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Abstract. Association rules mining is a popular task that involves the discovery 
of co-occurences of items in transaction databases. Several extensions of the 
traditional association rules mining model have been proposed so far, however, 
the problem of mining for mutually exclusive items has not been investigated. 
Such information could be useful in various cases in many application domains 
like bioinformatics (e.g. when the expression of a gene excludes the expression 
of another) In this paper, we address the problem of mining pairs and triples of 
genes, such that the presence of one excludes the presence of the other. First, 
we provide a concise review of the literature, then we define this problem, we 
propose a probability-based evaluation metric, and finally a mining algorithm 
that we apply on gene expression data gaining new biological insights. 

1   Introduction 

This paper deals with the issue of gene expression analysis. Proteins are the main 
structural and functional units of an organism’s cell, whereas DNA and RNA have the 
role to carry the genetic information of the organisms. In particular, the genetic in-
formation that is coded in the genes of DNA is transcribed into messenger (mRNA) 
and then is translated into a protein. The functions of an organism depend on the 
abundance of proteins which is partly determined by the levels of mRNA which in 
turn are determined by the expression of the corresponding gene. Changes in gene 
expression underlie many biological phenomena. 

The study of gene expression levels may guide to very important findings. SAGE 
(Serial Analysis of Gene Expression) is a method that provides the quantitative and 
simultaneous analysis of the whole gene function of a cell [26]. The method works by 
counting short tags of all the mRNA transcripts of a cell. The set of all tag counts in a 
single sample is called a SAGE library, and describes the gene expression profile of 
the sample. An important advantage of the SAGE method, against other methods like 
microarrays, is that the experimenter does not have to select the mRNA sequences 
that will be counted in a sample. This is quite important, since the appropriate se-
quences for studying various diseases such as cancer are not usually known in ad-
vance. This advantage of SAGE makes it a fairly promising method, especially for 
cancer studies as in ours. 

In this paper we present a method that utilizes the concept of association rules min-
ing for extracting mutually exclusive expressions of genes. This is a new problem that 



has not been studied yet. We define the problem of mining for genes with mutually 
exclusive expressions. We propose two metrics and a mining algorithm that we study 
on SAGE data.  

The paper is organized as follows. The next section presents the required back-
ground knowledge. Section 3 contains a short review of the relative literature. Section 
4 contains the description of the proposed approach, definitions of terms and notions 
that are used, the proposed algorithm and the metrics for measuring the mutual exclu-
sion. In section 5 we present our experiments and discuss important issues and in sec-
tion 6 we conclude. 

2   Preliminaries 

This section provides the necessary background knowledge including mining for fre-
quent itemsets and contiguous frequent itemsets. 

2.1 Frequent Itemsets 

The term “frequent itemset” has been proposed in the framework of association rules 
mining. The association rules mining paradigm involves searching for co-occurrences 
of items in transaction databases. Such a co-occurrence may imply a relationship 
among the items it associates. The task of mining association rules consists of two 
main steps. The first one includes the discovery of all the frequent itemsets contained 
in a transaction database. In the second step, the association rules are generated from 
the discovered frequent itemsets. A formal statement of the concept of frequent item-
sets is presented in the following paragraph. 

Let I = {i1, i2, …, iN} be a finite set of binary attributes which are called items and 
D be a finite multiset of transactions, which is called dataset. Each transaction T∈D 
is a set of items such that T⊆ I. A set of items is usually called an itemset. The length 
or size of an itemset is the number of items it contains. It is said that a transaction 
T∈D contains an itemset X⊆ I, if X⊆ T. The support of itemset X is defined as the 
fraction of the transactions that contain itemset X over the total number of transactions 
in D: 
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Given a minimum support threshold (0,1]σ ∈ , an itemset X is said to be σ-frequent, 
or simply frequent in D, if ( )Dsupp X σ≥ . 

2.2 Contiguous Frequent Itemsets 

In the following lines we provide some definitions and formulate the problem of min-
ing contiguous frequent itemsets as defined in our previous work [5]. 



Every frequent itemset F⊆ I divides the search space in two disjoint subspaces: the 
first consists of the transactions that contain F and from now on will be called the F-
subspace and the second all the other transactions. 

Definition 1. Let F⊆ I be a frequent itemset in D, and E⊆ I be another itemset. 
The itemset F∪E is considered to be a contiguous frequent itemset, if F∩E=∅  and 
E is frequent in the F-subspace. 

Itemset E is called the locally frequent extension of F. The term locally is used, be-
cause E may not be frequent in the whole set of transactions. In order to avoid any 
confusion, from now on we will use the terms local and locally, when we refer to a 
subset of D and the terms global and globally when we refer to D. For example, we 
use the terms global support (gsup = suppD) and local support (lsup = ⊂FSub Dsupp ). 
There may be set two separate thresholds for global and local support. An itemset F 
that satisfies the minimum global support threshold (min_gsup) is considered to be 
globally frequent and an itemset E that is frequent in the F-subspace, according to the 
minimum local support threshold (min_lsup), is considered to be locally frequent. The 
local support of an itemset E in the F-subspace can be calculated as in (2). 
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Given a finite multiset of transactions D, the problem of mining contiguous fre-
quent itemsets is to generate all itemsets F∪E that consist of an itemset F that has 
global support at least equal to the user-specified minimum global support threshold 
and an extension E that has local support at least equal to the user-specified minimum 
local support threshold. 

3   Related Work 

Some recent efforts have utilized data mining methods for analyzing SAGE data. De-
cision trees (C4.5) and support vector machines were used in [7] to classify the data 
according to cell state (normal or cancerous) and tissue type (colon, brain, ovary, 
etc.). Hierarchical clustering of SAGE libraries was also studied [15]. In [24] hierar-
chical and partitional (K-Means) clustering algorithms as well as various cluster vali-
dation criteria were studied. Other approaches have also been applied on SAGE data, 
including mining of frequent patterns [25], strong emerging patterns [16], association 
rules [4], and frequent closed itemsets [9]. The effect of dimensionality reduction 
methods was studied in [3]. Data cleaning was considered in [14] as well as the proc-
ess of the attribution of a tag to a gene. Finally, various feature ranking, classification, 
and error estimation methods were presented in [13]. 

Association rules were first introduced by Agrawal et al. [1] as a market basket 
analysis tool. Later, Agrawal and Srikant [2] proposed Apriori, a level-wise algo-
rithm, which works by generating candidate itemsets and testing if they are frequent 
by scanning the database. Several algorithms have been proposed since then, others 
improving the efficiency, such as FPGrowth [11] and others addressing different 



problems from various application domains, such as spatial [12], temporal [6] and 
intertransactional rules [21]. 

One of the major problems in association rules mining is the large number of often 
uninteresting rules extracted. Srikant and Agrawal [18] presented the problem of min-
ing for generalized association rules. Thomas and Sarawagi [20] propose a technique 
for mining generalized association rules based on SQL queries. Han and Fu [10] also 
describe the problem of mining “multiple-level” association rules, based on taxono-
mies and propose a set of top-down progressive deepening algorithms. Teng [19] pro-
poses a type of augmented association rules, using negative information called disso-
ciations. A dissociation is relationship of the form “X does not imply Y”, but it could 
be that “when X appears together with Z, this implies Y”.  

Another kind of association rules are negative association rules. Savasere et al. [17] 
introduced the problem of mining for negative associations. They propose a naive and 
an improved algorithm for mining negative association rules along with a new meas-
ure of interestingness. In a more recent work Wu et al. [27] present an efficient 
method for mining positive and negative associations and propose a pruning strategy 
and an interestingness measure. Their method extends the traditional positive associa-
tion rules (A ⇒  B) to include negative association rules of the form A ⇒  ¬B, ¬A ⇒  
B, and ¬A ⇒  ¬B. The last three rules indicate negative associations between itemsets 
A and B. A mutual exclusion can not be expressed by one such rule. If items a and b 
are mutually exclusive, then {a} ⇒  ¬{b} and {b} ⇒  ¬{a} concurrently, that is dif-
ferent from ¬{a} ⇒  ¬{b}. The problem of mining pairs of mutually exclusive items 
has been recently introduced [22, 23]. 

4   Our Approach 

In this section we provide a detailed description of the proposed approach. Before 
presenting the basic steps of this approach we will describe the structure of the input 
data. 

The data are structured in a gene expression matrix A. The columns of the matrix 
represent the tags of the genes and the rows represent the different samples (SAGE 
libraries). The intersection of the ith row with the jth column, namely the element aij, is 
the gene expression level for the gene j in the sample i. 

4.1 Discretization 

The data that will be used for mining the mutually exclusive gene expressions should 
contain binary values. Each value denotes if a gene in a particular SAGE library is 
expressed or not. We have utilized three methods for discretization that have been 
proposed in [4]. These methods are presented below: 
• Max minus x%. This consists of identifying the highest expression value (HV) in 

any library for each tag, and defining a value of 1 for the expression of that tag in a 
library when the expression value is above (HV - x)/100. Otherwise, the expression 
of the tag is assigned a value of 0. 



• Mid-range based cutoff. The highest and lowest expression values are identified for 
each tag and the mid-range value is defined as the arithmetic mean of these two 
numbers. Then, all expression values below or equal to the mid-range are set to 0, 
and all values above the mid-range are set to 1. 

• X% of highest value. For each tag, we identified libraries in which its level of ex-
pression was in the x% of highest values (e.g. 30%). These are assigned the value 
1, and the rest are set to 0. 
The use of the above methods filters out a large number of infrequent tags that may 

correspond either to genes that have very low expression levels or to mistakenly 
counted tags (e.g. a tag with count 1 could be caused in an error in sequencing of the 
tag). Any of the above methods can be selected depending on the particular study and 
dataset. For example if a very short number of expressed genes is desirable, then 
method 10% of highest value would be a good choice.  

At this step, also, the dataset is converted to a transactional format, so that each 
sample contains the IDs of the genes (tags) that are expressed in the particular sample 
(SAGE library). 

4.2 Definition of Mutual Exclusion 

Definition 2. Let D be a finite multiset of transactions (samples or SAGE libraries) 
and I be a finite set of items (genes or tags). Each transaction T∈D is a set of items 
such that T⊆ I. If two items i1∈I and i2∈I are mutually exclusive, then there is not 
any transaction T∈D, such that {i1, i2}⊆ T. If a gene i is contained in transaction T, 
then gene i is expressed in SAGE library T. 

The above definition of mutual exclusion is strict. However, the inverse of defini-
tion 1 does not generally stand, so it cannot be used to identify mutually exclusive 
items. Typically in a SAGE dataset genes are in tens of thousands, whereas SAGE 
libraries (transactions) are in hundreds. It is possible that there is a large number of 
pairs of genes that are never expressed together. According to the inverse of definition 
2 all of these pairs of genes have mutually exclusive expressions. But, in fact only a 
very small number of these pairs of genes have truly mutually exclusive expressions.  

Mining for mutually exclusive items in a database possibly containing several 
thousands of different items, involves searching in a space that consists of all the pos-
sible pairs of items, because virtually any of them could contain two items that ex-
clude each other. However this approach is naive and simplistic and can lead to many 
mutually exclusive items that in fact are not. We propose a more intuitive approach, 
which is based on the assumption/observation that every frequent itemset expresses a 
certain behavior and therefore it could be used to guide our search. Items that appear 
with high frequency in the subspace of a frequent itemset are more likely to be sys-
tematically mutually exclusive, because they follow a pattern and not because of pure 
chance or unusual cases.  

Our approach consists of three steps. In the first step, all the frequent itemsets are 
mined. Then, the frequent itemsets are used for mining the contiguous frequent item-
sets, producing the extensions that will be used in the next step as candidate mutually 
exclusive items. Any frequent itemset mining algorithm can be used in the first step. 
Step 2 works in a level-wise manner and requires a number of scans over the data-



base, which is proportional to the size of the extensions discovered. The extensions of 
the contiguous frequent itemsets mined at the second step are candidates for partici-
pating in a pair of mutually exclusive items. 

4.3 Mutual Exclusion Metrics and Mining Algorithm 

In order to distinguish when two items are mutually exclusive, we need a measure to 
evaluate the degree of the mutual exclusion between them. Initially, we should be able 
to evaluate this within the subspace of a frequent itemset (locally) and then it should 
be evaluated globally, with all the frequent itemsets that support this candidate pair to 
contribute accordingly. For this purpose, we propose the use of a metric we call MEM 
(Mutual Exclusion Metric) that can be calculated in two phases, the first one is local 
and is required for the second one, which is the global one. 

Local Metric. We propose the following local metric (3), which will be called Lo-
cal MEM for the evaluation of a candidate pair of mutually exclusive items that is 
supported by a frequent itemset I and its range is [0, 1]. 
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For the above formula P(I) = 1. SX is the fraction of transactions that contain X over 
the number of transactions that contain I.  

Global Metric. We propose the following global metric (4) for the evaluation of a 
candidate pair of mutually exclusive items that is supported by a set IS of frequent 
itemsets. 
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IIF stands for Itemset Independence Factor and is calculated as the ratio of the 
number of the distinct items contained in all itemsets that support a candidate pair 
over the total number of items contained in these itemsets. For example, the IIF of the 
itemsets {A, B, C} and {A, D} is 0.8, since there are 4 distinct items (A, B, C and D) 
over a total of 5 ones (A, B, C, A and D). The IIF is used in order to take into account 
the possible overlapping of two candidate mutually exclusive items. We do this, be-
cause the overlapping between the transactions that contain two different itemsets 
implies overlapping between the transactions that contain the pair. 

Using the above metrics we have implemented an algorithm for mining pairs of 
mutually exclusive items [22]. In our study we have extended our algorithm for min-
ing not only pairs, but also triples of mutually exclusive items and we have adapted 
our approach for application on gene expression domain. We have implemented a tool 
that is available at our group’s website: http://mlkd.csd.auth.gr/mutex/index.html.  



5   Experiments 

In this section we describe the dataset and the results of our experiments and we dis-
cuss some important issues. 

5.1   Dataset 

We have used a SAGE dataset that consists of 90 SAGE libraries and 27679 tags. 
This dataset has been provided by Dr Olivier Gandrillon’s team (Centre de Génétique 
Moléculaire et Cellulaire de Lyon, France) and has been studied and presented at the 
ECML/PKDD Discovery Challenge Workshops in 2004 and 2005. The SAGE librar-
ies contained in this dataset have been prepared as of December 2002 [8]. They are 
collected from various human tissue types (colon, brain, ovary, etc.) and are labeled 
according to their cell state that is either normal or cancerous. 

5.2   Results 

We have conducted a number of experiments in order to evaluate the behavior of our 
approach. Table 1 presents the mean transaction size of the datasets that are generated 
using many variants of the three discretization methods described in 4.1. As it is 
shown the counts of the tags are not equally distributed. For example, method “max 
minus 5%” provides a mean transaction size of 344 genes while method “5% of high-
est value” provides a mean transaction size of 1047 genes. This means that the tags 
that have at most 5% smaller count than the maximum count are not the 5% of the 
highest counted tags but a very smaller percentage. 

Table 1. Mean transaction size for various discretization methods 

Discretization Method Mean Transaction Size
Max minus 5% 344 
Max minus 10% 392 
Max minus 15% 440 
Max minus 20% 500 
Max minus 25% 580 
Max minus 30% 658 
5% of highest value 1047 
10% of highest value 1867 
15% of highest value 2636 
20% of highest value 3113 
25% of highest value 3591 
30% of highest value 3897 
Mid-range based cutoff 1273 

 
Fig. 1 presents the number of mutually exclusive pairs and triples of genes that are 

mined for various values of minimum local support threshold, when minimum global 



support threshold is 0.25 and mid-range cutoff discretization is used. As shown in the 
graph the number of mutually exclusive genes grows exponentially with minimum 
local support threshold. Moreover, the number of triples is in most cases greater than 
the number of pairs. The same happens when minimum global support threshold var-
ies (these results are not presented here, due to space limitations).  
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Fig. 1. Number of mutually exclusive genes against local support  

threshold (min_gsup = 0.25, mid-range cutoff discretization) 

5.3 Discussion 

In our approach a level-wise technique is applied in order to extract the contiguous 
frequent sets of genes and then pairs and triples of genes that their expressions are 
mutually exclusive. Searching for mutually exclusive pairs of items in a “blind” man-
ner would produce a huge amount of candidate pairs. Moreover, most of the discov-
ered mutually exclusive items would be uninteresting. The intuition behind searching 
for mutually exclusive items between the extensions of frequent itemsets is manifold. 
First, the search space is reduced sensibly. Second, genes that are expressed in par-
ticular cases and thus are expressed in a small number of samples could not be mined 
as globally frequent. This does not mean that these genes are not important. However, 
they cannot be mined guiding to possible loss of knowledge. In our approach, these 
genes may be found as frequent extensions of other frequent sets of genes, recovering 
the aforementioned loss of knowledge. Third, if a large number of frequent sets of 
genes share the same extensions and these common extensions are frequent in the 
subspace of these sets, they are likely to be mutually exclusive and possibly of the 
same category and the same level of a taxonomy (e.g. same tissue type). 

As shown by the experiments all pairs or triples of mutually exclusive genes con-
tain genes with different functions. In some cases there are found genes or ESTs with 
unknown functions. This denotes an important use of the proposed approach. This 
approach could be used as part of a procedure for discovering the function of a gene 
or EST. For example, if a gene with an unknown function is found to be mutually 
exclusive with other genes with known functions, then it is very possible that the 



function of the gene is none of the functions of its mutually exclusive genes. More-
over, genes that suppress each other under some conditions can also be found by the 
proposed approach.  

6   Conclusions and Future Work 

In this paper we have presented the novel problem of mining for mutually exclusive 
gene expressions. When two or more genes have mutually exclusive expressions, this 
can be used as a valuable hint when looking for previously unknown functional rela-
tionships among them. In such case, this can be an interesting type of knowledge to 
the domain expert. For this purpose, we propose an intuitive approach, formulated the 
problem providing definitions of terms and evaluation metrics. We have also devel-
oped a mining algorithm. In the future, we would like to extend our algorithm for 
mining not only pairs and triples of mutually exclusive genes but sets of unlimited 
size. Moreover, we will deal with the improvement of the efficiency of our algorithm. 
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