
Semantically-Enhanced Authoring of Defeasible Logic
Rule Bases in the Semantic Web

Efstratios Kontopoulos
School of Science & Technology,
International Hellenic University

GR-57001, Thessaloniki, Greece
Dept. of Informatics,

Aristotle University of Thessaloniki
GR-54124, Thessaloniki, Greece

+302310998418
e.kontopoulos@ihu.edu.gr

Thetida Zetta
Dept. of Informatics,

Aristotle University of Thessaloniki
GR-54124, Thessaloniki, Greece

+302310998418
School of Computer Science

& Informatics,
Cardiff University, Cardiff, UK

thzetta@gmail.com

Nick Bassiliades
Dept. of Informatics,

Aristotle University of Thessaloniki
GR-54124, Thessaloniki, Greece

+302310997913
nbassili@csd.auth.gr

ABSTRACT
The Semantic Web represents an initiative to improve the current
Web, by augmenting content with semantics and encouraging
cooperation among human and software agents. The development
of the logic and proof layers of the Semantic Web is currently
concentrating the related research effort and is vital, since these
layers allow systems to infer new knowledge from existing in-
formation, assisting them in explaining their actions and, ulti-
mately, increasing user trust towards the Semantic Web. Howev-
er, there is a lack of applications that could contribute towards
developing logic-based applications. Consequently, users resort
to inadequate tools that offer syntactic support, without being
able to support the user semantically as well. This work presents
S2DRREd, a software tool that introduces a supplementary level
of semantic assistance during rule base development. The tool
allows creating meta-models of the main notions of the loaded
rule sets and assists the user in authoring rule bases, inde-
pendently of the explicitly chosen rule language syntax. The
domain of application is defeasible logic, a type of logic that
allows reasoning with incomplete and conflicting information
and, as such, it can play an increasingly important role in a dras-
tically dynamic environment like the Web.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Graphical User Interfaces

General Terms
Design, Languages.

Keywords
Semantic Web, RuleML, Rule Bases, Defeasible Logic, Non-
monotonic Reasoning.

1. INTRODUCTION
The Semantic Web [2] represents an initiative to improve the
current Web, by augmenting Web content with semantics and
facilitating cooperation among human and software agents. Its
basic infrastructure has reached sufficient maturity and research
efforts are now shifting towards the higher layers of logic and
proofs. These layers are critical, since they will allow systems to
infer new knowledge from existing information, assisting them in
explaining their actions and, eventually, increasing user trust
towards the Semantic Web. Researchers are focusing mainly on
the integration of rules and ontologies (OWL2 RL [13]) and on
rule representation standardization (SWRL [8], RuleML [4]).

Unfortunately, there is often a narrow and domain-specific varie-
ty of appropriately focused software tools that could assist to-
wards the development of rule-based applications, like e.g. ge-
neric and adaptable rule editors. Consequently, users resort to
existing applications for purposes that exceed their given array of
functionality. For instance, in order to deploy a RuleML rule set,
one could make use of an XML editor that indeed offers syntactic
support, but there is an evident lack of parallel semantic support.
This lack involves on one hand the rule structure itself, but also
the data model, to which these rules refer to. And the problem
becomes more apparent, when moving “upwards” to the domain
model, with rules containing class and attribute names.

This paper presents S2DRREd, a software tool for authoring de-
feasible theories. A supplementary level of semantic support
during rule base development is added, which cooperates with
established techniques for syntactic support. The application
domain is defeasible logic, a member of the non-monotonic
logics family that allows reasoning with incomplete and conflict-
ing information [10]. Since the Web comprises a drastically dy-
namic environment, the role of non-monotonic logics becomes
even more significant. Via its Semantic Tag Mapping (STM)
functionality, the tool permits creating meta-models of the main
defeasible logic theory notions, like “rule”, “rule type”, “rule
head” etc., independently of the chosen rule language syntax.

2. DEFEASIBLE LOGIC
A defeasible theory D is a knowledge base or a program in de-
feasible logic that consists of three basic components: a set of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

WIMS'12, June 13-15, 2012 Craiova, Romania

Copyright © 2012 ACM 978-1-4503-0915-8/12/06... $10.00

facts (F), a set of rules (R) and a superiority relationship (>).
Therefore, D can be represented by the triple (F, R, >).

Defeasible logic features three distinct types of rules: Strict rules
are denoted by A → p and are interpreted in the typical sense. An
example of a strict rule is: “Novels are books”, which, written
formally, would become: r1: novel(X)  book(X). Contrary
to strict rules, defeasible rules can be defeated by contrary evi-
dence and are denoted by A  p. Two examples are:
r2: book(X)  hardcover(X) (“Books are typically
hard-covered”) and r3: novel(X)  ¬hardcover(X) (“Nov-
els are typically not hard-covered”). Defeaters, denoted by A 
p, are rules that do not actively support conclusions, but can de-
feat defeasible conclusions, by producing evidence to the contra-
ry. A defeater example is: r2’: cheap(X) 
¬hardcover(X) (“Cheap books are not hard-covered”), which
can defeat e.g. rule r2 mentioned above.

The superiority relationship is an acyclic relation > among the
rule set R, which is used, in order to resolve conflicts among
rules. For example, defeasible rules r2 and r3 contradict each
other, but if the superiority relationship r3 > r2 is introduced,
then r3 overrides r2 and we can indeed conclude that the novel is
not hardcover. In this case rule r3 is called superior to r2.

Defeasible reasoning encompasses additional sophisticated fea-
tures, like conflicting literals and negation-as-failure (NAF), the
description of which is omitted here, due to space limitations.

3. S2DRREd
S2DRREd (Syntactic-Semantic Defeasible Reasoning Rule Edi-
tor) is a software tool, dedicated to authoring defeasible logic
theories expressed in the DR-RuleML syntax [1], a rule language
based on Object-Oriented RuleML [3]. Figure 1 displays a DR-
RuleML fragment example (v.0.91) and, more specifically, de-
feasible rule r2 from the previous secton.

The primary contribution of the system is the additional level of
semantic assistance offered during the development of rule bases,
making the software ideal not only for managing DR-RuleML
files, but any other XML-based rule representation as well.

3.1 Architecture and Functionality
Figure 2 displays the overall architecture of the system. The main
module is the Rulebase Editor, which directly interacts with the
end-user. The module is tightly integrated with the Semantic Tag
Mapping (STM) module, which is described later and comprises
the main means for semantic support, as well as with the other
secondary modules that offer additional syntactic/semantic sup-
port during the development of defeasible logic rule bases.

The Syntax Loader is the module responsible for loading external
schemas that define allowed vocabularies and subsequently feeds
them to the parser. The latter detects all elements and attributes
and temporarily stores them in memory, so that they can be uti-
lized later on (e.g. for syntax highlighting and for the STM func-
tionality). During detection, the system also copes with <in-
clude> and <redefine>, following the corresponding URLs
and collecting the detected elements and attributes.

Besides loading custom external schemas, there is also the option
of loading one of three predefined DR-RuleML schemas, v.0.89,
v.0.9 and v.0.91, which are defeasible logic extensions to the

respective versions of the core RuleML vocabularies. One of the
imminent goals for the future is to develop a DR-RuleML vocab-
ulary for the recently released RuleML v.1.0. The corresponding
structures that contain the collected elements and attributes for
the predefined schemas are stored in respective files. When load-
ing one of the three schemas, this feature saves time for users, as
they don’t have to reinitiate the detection process. The applica-
tion commences each time having as default schema the one that
was loaded during the last time S2DRREd was executed.

Figure 1. DR-RuleML fragment (v.0.91).

The main window of the program is displayed in Figure 3. The
top menu bar consists of various menus. The File menu contains
options for managing projects and rule bases. The notion of a
project contains the rule base (DR-RuleML file), along with
additional files that contain custom, project-specific properties
and are discussed subsequently. Each project is assigned a dis-
tinct folder space in memory. The Properties menu contains the
more sophisticated functionalities for syntactic and semantic
support. Users can load schema files for the rule base under de-
velopment, they can check the well-formedness and validity of
the RuleML file, while users can also launch the Semantic Tag
Mapping (STM) module that comprises the backbone of the sys-
tem’s semantic support and is described subsequently.

Figure 2. S2DRREd Overall Architecture.

The bulk of the main window is occupied by the rule base editor,
while the two side panels are the Projects Tree and the Rules
List. The former displays the tree of available S2DRREd projects,
while the latter features a list of all rules contained in the loaded
rule base. By clicking on a rule name, the cursor moves to the
corresponding rule in text area. As new rules are added, the rule
list is automatically refreshed with the new rule names.

3.2 Semantic Tag Mapping
After loading a schema S2DRREd displays the STM (Semantic
Tag Mapping) window (Figure 3), where the user can match the
tags of the loaded vocabulary to the rule base concepts. In es-
sence, STM provides a meta-modelling facility for generating
schemas over various language versions. A meta-model provides
a schema for semantic data, specifying what elements may be
contained in the model and how they relate to one another. In
reality, each meta-model is a specification of a domain-specific
modelling language.

Figure 3. S2DRREd Main and STM windows.

An STM meta-model is a collection of notions that form the vo-
cabulary, which provides an understanding of the given domain.
It provides a communication means between the end user and
S2DRREd, by facilitating common grounds of understanding over
the notions of “rule”, “rule type” “rule head”, “rule body” etc.
STM is the primary, novel contribution of this work that can
handle a wide range of notions, with the list being easily custom-
izable as well.

There is the option of choosing the tag/element name considered
more suitable from a list that contains all the elements and at-
tributes of the loaded schema. The latter list promotes user-
friendliness, by also providing auto-completion features during
typing.

For the schemas already included (v.0.89, v.0.9 and v.0.91), the
STM table is already filled; the process of manually matching
tags and concepts is necessary only when loading a custom sche-
ma and has to be performed only once, the first time a new lan-
guage schema is loaded to the system.

The following subsections indicate how STM semantically sup-
ports some of the secondary editor functionalities.

3.2.1 Syntax Highlighting
S²DRREd provides syntax highlighting for all loaded XML-based
languages. When loading a schema, highlighting is supported for
the elements and attributes detected in the schema and defined
by the current sublanguage. It is easily understood, that this func-
tionality of the software is not restricted to defeasible logic
RuleML-like languages only, but to any XSD-based XML sub-
language, making S2DRREd a highly versatile system.

3.2.2 Code Completion (Auto-complete)
Upon typing “<” (i.e. inserting a new tag in the rule base), a
popup menu with the suitable choices shows up, which are (se-
mantically) defined from STM. For example, the rule contains a
head and a body, thus, when opening a new tag inside a rule tag
(element <Implies> for v.0.91 of the language), the two choices
(“head” and “body”) will appear. Σφάλμα! Το αρχείο προέλευ-
σης της αναφοράς δεν βρέθηκε. demonstrates the auto-
complete feature.

3.2.3 Tag Matching
This feature highlights matching sets of tags. It assists in navi-
gating the rule base and spotting potentially improper matching.
Figure 3 illustrates an example of utilizing this feature, where
the opening and closing tags of element <head> are highlighted
in the main window of the program.

4. RELATED WORK
There are various free and commercial software tools for deploy-
ing rule bases. For example, the SWRL Editor [11] is a Protégé-
OWL plug-in for creating, authoring and editing documents con-
taining SWRL rules that also allows interoperation with third-
party inference engines through a Java API. The software can
save only syntactically valid rules and only allows saving of rules
relating to currently loaded OWL entities. It offers elementary
semantic checking (e.g. no variables that were not referred to in
the antecedent can be used in a rule consequent) and auto-
completion. Detailed logic checking, on the other hand, is not
performed (e.g. a rule could contradict OWL constraints). SWRL
rules are saved as OWL individuals, along with the associated
OWL file. Together with the SWRL Editor, the SWRL API is
also provided that offers mechanisms for creating and manipulat-
ing SWRL rules in an OWL knowledge base. Finally, the tool
also provides inference capabilities through the Jess rule engine,
which is integrated into Protégé-OWL.

DLRule [7] is another plug-in for Protégé that allows the rewrit-
ing of specific rules into DL axioms using OWL 1.1. If a rule
isn’t rewritable, it is added to the ontology as an SWRL rule. The
rules that are rewritten as DL axioms enable additional inference
avoiding the DL-safety limitation. Non-rewritable rules (added as
SWRL) can be handled by a reasoner that supports DL-safe
rules. The main features provided by the plug-in are a graphical
representation of the rules and a validation tool that presents the
effect of the rule on the ontology. A command-line tool for pro-
cessing the ontologies is also offered.

Ontology Rule Editor (ORE) [12] is a similar tool for editing,
testing, debugging and validating ontology rules. It provides an

API that can be accessed by third-party software to manage on-
tologies and perform rule-based reasoning. It also provides a
graphical environment for defining rules, by browsing the do-
main elements in the ontology and dragging and dropping them
to the corresponding slots in the rule. The platform that performs
inference process is based on Jena and Pellet reasoning engines,
but can be easily extended to include more engines. Debugging
and validation are performed with syntactic and semantic check-
ing of rule definitions.

Finally, a commercial software paradigm is Rule Manager1 by
Acumen Business. The tool allows business users to develop,
animate, validate and visualize business rules, using simple,
English-based textual constructs, without the need of inserting
technical code. The main features are: vocabulary management,
animation through an interactive rule map, rule validation and
verification, missing rules discovery, full text search, report gen-
eration, rule graph and export to Windows Workflow Founda-
tion. Example target rule engines are Microsoft BizTalk and
Microsoft Windows Workflow Foundation. Developing rules
with Rule Manager is based on Reaction RuleML and the soft-
ware also integrates a corresponding adapter for exporting busi-
ness rule policies in this format. Other examples of commercial
(business) rule editors include Iovation’s software2 and the Busi-
ness Rule Composer, a graphic tool used for authoring, version-
ing, and deploying policies and vocabularies.

Compared to the software tools presented above, S2DRREd of-
fers a significantly higher degree of semantic support during the
development of rule bases. More specifically, contrary to the rest
of the systems that explicitly comply with respective rule lan-
guage syntaxes (e.g. SWRL, RuleML etc), S2DRREd is versatile
enough to adapt to any XML-based rule language. The only re-
quirement on behalf of the user is to manually create (via STM)
a meta-model corresponding each time to the specific XML-
based rule language (e.g. DR-RuleML etc) that describes the key
notions of the rule base. This procedure has to be performed only
once, during the first time a new (sub)language schema is loaded
to the system.

5. CONCLUSIONS AND FUTURE WORK
The paper presents S2DRREd, a software tool for authoring de-
feasible theories. The software adds a supplementary level of
semantic assistance during rule base development that cooperates
with established techniques for syntactic support. The Semantic
Tag Mapping module of the system creates meta-models of the
main defeasible logic theory notions, like “rule”, “rule type” etc,
independently of the explicitly chosen rule language syntax.

As for our future plans for improving the software, it would be
interesting to take advantage of S2DRREd’s modular architecture
and integrate the tool with a reasoning engine, like e.g. OO-
JDrew [6]. The latter currently possesses a simple text editor for
authoring rule bases and it would definitely improve its function-
ality to cooperate with a RuleML-aware editor instead. Another
appealing improvement would be the integration of d-POSL (de-
feasible POSL) into S2DRREd. d-POSL [9] is a defeasible exten-
sion to POSL [5], an ASCII language that integrates Prolog's

1 http://www.acumenbusiness.com/
2 http://www.iovation.com/business-rules-editor.html

positional and F-logic's slotted syntaxes for representing
knowledge (facts and rules) in the Semantic Web.

6. REFERENCES
[1] Bassiliades, N., Antoniou, G., & Vlahavas, I. 2006. A De-

feasible Logic Reasoner for the Semantic Web. Int. J. on
Semantic Web and Information Systems 2, 1, Sheth, A., &
Lytras, M. D. (Eds.), IDEA Group Publishing, 1-41.

[2] Berners-Lee, T., Hendler J., & Lassila O. 2001. The Seman-
tic Web. Scientific American 284, 5, 34-43.

[3] Boley, H. 2003. Object-Oriented RuleML: User-Level
Roles, URI-Grounded Clauses, and Order-Sorted Terms.
Proc. Rules and Rule Markup Languages for the Semantic
Web (RuleML-2003). Sanibel Island, Florida, LNCS 2876,
Springer-Verlag, 1-16.

[4] Boley, H. 2006. The RuleML Family of Web Rule Lan-
guages. In Principles and Practice of Semantic Web Reason-
ing. Springer, 1-17.

[5] Boley, H. 2010. Integrating Positional and Slotted
Knowledge on the Semantic Web. Journal of Emerging
Technologies in Web Intelligence 2, 4, 343-353.

[6] Craig, B. 2007. The OO jDREW Engine of Rule Responder:
Naf Hornlog RuleML Query Answering. Proc. Int. Conf. on
Advances in Rule Interchange and Applications (RuleM-
L'07), Paschke, A., & Biletskiy, Y. (Eds.). Springer-Verlag,
Berlin, Heidelberg, 149-154.

[7] Gasse, F., & Haarslev, V. 2008. DLRule: A Rule Editor
Plug-in for Protégé. Proc. 4th Int. Workshop on OWL: Expe-
riences and Directions (OWLED 2008). Washington, DC,
USA, April 1-2.

[8] Horrocks, I., & Patel-Schneider, P.F. 2004. A Proposal for
an OWL Rules Language. Proc. 13th Int. Conf. on World
Wide Web (WWW ’04). ACM, NY, USA, 723-731.

[9] Kontopoulos, E., Bassiliades, N., & Antoniou, G. 2011.
Visualizing Semantic Web Proofs of Defeasible Logic in the
DR-DEVICE System. Knowledge-based Systems 24, 3,
Elsevier, 406-419.

[10] Nute, D. 1994. Defeasible Logic. Handbook of Logic in
Artificial Intelligence and Logic Programming, Gabbay,
D.M., Hogger, C.J., and Robinson, J. A. (Eds.). Vol. 3, Ox-
ford University Press, 353-395.

[11] O'Connor, M.J., Knublauch, H., Tu, S.W., Grossof, B.,
Dean, M., Grosso, W.E., & Musen, M.A. 2005. Supporting
Rule System Interoperability on the Semantic Web with
SWRL. Proc. 4th Int. Semantic Web Conference (ISWC),
Galway, Ireland, Springer Verlag, LNCS 3729, 974-986.

[12] Ortega, A.M., Alcaraz Calero, J.M., Botía Blaya, J.A., Mar-
tínez Pérez, G., & García Clemente, F.J. 2010. Knowledge
Authoring with ORE: Testing, Debugging and Validating
Knowledge Rules in a Semantic Web Framework. J. UCS
16, 2, 1234-1266.

[13] Reynolds, D. 2010. OWL 2 RL in RIF. W3C Working Group
Note 22 June 2010. Available at: http://www.w3.org/TR/rif-
owl-rl/#Background_OWL_2_RL, last access: November
2011.

