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Abstract

Although cryptocurrency trading can be highly profitable, it carries significant
risks due to extreme price fluctuations and high degree of market noise. To
increase profits and minimize risks, traders typically use various forecasting
methods, such as technical analysis and Machine Learning (ML), but develop-
ing effective trading strategies in noisy markets still remains a challenging task.
Recently, Deep Reinforcement Learning (DRL) agents have achieved high per-
formance on challenging tasks, including algorithmic trading, however it requires
significant amount of time and high-quality data to train effectively. Additionally,
DRL agents lack explainability, making them a less popular option for traders.
The purpose of this paper is to address these challenges by proposing a reli-
able trading framework. Our framework, named UNSURE, generates high-quality
features from candlestick data using technical analysis along with a novel param-
eterization method, and then exploits high price fluctuations by combining three
ML components: A) Unsupervised component, which further improves feature
quality by clustering market data; B) DRL component, which is responsible for
training agents that open Buy or Short positions; C) Supervised component,
which estimates price fluctuations in order to open and close positions efficiently,
while reducing trading uncertainty. We demonstrate the effectiveness of this
approach on nine cryptocurrency markets using several risk-adjusted performance
metrics.

Keywords: Deep Reinforcement Learning, Machine Learning, Cryptocurrency
Trading, Time-Series Clustering, Unsupervised Learning, Supervised Learning



1 Introduction

Cryptocurrency is a high-risk-high-reward trading activity, offering the potential of
high profits in a short time, but with high risk, due to high price fluctuations in
markets. To enhance profit potential, traders often rely on forecasting methods, such
as Technical analysis and Machine Learning (ML) methods (Fang et al, 2022).

Technical analysis provides mathematical formulas, named technical indicators,
which are applied on historical market data in order to identify patterns and make
trading decisions. Technical indicators have become quite popular trading tools, due
to their simplicity in calculation; most of these indicators require a single parameter,
which is the selection of a window that determines how they analyze historical data.
This simplicity provides a straightforward strategy for many traders, which makes
technical indicators a very attractive strategy tool. However, they often generate false
trend signals (Lin, 2012), so traders often combine multiple technical indicators to
develop profitable trading strategies. Nevertheless, it still remains unknown which set
of technical indicators are effective in each specific trading period, as well as what
window should be selected for each indicator.

On the other hand, ML methods attempt to both identify and generalize patterns
from historical market data, in order to predict upcoming market trends. ML models
can be utilized to forecast upcoming trends and price volatility with satisfying accu-
racy, enabling traders to develop trading strategies. Many works have also combined
ML models with technical analysis, which improved their overall performance (Huang
et al, 2019).

Some well-studied ML models that achieve satisfying performance on time-series
forecasting tasks, including price and trend estimation tasks, are Deep Learning mod-
els, such as Convolutional Neural Networks (CNNs) and Long-Short-Term-Memory
Networks (LSTMs) (Nazareth and Reddy, 2023), (Pierros and Vlahavas, 2022). Bai
et al. (Bai et al, 2018) has also designed a novel Deep Learning architecture, named
Temporal Convolutional Networks (TCNs), which outperformed LSTMs and CNNs in
several time-series forecasting tasks, including price forecasting (Zhang et al, 2022).
Finally, Transformer-based architectures have also been recently used in Time-Series
forecasting tasks (Son et al, 2022), which require more training time and computational
resources, but have the potential to outperform several Neural Network architectures
in several forecasting tasks.

Despite the benefits of Deep Learning methods, financial markets are complex
dynamic systems which are influenced by high randomness, market noise and unex-
pected trend shifts. As a result, even with the use of advanced forecasting models,
developing efficient trading strategies based on price and volatility estimation only
remains a challenging task (Hirchoua et al, 2021). Moreover, these methods require
proper feature selection, which can be a quite difficult task in stock and cryptocur-
rency trading, due to the large volume of possible technical indicators with various
window sizes that can be used as potential features.

One specific sub-field of ML that has also recently gained quite attention for its
potential in solving complicated tasks, including automated trading, is Deep Reinforce-
ment Learning (DRL) (Fang et al, 2022). DRL agents can be utilized to adjust trading
volume, as well as identify optimal entry and exit periods in order to increase profits.



Although DRL-based agents have demonstrated impressive performance in trading
environments, they require large amounts of high-quality data and enough time to be
fully scaled. Additionally, such methods generate strategies as black-boxes, making it
very hard to interpet their actions. This is a major drawback of DRL-based trading
agents, as (a) it can result in poorly developed strategies (b) include a lot of trading
uncertainty and risk during the trading periods. All these limitations have raised con-
cerns about the accountability of DRL methods in algorithmic trading (Heuillet et al,
2021).

Distributed Deep Reinforcement Learning (DDRL) frameworks have been devel-
oped to address some of the drawbacks associated with traditional DRL. DDRL
employs multiple agents that collect samples, communicate with each other and learn
in parallel, which usually results in faster scaling, improved training and better policy
generalization (Lazaridis et al, 2020). As we later demonstrate in this paper, this is a
key-component for learning robust trading strategies, especially in markets with high
amount of noise and frequent price volatility. Despite the benefits, there is limited
literature about the use of DDRL approaches in trading-related tasks.

The purpose of this paper is to propose an end-to-end trading framework named
UNSURE (UNsupervised-SUpervised-REinforcement Learning), which combines tech-
nical analysis with ML techniques from three broad categories, in order to address
the aforementioned issues of ML and DRL-based trading systems, while achieving
robustness and high performance in cryptocurrency trading . First, UNSURE applies
technical analysis on candlestick data', combined with a novel parameterization
method, in order to construct high-quality features, while also reducing the required
feature selection and training time. Then, UNSURE exploits high volatility trading
periods to make profit by employing three ML components as described below:

® Unsupervised Component: Applies clustering on market data, in order to com-
bines feature from markets with correlated price returns, increasing the amount
of training data.

® Supervised Component: Trains a TCN model to estimate the maximum price
volatility within a short time horizon, enabling the framework to close positions
at a target price using limit orders.

® Reinforcement Learning Component: Utilizes DDRL agents that learn to open
Buy and Short? positions in a cryptocurrency market environment, with the use
of market orders.

Finally, a novel safety mechanism, named VPM, is also proposed that is employed
during the trading period. VPM combines the predictions generated by the Supervised
Component, in order to guide the agent into generating actions exclusively during peri-
ods with high profit potential. VPM mechanism allows UNSURE to further reduce the
trading risks, while increasing the overall reliability and explainability of the generated
decisions.

The remainder of this paper is organized into the following sections. Section 2
presents the related work of this research. Section 3 presents all the necessary back-
ground that is required for this work. Section 4 covers thoroughly the methodology

1 Candlestick data describe the price movements using Open, High, Low and Close price and Volume.
2Shorting a position involves borrowing an amount of shares and selling it, with the expectation that its
price will decrease.



that was followed in this work, which describes the parameterization method, the three
ML components in greater detail and the safety mechanisms. Section 5 presents the
experimental setup, the metrics and the results of the experiments. Finally, Section
6 discusses the insights of this work and Section 7 concludes this work and proposes
future extensions.

2 Related Work

Jiang and Liang (2017) developed a trading framework for cryptocurrency markets,
by combining several Deep Learning architectures, including CNNs and LSTMs with
Reinforcement Learning algorithms. More specifically, they employed a relatively sim-
ple DRL algorithm, named Deep Deterministic Policy Gradient (DDPG) Lazaridis
et al (2020) in order to generate budget-allocation actions for multiple cryptocur-
rencies. Additionally, the authors integrated LSTM layers into the policy network,
followed by CNNs and a fully connected architecture that generates the actions, in
order to capture more complicated patterns that appeared in the markets, and thus
generate better actions. Even though their approach outperformed several popular
baselines strategies in many cryptoccurency markets, they completely disregarded the
use of technical analysis features and more advanced DRL algorithms.

Pendharkar and Cusatis (2018) constructed a two-asset management methodology,
in order to trade financial indices, such as S&P 500 and AGG, by using several Rein-
forcement Learning agents, with the td(\)-based agent having the best performance.
Although their approach achieved very promising results and managed to beat several
other baseline strategies, such as single asset trading, it was only evaluated on stock
market indices, which present low volatility and risk, in comparison to cryptocurrency
assets.

Bu and Cho (2018) attempted to train agents in Bitcoin and seven altcoin markets
by combining a Long-term Recurrent Convoluitonal Network (LRCN) architecture
with Deep Q-Networks (DQN). Their methodology yieled higher profits, in comparison
to previous trading strategies, but with significantly higher trading risk. This drawback
could be very problematic in cryptocurrency markets, due to high volatility of the
assets, increasing the potential of high losses. One possible solution to this problem
that the authors completely disregarded is to group assets based on their volatility,
which effectively reduces trading risk and improves the trading strategy of the agents,
as we later present in our work.

Huang et al (2019) investigated price changes predictability of Bitcoin using tech-
nical analysis. More specifically, they constructed a tree-based model for price-change
estimation, which was trained on large set of technical indicators. Their study proved
that it is possible to estimate Bitcoin price changes with fairly good accuracy by com-
bining ML algorithms with a large set of technical indicators, even though not all
indicators had a significant impact in the model’s accuracy. This drawback might be
attributed to several factors: firstly, the authors did not select appropriate window
sizes for each indicator, which could be crucial given the large number of indicators
involved. Secondly, there’s a possibility that some of the selected indicators had a
minimal impact on market dynamics.



In the study conducted by Chandar (2022), they introduced an innovative approach
to predict trend shifts for a trading system by employing Gramian Angular Fields
(GAF), a method which is used for time-series to image encoding, combined with a
CNN. To further increase the performance of their model, the authors included various
well-established technical indicators along with the candlesticks, such as the Exponen-
tial Moving Average (EMA), Moving Average Convergence-Divergence (MACD), and
the Relative Strength Index (RSI). Although their approach demonstrated promis-
ing results, particularly in terms of F1-Score and overall accuracy, there are notable
limitations in the study that should have been taken into consideration. One such
limitation is the lack of backtesting, which is crucial for evaluating a model’s strat-
egy in historical data. Another thing to consider is that the authors did not compare
their approach with a more advanced model, such as TCN, which is a CNN-based
architecture, specifically designed for time-series data.

On the other hand, Zhang et al (2022) utilized a TCN model to forecast stock
volatility and Value-at-Risk, which are crucial metrics in risk management and portfo-
lio investment applications. In their work, they compared TCN with several volatility
forecasting models, including LSTM and GRU architectures, in which TCN outper-
formed other Deep Learning architectures in terms of both Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE). Although their approach achieved low
estimation error, they did not emphasize in volatility overestimation errors, which can
potentially lead to the development of catastrophic trading strategies as explained
later on Section 4.

Recently, Schnaubelt (2022) trained DRL agents using PPO algorithm Lazaridis
et al (2020) in order to optimize execution at cryptocurrency exchanges by learning
to place limit orders in an efficient way. To achieve this, they designed a virtual limit
order exchange and a hand-crafted reward function. At each state, the agent chooses
a future timestep on which the limit order is placed and the agent is rewarded based
on Volume-Weighted Average Execution Price. Their experiments yielded that the
agents achieved higher returns when placing limit orders rather than opening market
orders. However, their methodology was only tested on two cryptocurrency markets
and their agent was operating on timesteps with fixed intervals, while the market was
continuously open.

Kochliaridis et al (2023) also utilized a PPO agent to train Integrated TraderNet,
which is a trading agent that executes the Round-Trip strategy in an effective man-
ner. The Round-Trip Strategy involves the placement of pairs of opposing orders in
sequence (e.g., buy-sell or sell-buy) with the goal of generating profits from extreme
price fluctuations in short time. However, the agent was initially found to overesti-
mate market uptrends or downtrends, mainly due to high degree of market noise. To
address this issue, the authors implemented the two safety mechanism that examine
the agent’s action and prevent uncertain actions from being executed. Although this
work has shown that trading rules can be adjusted to DRL agents to improve their reli-
ability in trading tasks, it completely disregards several mechanisms, such as volatility
estimation and price correlation between several cryptocurrency markets, which could
further increase trading.



Instead of using traditional DRL algorithms, Boukas et al (2021) proposed a DDRL
framework for continuous intraday electricity market trading. More specifically, the
authors employed the Buy-Low-Sell-High strategy ® and trained a DDRL agent, named
Ape-X DQN Lazaridis et al (2020), to learn submitting limit orders in continuous
intraday markets. Ape-X DQN is the distributed version of the initial proposed DQN
with Prioritized Experience Replay (PER), offering improved performance and faster
scaling. The results of this paper demonstrated the effectiveness of DDRL approaches
in complicated trading environments with high market noise, such as electricity trading
environments. However, there is limited literature about the applications of DDRL
algorithms in other trading markets as well, such as cryptocurrency markets, which is
also a quite challenging task.

To conclude our literature review, the use of limit orders and the combination
of technical analysis with ML methods enables the construction of profitable trading
strategies. However, previous research overlooked the quality of the technical indica-
tor features, as well as correlations between cryptocurrency markets, which can be
exploited as demonstrated in this paper. Additionally, many cryptocurrency trading-
related works employ PPO (e.g. Betancourt and Chen (2021), Schnaubelt (2022),
Guarino et al (2022)) which is fast, stable learning algorithm and achieves high perfor-
mance Lazaridis et al (2020), but it relies on a synchronous architecture for collecting
experiences. Such architectures require a lot of training steps to be properly trained.
On the other hand, DDRL approaches can achieve much higher experience sampling,
due to the asynchronous collection of samples, which can be quite beneficial in trading
environments, especially with large volumes of data, and therefore should be fur-
ther explored in trading tasks. Finally, in contrast to previous trading approaches,
UNSURE also employs a supervised learning model alongside with a safety mecha-
nism that tackles overestimation errors and uncertainty, instead of relying solely on
the decision of a single agent.

3 Background

This section provides an overview of the key concepts and methodologies that that
are employed in this study, which include Distributed Deep Reinforcement Learn-
ing (DDRL) algorithms, a well-studied DDRL that was utilized in the Reinforcement
Learning component and the TCN model architecture, which is utilized in the
Supervised component.

3.1 Distributed Deep Reinforcement Learning (DDRL)

The goal of DDRL frameworks is to extend and improve performance of existing algo-
rithms by scaling them up in shorter time (Lazaridis et al, 2020). DDRL approaches
achieves this by employing multiple agents that learn in parallel and communicate
with each other, which usually results in faster training, more robust learning and bet-
ter policy generalization. DDRL frameworks are applicable to both the Value-Based

3Buy-Low-Sell-High is the most common strategy, where trader buy an asset when its price is low and
sell it when the price is high



and Policy-Based categories of reinforcement learning algorithms. Two very popu-
lar algorithms in this framework are Ape-X DQN and Importance Weighted Actor
Learner Architecture (IMPALA). The basic architecture of a DDRL framework can
be visualized by Figure 1.
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Fig. 1: Visualization of Distributed DRL frameworks with multiple workers

3.2 Importance-Weighted Actor-Critic (IMPALA)

IMPALA (Lazaridis et al, 2020) is an Off-Policy Actor-Critic learning algorithm, which
include two policies; The Actor policy and the Critic policy. The Actor policy is respon-
sible for selecting actions from the current state of the environment, while the Critic
policy is used to learn the value function, which estimates the expected cumulative
return. IMPALA makes use of multiple actors and a centralized learner, which is the
Critic component. The actors collect experiences from the environment and send them
to the learner, which uses them to update the policy and value functions for each actor
separately.

IMPALA does not rely on actors to compute updates themselves, but lets the
learner apply updates instead, while the actors keep interacting with the environment
with their current policy. Because this technique develops a policy-lag, since the actor’s
policy is several updates behind the learner’s policy, they authors introduce a policy-
correction method, named V-Trace. By using V-Trace, the authors correct the state-
value function differences caused by the lag, which enables IMPALA architecture to
train in parallel and achieve high performance on many environments.

3.3 Temporal Convolutional Network (TCN)

Up until recently, sequence modeling has been mainly associated with RNN architec-
tures such as LSTM and GRU. (Bai et al, 2018) proposed a new architecture named
Temporal Convolutional Network. TCN achieves higher performance than RNNs by



extending CNNs, which avoids the vanishing gradient problem and provide better
memory efficiency. A basic TCN unit consists of dilated convolutions, which apply the
kernel to a larger receptive field, where some input values are skipped depending on
the dilation rate. Another technique that is employed in TCN units is Causal convo-
lution, which takes into account the order of the input data. This means that for a
given input, the output of the convolution at any given time step is only dependent
on the input values up to that point in time.

The authors also suggest a few additions to the basic TCN architecture in order
to improve its performance. First, they added a residual block, in order to address the
vanishing gradient problem that can occur during the training of a Neural Network.
The residual block of a TCN layer consists of a number of dilated convolutional layers,
followed by a non-linear activation function. The output of convolutional layers is be
added to the input of the residual block in order to produce the input for the next
block. Second, they added several regularization methods between the hidden layers
of each block, such as Weight Normalization or Dropout, as presented in Figure 2.

( o Y1 Yo Yr—2Yr—14T Residual Block  Output )
Output : :
5 Dilation: 4 | Dropaat 3
: ReLU
- . X
Hidden2 | : WeightNorm
T : t
I e ‘ Dilated Causal Conv
Dilation: 2 | : t 1x1
H D“’!:W‘ Conv
Hidden1 | : ReLU
s ; WeightNorm
e H +
Dilation: 1 : e e
- Input :
g IT1 Ta Sor EP2IT1TT
\u 7

Fig. 2: Visualization of TCN architecture. Left: The Dilated Convolution operation of
TCN layer. Right: Diagram of Residual Blocks combined with Dilated Convolutions.
The output of Dilated Convolutions pass through a weight normalization layer, as well
as a dropout layer, to reduce over-fitting.

4 Methodology

In this section we describe in detail the technical indicator parameterization method
and the three ML components that are proposed in this paper, namely the Unsu-
pervised component, the DRL component, and the TCN component, all of which
are integrated into a single trading framework. Finally, we introduce the VPM
safety mechanism, which reduces trading risks, improves reliability and the overall
performance.



4.1 Technical Indicator Parameterization

Technical indicators are computed using sliding windows of past N candlestick bars.
Although there are typical values of window sizes that can be used to compute indi-
cator values, these values do not always work well on every market. To the best of our
knowledge, there has been limited investigation into choosing proper window for dif-
ferent markets. The most common approach for selecting technical indicators involves
employing several fast-to-train regression models (Peng et al (2021), Naik and Mohan
(2019)) and choosing the combination of indicators and their respective window sizes
that achieve the highest price estimation performance. However, training many regres-
sion models for multiple markets and multiple technical indicators with several possible
window sizes can be extremely time-consuming. To address this issue, we suggest a
parameterization method that enables the fast selection of proper window sizes for
each market, resulting in higher-quality features.

To determine parameters of the technical indicators, multiple versions of each
indicator are computed by using varying sliding window sizes. Because each version
uses different sizes, it captures different patterns, and thus proposes different trading
strategies. Then, each version is evaluated using backtesting, i.e. a high-speed method
for assesing trading strategies by applying Buy and Sell actions in past historical data
of a particular market. Then, the resulting Sortino Ratio of each strategy is calculated,
which is a well-used and effective risk-adjusted metric that measures the performance
of a strategy, as further described in Section 5. Higher Sortino Ratio values indicate
higher profitability of the indicator strategy with lower risk, so the window size with
the highest Sortino Ratio is selected to generate the indicator values for that particular
market. Our parameterization method is further described in Algorithm 1

Algorithm 1 Parameterization Method

1: Input: Close prices ¢; for N markets, Technical indicator formula I(n,c;) and
possible window sizes N = {3,4,5,...}

2: Qutput: Selected window size n for indicator I

3: procedure BACKTESTING(prices, actions,T)

4: profitPerStep « fill(0,T)

5: fort=1toT-1do

6: profitPerStep < profitPerStep + execute(action|t], prices|t])
7: end for

8: SOR <+ calculateSortino(profitPerStep)

o: return SOR

10: end procedure

11: bestSortino < —100000, bestWindowSize <+ 0

12: for i =1 to length(N) do

13: n < NIJi]

14: actions < computelIndicatorStrategy(prices,I,n)

15: SOR + Backtesting(prices, actions, length(prices))

16: ifSOR > bestSortinothenbestSortino < SOR, bestWindowSize <+ n
17: end for




4.2 Unsupervised Component

Machine learning models, including DRL agents, often require large amounts of train-
ing data, in order to learn effective trading strategies. To increase data availability
and feature quality, this component employs a clustering method that concatenates
features from similar markets, including market data and technical indicators, into
a single dataset. This allows the agent to recognize patterns in a market that could
possibly affect the prices of the other markets in the same cluster. To group similar
markets, a clustering pipeline is constructed as follows:

First, Logarithmic Return transformation, which is defined by Equation 1, is
applied on Close prices C; of each market, which converts the prices into logarithmic
percentage returns L;, and places them on the same scale, so price similarities can
become comparable.

) (1)

Second, Dynamic Time Warping (DTW) Miiller (2007) is used to compute similar-
ities between the sequences of logarithmic returns. DTW addresses any different time
ranges and correlation lags between sequences by mapping each point in one sequence
to one or more points with the other, which creates an optimal alignment between the
two sequences that can be used to calculate a distance measure Miiller (2007).

Finally, the K-Means algorithm is used to cluster the sequences, based on their
distances, as presented in Algorithm 2. The number of clusters n was set to n = 3
for all markets, after experimenting with different values for k € {2, 3,4} for the total
nine markets that were used in this work, as shown in figure 3.

Algorithm 2 Clustering Cryptocurrency Markets

1: Input: Close prices ¢; for N markets, k clusters
2: Output: Cluster of each market
3: procedure CONVERTTOLOGRETURNS(prices)
4 for t =1 to length(prices) - 1 do
logReturns[t] « ln (%ﬂﬁf&l])
end for
return logReturns
end procedure
logReturns < CONVERTTOLOGRETURNS(prices)
10: for : =1 to N-1 do
11: for j =i to N do
12: distances[i] < DYNAMICTIMEWARPING (log Returns[i], logReturns[j])
13: end for
14: end for
15: clusters <~ KMEANSCLUSTERING (distances, k)

o
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Fig. 3: K-Means Clustering with n = 3 clusters on 9 markets. The features from each
market of the same cluster are concatenated into a single dataset, resulting in three
large datasets.

4.3 DRL Component

The goal of the DRL component is to train a DRL agent that maximizes the cumulative
returns by opening Buy and Short positions in an hourly frequency. The above problem
can be expressed as a Markov Decision Process (MDP), which is defined as a tuple
(S, A, P,, R,), where S, A, R, denote the state space, action space and reward function
of the problem respectively, while P, represents the probability transition function.
The objective of the agent is to learn an optimal policy my, which chooses the optimal
action a; in a given state s;.

Action Space. The action space A is composed of 3 actions: {ag : BUY,a; :
SELL,as : HOLD}. In each state s;, the agent can choose to buy or short a limited
amount of tokens, denoted as v or holds its position by selecting actions ag, a; or
as respectively, with v being a user-defined setting. To simulate real-world trading
conditions, the agent starts with a finite initial budget, denoted as b.

State Space. The state space S is composed of market and account observations.
The market observations include candlestick data and technical indicator values. In
order for DRL agent to capture both short and long-term market trends, timeframes
are constructed from market observations by using a sliding window of size T', which is
defined by the user. The state space is then defined as a collection of these timeframes,
with each timeframe representing the current state of the agent. Additionally, to allow
the agent to further understand the market dynamics, the share amount and account
balance are also integrated as account observations, which changes according to the
agent’s actions at each timestep. Thus, a state s; can be mathematically described as
st = (miy, dy) with m; = (o¢, 0¢-1,0t—2,...,01—1) and d;y = (Shares;, Balance), where
0; denotes the 7 — th market observation.

Reward function. A volatility-based reward function is used to train the agents,
which was presented by Kohliaridis et al. Kochliaridis et al (2023) and is defined
by Equation 2. In this reward function, C; denotes the Close price on timestep ¢,
H; . ...,L¢ . denotethe maximum High and minimum Low price within a horizon of ¢+
K timesteps respectively and f the transaction fees constant. K is also a user-defined
parameter, which is used to define the predictability range of the agent.

11
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The agent is rewarded for choosing an action a; if price increases within the horizon
of K timesteps and opens a buy position, or price decreases and chooses to open a
Short position. On the other hand, it penalizes the agent for incorrect estimations and
wrong actions, unless it chooses to hold. Additionally, the proposed reward function,
places a greater importance on price volatility, with higher rewards being given during
more volatile market trends. Given the initial budget, which is finite, the agent is
encouraged to focus on higher-volatility trends, rather than engaging uncertain and
low-rewarding trades.

Architecture. The architecture of policy network component consists of separate
inputs for n7; and d;, denoted as i; and iy respectively. The layer i; is a batch of
timeframes, followed by Convolutional (CNN) layers, which extracts feature maps and
flattens these maps into a single vector u. Then, the inputs is are concatenated with
u, which passes into a Fully-Connected Neural Network. The output of the policy
network is a dense layer, which consists of 3 units, one for each action a € A.

4.4 Supervised Component

In high-volatility markets, it is quite common that uptrends or downtrends occur
between two consecutive timesteps. Because DRL agents operate on discrete timesteps,
this could lead to missed profit opportunities and increases the risk of losses. To address
these issues, an estimator model is trained to predict the maximum High-Close and
Close-Low price margin within a time horizon of K timesteps, the same as that of
the DRL component. Then, during the exploitation phase, the DRL agent opens a
Buy or Short position at timestep ¢, while the estimator predicts at which price the
position should be closed. Finally, the Supervised component places a limit order on
the predicted price to automatically close the agent’s position.

We selected a TCN architecture as the estimator model for various reasons. First
of all, TCNs are fast and easy to train, due to efficient memory usage compared
to LSTMs and Transformers, requiring less computational resources to be properly
trained. Additionally, TCN provide more stable training for large amounts of data in
a short time, whereas Transformers are well-known to require a lot of training time
to achieve satisfying accuracy. Finally, TCNs have shown to outperform LSTMs in
various forecasting tasks, making it a preferable option for our framework.

Inputs. To train the TCN model, the market observations n7; are used as inputs,
with the targets being the maximum logarithmic percentage increase and maximum
logarithmic percentage decrease of current price ¢; within a time horizon, as shown in
Equation 3.

YH = In tma.z
YL = ln

3)

Then, the estimated prices to close the posmons can be computed by Equation 4.
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Loss Function. The most common loss functions for Deep Learning models that
are used in regression tasks, including price estimation, are MSE and MAE, which
treat overestimation and underestimation errors equally. However, in trading tasks,
overestimating the target price (i.e., predicting a higher or lower price than the actual
price) would result in the limit orders not being executed. To increase the probability
of limit orders being executed, this paper makes use of Pinball Loss (a.k.a. Quantile
Loss) Somers and Whittaker (2007), which gives higher loss penalties to overestimation
errors as described by Equation 5.

Pinball Loss = max {7 x (y — §), (r — 1.0) * (y — 9)} (5)
Pinball loss uses 7 parameter to adjust the importance of overestimation and
underestimation error, where 7 is a value in the interval (0.0,1.0). Values less than 0.5
penalize more the overestimated predictions, while higher values assign higher impor-
tance on the underestimation error. To increase the probability of the limit orders
being executed, we select a value of 7 less than 0.5
Architecture. The architecture of TCN component consists of the input layer,
which is a batch of timeframes, followed by a single TCN layer with residual blocks.
Then, the extracted features of TCN layers are flattened into a vector, which passes
into a Fully-Connected Neural Network. Finally, the network includes two outputs,
one for High and one for Low volatility prediction (defined as YyandY7y, respectively).
The network architecture is visually presented in Figure 4.

4.5 Virtual Profit Margin

To further reduce trading risks and provide UNSURE with explainability of the gen-
erated actions, we introduce a novel safety mechanism named Virtual Profit Margin
(VPM), which is deployed during the exploitation period and includes two main mod-
ules. The first module is enabled once the estimated profit margin, defined as the
difference between the current close price from the estimated future price, including
the fees (Equation 6), becomes negative. This indicates that the agent might has been
tricked by market noise and attempts to open a position in a low-volatility and high-
risk trading period. So, the proposed action a; is avoided if VPM; < 0.0, reducing the
potential risk in opening a position in timestep t.

Yiimit(t) — Ct — f % (Yiimit (t) + Ct) ao (6)
Ct — Yiimit(t) — f * (Yiimie(t) + Ct) a1

The second module replaces f parameter in Equation 6 with a virtual fee param-
eter, defined as f , with f > f. The use of VPM mechanism creates a larger target
profit margin between the current price and the predicted price, which forces the
trading framework to engage higher price fluctuation periods than it normally would.
This addition contributes to decreasing the likelihood of overestimation errors, poten-
tially arising from the Supervised learning component, by effectively raising the profit
margin threshold. Consequently, even if TCN predicts an overestimated future price,

VPM, =
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profit margin will have to be large enough, making it more difficult for the agent to
engage such positions, as demonstrated in Figure 5. f parameter can be adjusted by
measuring the overestimation error of TCN.

4.6 UNSURE

The proposed framework integrates the parameterization method, the aforementioned
ML components and the VMP mechanism into an end-to-end trading system, which is
illustrated in Figures 4 and 5. Additionally, This study has conducted a thorough eval-
uation of two learning algorithms for this specific task, which is PPO, and IMPALA.
PPO has gained popularity in trading-related tasks, as mentioned in the Related Works
Section, as it is fast, stable, easy to implement and achieves satisfying performance
on trading tasks. On the other hand, IMPALA is a distributed DRL algorithm, which
has not been extensively explored in trading problems. Similar to IMPALA, PPO also
adopts the Actor-Critic architecture, but does not include any policy lag. By compar-
ing these two algorithms, this study aims to investigate the potential of Distributed
DRL frameworks in challenging trading environments, such as cryptocurrency trading.

DRL Agent Opens Exchange

Account Position

5 Inputs } (Buy/Short) as a, _
Trading {1
e —— < [N
nvironment Market \
Places Limit
CDIu:'len‘ad Order at y to
atasets Close Position a;
TCN Madel
Inputs Flattening Concat FC Hiddens Outputs Inputs  Flattening  FC Hiddens Outputs

BUY

SHORT

HOLD

Fig. 4: Coordination between UNSURE’s components. Top: Unified UNSURE
system. Bottom Left: DRL component. Bottom Right: TCN component.

5 Experiments & Results

In this section, we analyze the historical market datasets that are used to conduct the
experimental procedures. A range of evaluation metrics are additionally described to
assess the performance of the framework. Also, this section provides details about the
hyper-parameter tuning procedure. Finally, the section concludes by presenting and
discussing the experimental results and concludes with a sensitivity analysis of the
framework’s parameters.
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Fig. 5: A trading case scenario using VPM. Green PM symbol illustrates that Profit
Margin between current price and predicted volatility is high, while the red one indi-
cates that it is not. Once VPM mechanism is triggered, it prevents the agent from
opening positions.

5.1 Datasets

Each datasets include hourly candlesticks consisting of Open-High-Low-Close-Volume
(OHLCV) data for Bitcoin (BTC), Ethereum (ETH), Cardano (ADA), Litecoin
(LTC), Ripple (XRP), Polygon (MATIC), Binance Token (BNB), Solana (SOL), and
Loopring (LRC) markets. The datasets are downloaded from Binance platform 4,
because they provide high quality OHLCV data. Then, the candlesticks are converted
to logarithmic returns, because they represent price changes over time, which is a
more informative indicator of the current market state than absolute prices. Finally,
technical analysis is applied to each dataset, followed by the parameterization method
described in Section 4.

The technical indicators that are used in the experiments include DEMA, MACD,
VWAP, RSI, STOCH, CCI, ADX, B-BANDS, AROON, ADL, OBV, with their defini-
tions being provided in Appendix A. While there are hundrends of technical indicators
available, each one of which capture different market aspects, our selection of techni-
cal indicators was guided according to their popularity on AlphaVantage platform 2,
which is a well-known financial platform used by researchers and investors to retrieve
historical data. Aside popularity, we also aim to include indicators that capture a
variety of aspects. For instance, DEMA, MACD, CCI, ADX and AROON indicators
reflect the overall market trends, while VWAP, ADL and OBV capture the market
volume. Finally, we include RSI and STOCH to assess the momentum of the markets,
as well as Bollinger Bands (B-BANDS) indicator to capture the volatility. Finally, to
avoid features biases in the training process all features are scaled in range [—1.0,0.0]
for the negative values and [0.0,1.0] for the positive ones, using the Max-Absolute
scaling method, described by Equation 7.

*https://www.binance.com/en
Shttps://www.alphavantage.com

15



X
Tscaled =

(7)

max(|z|)

5.2 Experimental Setup

To train DRL agents, a training and an evaluation environment was are constructed for
each market. The training environment consists of 50000 past historical observations,
while the evaluation environments include the 5000 most recently hourly observations,
equivalent to (10%) of the total observations for each dataset, which is a trading period
of approximately seven months of hourly trading. We have also tried small evaluation
portion, such as %5 of the total dataset observations, but we did not found significant
differences in the final results of the experiments, so we kept the evaluation size to
10%.

Moreover, to avoid data overfitting, the evaluation samples were used only during
the evaluation period and were not available during the training period. Also, we
ensured that the evaluation periods includes sudden market shifts, where there is a
lot of profit, as well as loss potential, such as the one presented by figure 6.

Bitcoin Evaluation Set

40000

35000 4

30000 +

Close Prices

25000 4

20000 4

0 1000 2000 3000 4000 5000

Trading Hours
Fig. 6: Visualization of Bitcoin evaluation dataset. Orange circles indicate sudden
market shifts followed by high-volatility trading periods.

To allow the agent to capture real-time market dynamics, we add several options
to the simulation environments. First, commission fees are set to f = 1.0% to each
market, which aligns with the typical transaction charges of Binance. Second, we
add the ability to place limit-orders in order to close positions automatically at a
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specified price, just like in Binance platform. Finally, the agent starts with a finite
budget of 100,000 US dollars and is allowed to buy or short only limited volume of
assets per transaction. We provide both the Binance market simulator and the code
for reproducing the experiments, which can be downloaded from the Google Drive
platform ©.

5.3 Metrics

DRL Agents. To evaluate the performance of DRL agents, several metrics have been
used, including: (i) Cumulative Returns (CR), (iv) Sharpe Ratio (SHR), (v) Sortino
Ratio (SOR) and (vi) Average Drawdown (ADD) for DRL agents.

CR is defined as the sum of all returns, as described by Equation 8.

T
CR = Z Tt4+1 (8)
t=0

where 741 is defined by Equation 2. The higher the Cumulative Returns, the higher
the profits generated by the agent. Although it is a straightforward indicator of profits,
CR does not measure the overall trading risk. Traders usually consider risk-adjusted
metrics, such as SHR, SOR and MDD.

SHR is defined by Equation 9.

B[R] - rf (9)

o [Ry]

where ¢ indicates the risk-free interest rate. In order to evaluate the performance
of the agent, the risk-free rate was set to zero. SHR is a widely used metric, however, it
considers both upside and downside portfolio wealth Mamoghli and Daboussi (2009).
On the other hand, SOR (Equation 10), which is a similar metric to SHR, empha-
sizes more on the downside returns by dividing the average returns with the standard
deviation of the negative returns. Although both SHR and SOR are risk-adjusted met-
rics, SOR can be a more relevant metric for investors who are particularly concerned
about losses rather than steadily increasing gains. A trading strategy achieves satisfy-
ing performance if SHR and SOR are above 1.0, while values above 2.0 indicate that
the strategy achieves strong performance. Mamoghli and Daboussi (2009).

SHR =

E[R()] -7y
o [NR(t)]
where N R(t) are all negative returns (R(¢) < 0).
Finally, ADD measures the average downside loss percentage of a portfolio wealth,
which is a good indicator of trading risk, and is defined by Equation 11.

N
., DD;
ADD = Z% (11)

where N is the number of drawdown periods and DD; = the i-th drawdown period,
measured as a percentage decline from the previous peak of the portfolio’s wealth.

SOR = (10)

8Code: https://drive.google.com/drive/folders/1aW 7Miv0cf2jCPe8DOW42pCerKYpl AcNh?usp=sharing
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TCN. To evaluate the performance of TCN model, Mean Absolute Error (MAE),
Mean Overestimation Error and Mean Overestimation Percentage Error (MOPE)
have been used, which are described by Equations 12, 13 and 14 respectively, with y;
being the target values and g; the predicted ones.

N
1 .
MAE:ﬁZEIyi—yA (12)
N
1 Ui — Yi Ui > Y
MOFE = — 2 1
N
1 19—y =0
MOPE = — 2 - 14
© Ni_l{oyi<yi } (14)

UNSURE. To evaluate the trading performance of UNSURE, SHR, SOR, and
ADD metrics were utilized, as well as Profit and Loss (PNL) metric, which represents
the ratio of final account wealth to initial wealth.

5.4 Hyper-Parameter Tuning

The hyperparameters of PPO, IMPALA and TCN which are presented in this work
have a large combinatorial space, making an exhaustive search infeasible, so only
limited search was conducted. The tuning process began with the default values of
each algorithm, and the most sensitive hyperparameters were manually fine-tuned.
The optimal values were determined by evaluating each set based on the Cumulative
Returns (CR) for the DRL agents and validation MAE error for the TCN models. The
selection of hyperparameters are presented in Tables 1, 2 and 3 for PPO, IMPALA
and TCN respectively.

In addition, there are several other hyperparameters as outlined in Section 4 that
can affect the performance of the framework. These include Transaction Volume (v),
Timeframe size (T'), Horizon K, Virtual Fees (f), the window size (N) for each tech-
nical indicator and 7 parameter of the TCN model. To beging with, the transaction
volume was set to v = 1.0 asset per transaction. The Timeframe size was set to T' = 20
because it allowed both the DRL agents and TCN models to train quickly while achiev-
ing satisfying predictive results and the Horizon K was set to 12 timesteps (12 hours
ahead), after experimenting with various values in range 8 to 18. We selected a vir-
tual fee of f = 1.4% from a set of options ranging from 1.0 to 1.5, because it achieved
the best results. Also, the 7 parameter was set to 0.3, as we further describe later in
this Section. Finally, we provide the selected window sizes for each technical indicator
that resulted after the technical indicator parameterization method in Table 4.

5.5 DRL Evaluation

In this evaluation part, we only compare the performance of PPO and IMPALA in
every market and analyze their potential to open profitable positions during high
volatility periods. Our primary metric for evaluating their performance is CR. Higher
CR values indicates better exploitation of high price fluctuation by the agent. In
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Table 1: PPO Hyperparameters

Parameter Value

Epsilon Clipping (¢€) 0.2

Entropy Regularization (h) 0.01

Generalized Advantage Estimation (GAE) True

Mini-Batch size 128

Epochs 5

Discount Factor (vy) 0.99

Optimizer Adam(lr = 0.001)
Actor Network Convolutional Layers 2 x (32,3) + ReLU
Actor Network Hidden Dense Layers 2 x 256 + ReLU
Critic Network Convolutional Layers 2 x (32,3) + ReLU
Critic Network Hidden Dense Layers 2 x 256 + ReLLU

Table 2: IMPALA Hyperparameters

Parameter Value

Actors 16

Entropy Regularization (h) 0.001

Mini-Batch size 512

Epochs 1

Discount Factor () 0.99

Optimizer Adam(lr = 0.001)

Actor Network Convolutional Layers 2 x (32,3) + ReLU
Actor Network Hidden Dense Layers 2 x 256 + ReL.U
Critic Network Convolutional Layers 2 x (32,3) + ReLU
Critic Network Hidden Dense Layers 2 x 256 + ReLLU

Table 3: TCN Hyperparameters

Parameter Value
Convolutional layers (64,5) + ReLU
Dilation Rates [1,2,4,8]
Dense layers [128,32] + ReLU
Residual Blocks True

Weight Normalization True

Dropout Rate 0.0

Batch Size 64

Epochs 200

Optimizer Adam

T 0.3

Table 4: Technical Indicator parameterization using Sortino Ratio Metric

Market | DEMA | MACD | VWAP | RSI | STOCH | CCI | ADX | BBANDS | AROON
ADA 40 15, 35 40 14 20 20 14 3 14
BNB 40 33, 72 40 25 8 3 25 25 40
BTC 15 33, 72 40 5 3 3 25 3 25
ETH 15 33, 72 40 5 3 40 14 15 40
LRC 40 26, 57 25 15 15 25 14 15 20
LTC 5 33, 72 40 5 40 3 40 40 5

MATIC 20 15, 35 20 10 20 10 10 8 40
SOL 25 33, 72 40 10 40 3 8 3 40
XRP 25 33, 72 20 40 20 20 20 3 3
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addition to CR, the rest of the presented metrics consider the overall risk-adjusted
performance of the agent’s strategy.

We used four different methods for the evaluation part:

a - No Parameterization - No Clustering

b - No Parameterization - Clustering + Feature Concatenation
¢ - Parameterization - No Clustering

d - Parameterization - Clustering + Feature Concatenation

The performance of both PPO and IMPALA using methods (a) and (b) are pre-
sented in Table 5, while methods (c) and (d) are presented in Table 6. To evaluate
the performance of each agent, we used CR, SHR, SOR and ADD metrics, which are
highlighted with different colors inside the table. Due to low computational resources,
both algorithms are trained for 200 iterations in each experiment, with each iteration
being 512 steps.

It can be observed by the tables that IMPALA demonstrates superior performance
compared to PPO in almost every market. More specifically, for the same number of
training iterations, IMPALA achieves higher cumulative returns in the evaluation envi-
ronment in comparison with PPO. Additionally, the trading performance of IMPALA
is superior, as it can be observed by risk-adjusted metrics. Finally, the performance
of IMPALA in comparison with PPO can be illustrated by Figure 7

Furthermore, by comparing the metrics in Tables 5 and 6, it can be seen that the
parametarization method employed in this study improved the overall performance
for both learning algorithms, especially in terms of cumulative returns. Additionally,
when the parameterization method is combined with the Unsupervised component,
which clusters the datasets and concetenates their features, then the performance of
both PPO and IMPALA is increased.

Table 5: Comparison of the Performance of PPO with IMPALA on 9 Cryptocurrency
markets, without employing the parameterization method. ” Y” columns indicate that
clustering was employed, while ” N” indicate it wasn’t. The boldings highlight the
method that achieves the highest performance for each metric. Each metric is displayed
with a color: CR - Blue, SHR - Green, SOR - Red, ADD: Orange

Algorithm PPO IMPALA
Metric CR SHR SOR ADD CR SHR SOR ADD
Clustering (Y/N) Y N Y N Y N Y N Y N Y N Y N Y N

ADA 1.770 | 1.638 | 1.914 | 1.922 | 3.894 | 3.606 0.059 | 1.915 | 1.854 | 1.969 | 2.094 | 4.388 | 4.068 | 0.034
BNB 0.441 | 0.537 | 1.107 | 1.426 | 1.728 | 1.588 | 0.107 0.590 | 0.552 | 1.358 | 1.269 | 1.741 | 1.561 | 0.161
BTC 1.116 | 1.039 | 1.174 | 1.258 | 1.815 | 1.550 | 0.095 1.211 | 1.15 | 1.340 | 1.214 | 1.856 | 1.825 0.048
ETH 3.572 | 3.567 | 2.376 | 2.399 | 6.010 | 5.908 0.042 | 3.698 | 3.597 | 2.423 | 2.359 | 5.813 | 5.203 | 0.024
LRC 0.922 | 0.960 | 1.525 | 1.500 1411 | 4.086 0.091 | 1.262 | 1.062 | 2.056 | 1.819 | 6.380 | 5.191 0.044
LTC 2.164 | 2.236 | 2.068 | 2.036 | 3.937 | 4.140 0.053 | 2.239 | 2.232 | 2.064 | 2.002 | 4.116 | 4.223 0.040

MATIC 1.012 | 1.026 | 1.733 | 1.677 | 6.495 | 5.449 0.056 | 1.114 | 1.102 | 1.749 | 1.891 | 5.472 | 6.827 | 0.161
SOL 1.283 | 1.183 | 2.047 | 1.921 | 8.596 | 8.585 0.073 | 1.338 | 1.295 | 2.231 | 2.022 | 9.535 | 9.440 0.043
XRP 2.742 | 2.661 | 2.204 | 2.156 | 6.169 | 6.213 0.050 | 2.883 | 2.870 | 2.326 | 2.288 | 6.774 | 7.095 | 0.038

5.6 TCN Evaluation

The key metric for evaluating the performance of TCN models in our work is MOPE,
because lower MOPE scores indicate higher probability that limit orders will be exe-
cuted at the estimated prices. Another important metric to be considered is MOE,
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Table 6: Comparison of the Performance of PPO vs IMPALA on 9 Cryptocurrency
markets, including the parameterization method

Algorithm PPO IMPALA
Metric CR SHR SOR ADD CR SHR SOR ADD
Clustering (Y/N) Y N Y N Y N Y N Y N Y N Y N Y N

ADA 1.734 | 1.688 | 2.018 1.985 1288 | 3.661 | 0.033 2.042 | 1.930 | 2.195 | 2.169 | 4.801 | 4.721 0.033
BNB 0.570 | 0.501 | 1.307 | 1.224 | 1.554 1.565 0.062 | 0.530 | 0.620 | 1.147 | 1.405 | 1.577 | 2.113 | 0.051
BTC 0.970 | 1.050 | 1.286 | 1.276 | 1.507 1.560 0.044 | 1.370 | 1.213 | 1.502 | 1.389 | 2.261 | 1.897 | 0.047
ETH 3.169 | 3.206 | 2.135 | 2.197 | 4.761 £.795 | 0.031 3.720 | 3.631 | 2.361 | 2.404 | 5.611 | 5.989 | 0.027
LRC 1.001 | 0.988 | 1.558 | 2.214 | 3.797 | 4.370 | 0.044 1.064 | 1.054 | 3.975 | 1.836 | 3.975 | 4.111 | 0.040
LTC 2.257 | 2.105 | 2.056 1.928 1.266 | 3.935 | 0.035 2.334 | 2.408 | 2,183 | 2,126 | 4.567 | 4.643 0.026

MATIC 1.051 | 1.039 | 1.807 | 1.773 | 5.245 | 5.849 0.184 | 1.187 | 1.061 | 1.860 | 1.836 | 5.335 | 6.005 | 0.027
SOL 1.244 1 1.191 | 1.912 1.849 | 8.186 | 7.246 0.053 | 1.410 | 1.324 | 2.051 | 2.039 | 7.681 | 8.269 0.024
XRP 2.881 | 2.722 | 2.219 | 2.217 | 7.236 | 6.236 0.032 | 2.922 | 2.831 | 2.323 | 2.209 | 7.046 | 6.521 | 0.028

because it highlights the overestimation error of predicted volatility. Lower MOE val-
ues indicate that the predicted volatility is slightly above the actual volatility, which
can be tackled by increasing virtual fee parameter during the trading period. Finally,
MAE metric was also included, because it is a standard metric used for regression
models.

In this study, each TCN model was trained for 100 epochs, with the clustering
method employed, and we compared the performance of TCN models with and without
the parameterization method, as shown in Table 7. While the parameterization method
appears to decrease the estimation error of the models most of the times, it did not
always provide a major improvement. For instance, in the LRC and LTC markets, the
MOPE error was higher when using the parameterization method. Nonetheless, the
parameterization method enhanced the overall accuracy of the models, and should be
considered as an addition during the dataset construction pipeline.

Table 7: Final Validation metrics of TCN Model using the clus-
tering method and with/without parameterization method.

- Parameterization No Parameterization
Market MAE MOE MOPE MAE MOE MOPE
ADA 0.0198 | 0.0092 0.3145 | 0.0221 0.0091 | 0.3164
BNB 0.0180 | 0.0083 0.3052 | 0.0180 | 0.0072 | 0.3098
BTC 0.0198 | 0.0088 | 0.2956 0.0206 0.0094 0.3011
ETH 0.0286 | 0.0151 | 0.3241 0.0313 0.0151 | 0.3283

LRC 0.0185 | 0.0097 0.2785 0.0238 0.0092 | 0.2762
LTC 0.0243 0.0117 | 0.2943 0.0221 | 0.0126 0.2876
MATIC | 0.0253 | 0.0149 | 0.3133 0.0282 0.0161 0.3171
SOL 0.0321 0.1723 | 0.2653 0.0312 | 0.0183 0.2701
XRP 0.0322 0.0184 0.2798 0.0306 | 0.0192 0.2821

5.7 UNSURE Evaluation

In the final evaluation part, we measure the profitability and effectiveness of the inte-
grated UNSURE framework and VPM, as presented in Table 8. It can be noticed that
even without VMP mechanism, UNSURE achieves satisfying SHR and SOR metric val-
ues, with exceptional performance in BTC, ETH, LRC, and XRP markets. Although
the PNL returns are less than 5% in some markets, UNSURE achieves trading risk
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less than 10% in all market except ETH, where trading risk is 12.3%, which is quite
satisfying, and thus it can be a preferred option for investors who prioritize on low
trading risks.

Table 8: UNSURE Trading Performance Evaluation with VPM (Left) and with-
out (Right)

- VPM No VPM
Market | PNL (%) | SHR SOR | ADD | PNL (%) | SHR | SOR | ADD
ADA 16.992 1.651 | 2.267 | 0.043 1.021 0.411 0.593 0.047
BNB 3.236 1.643 | 1.809 | 0.026 -0.237 -0.432 | -0.505 | 0.034
BTC 12.087 1.916 | 1.963 | 0.036 4.265 1.489 1.572 | 0.034
ETH 24.554 2.725 | 2.896 | 0.123 20.763 1.635 1.787 0.149
LRC 2.315 2.402 | 2.596 | 0.025 2.269 1.119 1.392 | 0.018
LTC 3.792 1.451 1.603 | 0.041 3.824 1.513 | 1.708 | 0.045
MATIC 2.263 1.697 | 1.892 | 0.084 3.580 1.712 1.782 0.093
SOL 3.221 1.277 | 1.268 | 0.068 2.342 1.171 1.215 0.083
XRP 21.583 2.220 | 2.744 | 0.039 13.136 1.798 2.204 0.078

Additionally, it can be seen that VPM mechanism improves the overall performance
of UNSURE, as highlighted in Table 8 and reduces drawdowns caused by overestima-
tion errors in most of the markets. This can be attributed to UNSURE’s ability to
engage fewer trades, but during periods of high volatility, as well as its ability to trade
less aggressively, due to higher profit margin threshold, resulting in a more effective
trading approach. Finally, the overall performance of UNSURE with the use of VPM
mechanism is also illustrated in Figure 8.

5.8 Baseline Evaluation

To highlight the effectiveness of UNSURE in comparison with traditional technical
indicator strategies, we conducted an evaluation comparing it to three well-studied
technical indicators: a) RSI, b) CCI, ¢) VWAP in all 9 cryptocurrency markets. Fur-
thermore, we compare UNSURE with 5 previous trading methodologies in Bitcoin
Market, including;:

1. - TD(X) (Pendharkar and Cusatis, 2018)

2. - CNN (Jiang and Liang, 2017)

3. - DQN (Bu and Cho, 2018)

4. - DNA — R (Betancourt and Chen, 2021)

5. - DNA — S (Betancourt and Chen, 2021)

To benchmark our methodology against the five aforementioned systems, we
employed both PNL returns and the Sharpe Ratio as key metrics for comparison.
These metrics were selected not only for their relevance in assessing both profitabil-
ity and risk but also because they were utilized in the evaluations of the previous
approaches as well, ensuring a fair and direct comparison.

For TD()\) approach, we used the most parameters that are presented and rec-
ommended in the original paper, including v = A = 0.9,7 = a = 0.1 and fine-tuned
the exploration rate e of the algorithm, which was selected to be ¢ = 0.05, from the
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Fig. 7: Impala evaluation using the Unsupervised component and a) With technical
indicator parameterization (Continuous line) b) Without parameterization (Dashed
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set of {0.01,0.02,0.05}. For CNN approach, we used a single CNN layer of 32 con-
volution filters of size x5, which was followed by a fully connected neural network of
500 units and the output layer, similar to Jiang and Liang (2017) work. Although the
authors used only 12 filters in their work, we found that 32 filters yields higher profits
in our dataset. For Bu and Cho (2018) approach, we used the same parameters that
were optimized in the original work, including § = 0.995 and LSTM window size of 55
inputs. Additionally, we selected a small v value of 0.1 with high exploration rate as it
suggested in their paper and trained the policy network with a batch size of 64 expe-
riences per step, instead of 8, which achieved slightly more satisfying results. Finally,
for DNA — R and DN A — S approaches, we set the clipping parameter of PPO to
0.2, which was fined-tuned from a set of {0.1,0.2,0.3} and the number of batch size to
32. The rest of the parameters, such as GAFE, H(7), A and Adam/sparameters were
set according to the authors’ work.

The comparison results presented in Figures 9, 10, and 11, illustrate that each
technical indicator employs a unique trading strategy in each market. However, these
baseline strategies usually result in negative PNL returns by the end of the trading
period, across various cryptocurrency markets, with some exceptions. These include
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Fig. 8: Evaluation of UNSURE framework, including parameterization method, all
three ML components and VPM mechanism.

the RSI strategy, which eventually yielded profits in BTC and ETH markets, as well
as VWAP strategy, which also demonstrated satisfying performance in BTC market,
achieving a final wealth of 180000 USD. On the other hard, UNSURE achieved lower
PNL returns compared to VWAP in BTC market, but as demonstrated in Figure 8, it
presented lower drawdowns and a steadily increasing PNL over the time. This is more
important for investors who seek profits with lower trading risks. Finally, although
UNSURE did not yield large profits in every market, it did not yield negative PNL at
the end of the trading period in any market, unlike RCI, CCI and VWAP strategies.

In our final evaluation setup, our trading agents obtained significantly higher scores
than those obtained by previous approaches. These results are shown in Table 9, where
UNSURE scored 12.087 total returns and 1.916 SHR, outperforming DN A — R, which
achieved 7.116 and 0.758 of total returns and SHR respectively.

5.9 Sensitivity Analysis

In addition to hyper-parameter tuning and the evaluation of UNSURE, we also con-
ducted a sensitivity analysis to examine the effect of various hyper-parameters on our
framework. These include Transaction Volume (v), Initial Budget(b), Timeframe Size

(T'), Horizon (K), Virtual Fees (f) and Quantile 7. Our analysis was carried out using
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Fig. 9: Visualization of RSI Performance using PNL metric

Table 9: Baseline Evaluation in
Bitcoin Market

Algorithm | PNL(%) | SHR
TD(V) 0320 | 0.404
CNN 1.012 0.527
DQN 1.151 0.661

DNA-S 2.798 0.609
DNA—-R 7.116 0.758
UNSURE 12.087 1.916

the evaluation dataset from the Bitcoin market. We used the Sortino Ratio (SOR) as
a metric to assess the influence of these hyper-parameters on both profitability and
trading risk.

Transaction Volume & Initial Budget. Both of these parameters can signif-
icantly influence both the profitability and the risk levels of our system. Specifically,
a higher initial budget allows the agent to hold multiple positions simultaneously,
potentially increasing the opportunities for profit. However, this also exposes the
agent to greater risks. Similarly, increasing the transaction volume enables the agent
to trade in larger asset volumes, which can also enhance profits, as shown in Table
B1. Nonetheless, it is important to consider real-world market constraints during the
tuning process, which are discussed in detail in Section 6, suggesting that trading in
smaller volumes is often more advisable.

Timeframe Size. This parameter is utilized in both the DRL module and the
Supervised module to create timeframes from past data samples, which are essen-
tial for the action generation and volatility estimation respectively. Smaller timeframe
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sizes may lead to insufficient information for the agent to make informed decisions.
For instance, it might be crucial for the agent to be aware of at least the past 12 hours
of price activity. Similarly, the TCN model could potentially enhance its volatility
estimation with longer input timeframes. However, larger timeframe sizes can intro-
duce noisy inputs and increase the overall model complexity, leading to longer training
time required for them to converge to a satisfying solution. In our experiments, we set
T = 20, as we observed that it achieves satisfying balance between training duration
and performance for both the DRL and the Supervised module, even though further
tuning of this parameter could result in a higher performance trading system.

Horizon. The horizon parameter holds considerable importance as it impacts both
the accuracy of volatility estimation and the trading strategy of the system. Small
horizon values increase the Supervised module’s performance, but it may reduce the
system’s overall profitability, because it limits the duration for which positions remain
open, before significant price changes can occur (Figure B1). Oppositely, increasing
this parameter, decreases the Supervised module’s performance, as it will have to
estimate the maximum volatility for a longer horizon. Although the volatility increases
in longer horizons, large horizon values could also drop the trading performance of the
system, as it would result to larger overestimation errors (Figure B1), which would
result in the orders not being executed.

Virtual Fees. The virtual fees parameter is highly dependent on the exchange’s
fees per transaction. In our case, with transaction fees set at f = 1.0% per transac-
tion, the virtual fees are constrained to a maximum of f < 1.0%, according to VPM
rule. By increasing its value, the trading system adopts a more conservative trading
approach, resulting in fewer trading actions, which aims to identify trading periods
with higher potential for profitability. Consequently, while the opportunity for profit
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may decreases, the risk associated with trading also decreases. This flexibility allows
the system to be adjusted to the risk tolerance of the user: more conservative traders
might opt to increase the virtual fees value, whereas more aggressive traders could
align the virtual fees with the actual transaction fees. Table B2 demonstrates how the
total PNL and (ADD) metrics change in respect to f .

Quantile. An important consideration in determining the tau parameter is finding
the right balance between underestimation and overestimation error. If tau parameter
is set above 0.5, the model will tend to overestimate its targets, so most of limit
orders will not be executed. On the other hand, if a very small value is chosen for
tau, TCN model may underestimate the estimated prices by a large margin, resulting
in lower profit potential. In this work, tau was set to 0.3, because it reduced the
mean overestimation percentage error of the TCN model to only 0.25% — 0.30%, while
maintaining satisfying underestimation error levels, as presented in Table B3.

6 Discussion

In almost our experiments and under different settings in each experiment, IMPALA
managed to outperform PPO algorithm in terms of cumulative returns and trading
risk. Due to its asynchronous architecture, IMPALA is able to sample greater number
of experiences and learn more robust trading strategies under same number of itera-
tions, proving that DDRL algorithms, such as IMPALA, should strongly be considered
in trading tasks.

Additionally, it is evident that the integration of the technical indicator parame-
terization method alongside with the Unsupervised component significantly enhanced
the trading performance of UNSURE in each market. This combination not only led
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to improved trading strategies, but also ensured efficiency during the feature selection
process, requiring minimal time to calibrate and select proper window sizes of each
technical indicator in each market.

Furthermore, it is possible that due to price correlations between the clustered
markets, the agents could make use of several features from one market to make better
trading decisions in other markets as well. For example, a DRL agent could consider
specific features from Bitcoin market that indicate an upcoming trend in Ethereum
market, and thus generate better transactions. Another benefit of the Unsupervised
component is that by considering a range of similar markets, the agents are trained on
a broader range of market trends, patterns, and price changes, enhancing their ability
to learn complex trading strategies. This approach also helps to reduce overfitting,
which can occur when agents are trained on a single dataset, potentially limiting their
ability to generalize well on complex patterns.

Finally, it is noteworthy that each one of these methods can be integrated to
other works as well. For instance, instead of using IMPALA, another DDRL algorithm
could be employed, such as Apex-DQN, which outperformed IMPALA in several atari
games, but with the cost of longer scaling time. As it is also highlighted in Section 2,
Apex-DQN has also achieved great performance in energy-trading tasks. Additionally,
TCN models of UNSURE could also be replaced by a more advanced regression mod-
els, such as Transformers, capable of achieving higher volatility estimation accuracy
with the cost of more training time as well. Finally, the combination of the Unsuper-
vised component with the technical indicator parameterization method can easily be
employed to enhance the feature quality of the datasets that were used in previous
works as well.

6.1 Assumptions & Weaknesses

During the implementation of our unified system, we encountered a variety of assump-
tions and limitations that need to be highlighted. Initially, our strategy involves a
several hyper-parameters that require calibration for each market, as described in
Section 5. Furthermore, in order for our system to properly work in real-world markets,
we included two critical assumptions during our experimental phase.

First, we make the assumption that the market remains unaffected by our agent’s
trading activity. Second, we mame the assumption that there are always available
assets in the market for our agent to trade. To adhere to these assumptions and to
minimize our system’s impact on the market’s behavior, we have a) restricted the agent
to transact only small volume of assets at each timestep (interval) and b) provide the
agent with a finite initial budget of 100,000$. Although permitting the agent to handle
a larger trading budget and increasing the allowed trading volume per timestep could
potentially amplify the returned profits, our strategy aims to optimize returns while
maintaining a low profile in the market to avoid significant deviations of the market
behavior.
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7 Conclusion & Future Work

In this paper, we have integrated three ML. Components, namely the Unsupervised,
the Supervised and the Reinforcement Learning component, as well as a technical
indicator parameterization method, into an end-to-end trading framework, named
UNSURE. Our findings demonstrate that UNSURE is a viable option for investors
who emphasize on profit returns with low trading risks.

Despite the effectiveness of IMPALA algorithm, in both terms of speed and per-
formance, DRL-based trading agents are not much reliable and can be tricked by
frequent market noise. To address these issues, we have incorporated a TCN model to
estimate price volatility, alongside with VPM mechanism, in order to avoid high-risk
trading periods and enter and exit market positions in an effective way. Furthermore,
the clustering algorithm as well as the technical indicator Parameterization method
are able to construct high quality inputs and state spaces in a reasonable time, which
also increased the overall performance of the trading framework.

Finally, the trading strategies formulated by each individual technical indicator
exhibited sub-optimal performance, with some strategies even yielding losses in some
markets. This emphasizes the significance of incorporating various machine learning
techniques to develop profitable trading strategies that aim to reduce PNL drawdowns
and maximize profits. By employing the presented Machine Learning techniques, we
constructed an effective and robust trading system for several cryptocurrency markets.

Future work regarding UNSURE framework includes the implementation of several
other portfolio-parameterization methods, which could further improve the over-
all trading performance. Furthermore, a feature importance methodology could be
employed for the combined datasets, in order to disregard low-importance features,
and thus increase the trading performance, while also reduce the required training time
of the components. Moreover, the same methodology could be expanded into other
several other trading markets as well, including energy, stocks and additional cryp-
tocurrency markets. The final objective of our future work includes the use of more
advanced and recent policy architectures with the use of Autoencoders and Trans-
formers, as well as the use of time-series data to image encoding techniques. The use
of more advanced models and further data engineering pipelines have the potential to
improve even further the trading strategy of UNSURE.

Appendix A Technical Analysis

A.1 Exponential Moving Average - EMA

EM A is a moving average type of indicator, which is given by Equation Al. EM A is
used to smooth price signals, in order to remove market noise.

EMA(n) = Price(n) xk+ EMA(n —1) % (1 — k) (A1)
where k is the smoothing constant and is defined as k = Niﬂ N parameter defines

the ”Look-Back” sliding window and is used in many technical indicators.
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A.2 Double-Exponential Moving Average - DEMA
DEMA is an extension of EM A, given by Equation A2, which attempts to remove
price lag that is caused by EM A. The default value of N parameter is 14.

DEMAN =2EMANy — EMAof EMAN (A2)

A.3 Moving Average Convergence/Divergence - MACD

MACD is also a trend type of indicator, which shows the relationship between two
moving averages (usually EM As), one with a short period and one with a longer
period. The mathematical formula of M AC'D is provided by Equation A3.

MACD =EMAN, —EMAN, (A3)
with Ny >> Nj. The default values are N; = 12 and Ny = 26

A.4 Aroon UP/DOWN

Aroon, which is described by Equations A4 and A5, identifies trend changes and
estimate the strength of an upcoming trend.

25 — Ny

e 100 (A4)
25— N,

= <100 (A5)

with Ny and Ny being the timesteps between a new High price or Low price
respectively.

A.5 Commodity Channel Index - CCI

CC1 is also trend indicator, which estimates price trends, as well as the direction and
strength of a trend. C'CT is presented by Equation AG6.

TP(n) — EMAy(TP)
MD(TP)

where, T'P the typical price defined as T P(n) = High(”)+L°“§(”)+CZOS€(”) and M D(TP)
the Mean Deviation of Typical Price. Typically, N = 20.

cCl =

%0.015 (A6)

A.6 Average Directional Index - ADX

ADX is a well know trend type of indicator that measures the strength of a trend and
is given by Equation A7

PDI - NDI

——  x 100 AT
PDI+NDI (A7)
where M A is a Moving Average and PDI, NDI are Positive Directional Indicator
and Negative Directional Indicator respectively.

ADX = M A«
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A.7 Stochastic Oscillator - STOCH

STOCH is a momentum indicator, given by Equation A8, which is usually used in
large trading ranges or to capture slow moving trends.

Close(n) — Ly
Hy — Ly
where Ly and Hpy are the minimum past value Low value and maximum past High
value respectively, within a window of N prices. The default value of NV is 14.

(A8)

A.8 Relative Strength Index - RSI

RS is a well-studied momentum indicator, which attempts to identify over-bought or
over-sold securities. The mathematical formula of RST is described by Equation A9

100

1+ RS
where RS is the ratio of Average Price Increases to Average Price Drops within a
window of N timesteps. The default period is 14.

RST =100 — (A9)

A.9 On-Balance Volume - OBV

OBV is a volume type of indicator that measures the volume flow. Its formula is
provided by Equation A10.

OBV (n+1)=0BV(n)+

Volume(n) Close(n+ 1) < Close(n) (A10)
0 Close(n + 1) = Close(n)
—Volume(n) Close(n + 1) > Close(n)

A.10 Bolliger Bands - BBANDS

BBANDS is a volatility indicator, which is provided by Equations A11 and A12 and
measures the standard deviation of the simple moving average.

BBANDyp = Mean(TP) + 2 * Std(TP) (A11)

BBANDpowy = Mean(TP) — 2 % Std(TP) (A12)

where Mean(TP) is the average typical price and Std(TP) is the standard
deviation of typical price within a look back window N. The default window of
Bollinger-Bands is N = 20.

A.11 Volume-Weighted Average Price - VWAP

VW AP is a volume-weighted moving average, which is given by Equation A13 and
defined as the average price of an asset weighted by the total trading volume over a
period of N timesteps. The default period is usually N = 14.
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SN ITP(N — i)« Volume(N — i)
ij;ol Volume(N — i)

VWAP(n) = (A13)

A.12 Accumulation/Distribution Line - ADL

ADL is another volume-based indicator, which attempts to measure the underlying
supply and demand (bids and asks). The mathematical formula of ADL indicator is
described by Equation A14.

ADL(n) = ADL(n — 1) 4 (Close = Low) = (High — Close)

- Al4
High — Low ( )
Appendix B Sensitivity Analysis
Table B1: Analysis of Budget and Trans-
action Volume parameters in the evaluation
datasaet of Bitcoin market.
Volume (assets) | Budget ($) | SOR(%)
0.5 50,000 1.631
0.5 100,000 1.949
1.0 50,000 2.152
1.0 100,000 2.896
2.0 100,000 2.588
2.0 200,000 3.616
Average Maximum Volatility per Horizon in Log Returnns TCN Mean Absolute Lag Error per Horizon
0.08 —a— Average 04 —e— Linet

Maximum

0.04 /,_.——/ Volatiity L 008

Avarage Maximum Volakiity
Mean Absolute Log Erox

Horizon (K) Horizon (K}

Fig. B1: Average Maximum Volatility (left) and the respective TCN’s Mean Absolute
Log Error (right) per Horizon in Bitcoin Market. The orange point represents the
selected value of our framework.
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Table B2: UNSURE’s perforance in terms of
PNL and ADD metrics in respect to Virtual Fees
parameter in the evaluation dataset of Bitcoin

market.
Fees (%) | Virtual Fees (%) | PNL ($) | ADD
1.0 1.0 4.265 0.034
1.0 1.5 12.087 0.036
1.0 2.0 6.483 0.029

Table B3: Analysis of TCN’s per-
formance in respect to Pinball Loss
Quantile (7) parameter in the evalu-
ation dataset of Bitcoin market.

Pinball Quantile | MOPE | MOE
0.2 0.2253 0.0063
0.3 0.2956 0.0088
0.4 0.3949 0.0113
0.5 0.5152 0.0129
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