all negatives is almost as difficult as the 

discrimination between positives and introns. This observation strengthens the thought of 

considering the intrinsic characteristics of each negative subclass in order to discriminate more 

effectively positive from negative sequences. 

6.6 Evaluation of Classifier 

The evaluation of the entire approach we propose appears at this section. The classifier that is 

built incorporates all the scores produced in the other steps of our approach and provides the 

final decision. We have experimented with the following classification algorithms, implemented 

in the Weka machine learning library (Witten & Frank, 2005): 

• Neural Network without any hidden layers (NN-0). A classifier that uses backpropagation 

to classify instances.  

• Neural Network with one hidden layer (NN-1). The same algorithm as the one for 

building NN-0 was used.  

• Support Vector Machine (SMO-1) using a linear polynomial kernel. This is a sequential 

minimal optimization algorithm for training a support vector classifier (Platt, 1998). It 

belongs to the family of generalized linear classifiers. 

• Support Vector Machine (SMO-2) using a quadratic polynomial kernel. This is also, 

Platt’s algorithm. 

• Logistic Model Tree (LMT). Classifier for building classification trees with logistic 

regression functions at the leaves (Landwehr et al., 2005; Sumner et al., 2005). 

• C4.5. A decision tree construction algorithm (Quinlan, 1993). The classifiers were built 

using reduced-error pruning instead of C.4.5 pruning for improving effectiveness. 

• k-Nearest Neighbors (k-NN). An instance-based classification algorithm (Aha & Kibler, 

1991). The appropriate value of k was selected using cross-validation.  

In order to evaluate the importance of combination of all components of our approach we 

have compared our approach with two methods. The first one does not include the distance-

based scoring. Only the scores of the emerging patterns mining component are fed into the 

classifier. The second method does not include the chi emerging patterns scoring component, 

thus only the distance based scores are fed into the classifier. Finally, in order to evaluate the 

overall performance of our approach we have compared it with a baseline method that includes 

the use of a large number of features which represent the frequency of each k-gram in an 

instance (sequence). In particular, each instance is represented by a vector that contains the 

frequencies of 5460 k-gram patterns (k varies from 1 to 6). The performance of the last method 

using all the 5460 features for classification was very bad (no classifier with an adjusted 



  

accuracy over 0.75 was reported). For this reason, a step of feature selection was used in order 

to remove the irrelevant features and increase this method’s performance. The correlation-based 

feature subset selection method (Hall, 1999) was used and 121 features were finally selected. 

This method finds a subset of features that is highly correlated with the class while having low 

intercorrelation.  

Figure 11 presents the results of all methods for all classifiers in terms of adjusted 

accuracy. These results concern the general discrimination problem between positive/all 

negative. The classifiers were trained using the Training dataset and were evaluated using the 

Test dataset (see Table 4). As Figure 11 shows, our complete approach significantly 

outperforms any baseline method, with the neural network with one hidden layer being the most 

accurate classifier, achieving an adjusted accuracy of 0.91.  
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Figure 11: Performance of various classifiers for positives/all negatives discrimination 

 

Table 5 presents the achieved sensitivity, specificity and adjusted accuracy of our method 

for each classifier. Another baseline method that can be used to compare our approach is the chi 

emerging pattern classifier. This is different from the first baseline presented above, because the 

scores of the chi emerging patterns are not fed into a classifier, but equations (4) and (5) for 

calculating scores and a threshold are used to classify the test instances. The performance of this 

classifier for the general discrimination problem between positive/all negative does not exceed 

0.80 in terms of adjusted accuracy (see Figure 9) and in any case is fairly worst than our 

approach’s performance. 

 



  

Table 5: Performance of our approach for positives/all negatives discrimination using various 
classifiers 

Classifier Sensitivity Specificity Adjusted Accuracy 

NN-1 0.937 0.882 0.910 

SMO-2 0.931 0.883 0.907 

LMT 0.931 0.881 0.906 

NN-0 0.917 0.857 0.887 

k-NN 0.919 0.847 0.883 

SMO-1 0.917 0.840 0.879 

C4.5 0.905 0.823 0.864 
 

Table 6 presents a statistical comparison (95% confidence level) of all classifiers for the 

positive/all negative discrimination problem using our approach. The pair-wise comparison of 

the different schemas was based on a 10-fold cross validation run using T-Test. A plus (+) 

symbol in a cell of the table indicates a 95% statistical superiority of the classifier that 

corresponds to the row of the cell over the classifier that corresponds to the column of the cell. 

As it is observed three of the classifiers, NN-1, SMO-2, and LMT are all superior over the 

remaining algorithms (NN-0, k-NN, SMO-1, and C4.5), but none of them is superior over any 

of the other two. This means that these three algorithms (NN-1, SMO-2, and LMT) perform 

equally in comparison to each other, but better than any of the rest classifiers. 

 

Table 6: Statistical comparison of various classifiers for positives/all negatives 
discrimination using our approach 

 NN-1 SMO-2 LMT NN-0 k-NN SMO-1 C4.5 

NN-1  0 0 + + + + 

SMO-2 0  0 + + + + 

LMT 0 0  + + + + 

NN-0 - - -  0 0 + 

k-NN - - - 0  0 + 

SMO-1 - - - 0 0  0 

C4.5 - - - - - 0  
 

What our method actually achieves is to increase impressively the low specificity that 

appears in other approaches as well as to provide a non-negligible increase in sensitivity. This is 

achieved because of the combination of the two basic components, the chi emerging pattern 

mining and the distance-based scoring. Examining carefully Figure 11, we can observe that the 



  

chi emerging pattern component is better than the distance-based component when linear 

classifiers are used (NN-0 and SMO-1). The reverse is observed when the non-linear classifiers 

are used (NN-1, SMO-2, LMT, k-NN, and C4.5). This implies that the distance-based 

component, that we proposed, encapsulates a non-linear dimension of the problem we deal with 

in this paper. The non-linearity of the problem is not represented in any way by other methods, 

thus the performance of these methods is moderate.   

7 Conclusion 

Polyadenylation site prediction is a challenging problem that attracts the interests of many 

researchers in the areas of medicine, biology, and bioinformatics. Nowadays, the research in this 

field is focused on discovering new patterns and on predicting the poly(A) site accurately. The 

approach we have proposed deals with these both dimensions of the problem. The difficulties on 

poly(A) site prediction are basically derived by the absence of highly conserved signals around 

the poly(A) site.  In August 2009 Mayr and Bartel published their work on a study of normal 

and cancerous cells. Their results showed a strong correlation between 3΄ UTR length and the 

expression of oncogenes. The important aspect is that the 3΄ UTR length is determined by the 

position of the poly(A) site along the sequence. So it is obvious that polyadenylation is a key 

element in the understanding of biological processes and diseases like cancer and as a result it is 

going to be one of the most interesting topics in the field of bioinformatics.  

In this work we studied the problem of poly(A) site prediction and proposed a method 

(PolyA-iEP) that can be used for both descriptive and predictive analysis. PolyA-iEP exploits 

emerging patterns as well as a distance-based scoring method and eventually provides a 

significant increase in effectiveness, which in our setup reaches 93.7% of sensitivity and 88.2% 

of specificity. An important benefit of our approach is that it is general, thus can be re-trained 

and parameterized for use with other sequences possibly from different organisms. In the future 

we are considering studying the use of more sophisticated classification methods like classifier 

ensembles in order to increase even more the effectiveness of our approach. Also, our future 

plans include the experimentation with mRNA sequences of other organisms. 

The datasets we used and the tool we developed are available at 

http://mlkd.csd.auth.gr/PolyA/index.html. 
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