
EVLib: A Library for the Management of the Electric
Vehicles in the Smart Grid

Sotiris Karapostolakis,
Emmanouil S. Rigas,

Nick Bassiliades
{skarapos, erigas, nbassili}@csd.auth.gr

Department of Informatics,
Aristotle University of Thessaloniki,

54124, Thessaloniki, Greece

Sarvapali D. Ramchurn
sdr1@soton.ac.uk

Electronics and Computer Science,
University of Southampton,

Southampton, SO17 1BJ, UK

ABSTRACT
EVLib is a Java library for the management and simulation
of a number of Electric Vehicle (EV) activities, at a charging
station level, within a Smart Grid environment. EVLib aims
to solve interoperability issues between a number of Artifi-
cial Intelligence (AI)-related techniques already applied in
this field. Thus, it provides a simple, yet efficient interface
for the management of all major EV-related activities such
as the charging and dis-charging of batteries, as well as the
battery swapping. Moreover, a large number of parameters,
such as the number of chargers, the waiting queues, and the
available energy can be easily configured. On top of this,
the library supports the simultaneous operation of many EV
activities through the efficient use of threads. Finally, the
library’s efficiency and scalability have been tested in real-
istic scenarios, while the correctness and safety of the code
have been verified using state of the art tools.

CCS Concepts
•Software and its engineering → Software design engi-
neering; •Computing methodologies → Artificial intel-
ligence;

Keywords
Electric Vehicle, Java Library, Charging, Dis-charging, Bat-
tery Swap, Smart Grid

1. INTRODUCTION
Electric vehicles (EVs) are entering our daily lives fast. It

is estimated that approximately 740 thousand EVs have al-
ready been deployed worldwide, while the target set by the
International Energy Agency is 20 million fully electric vehi-
cles to be deployed by 2020 [2]. However, in order to ensure
that the large-scale deployment of EVs results in a signifi-
cant reduction of CO2 emissions, it is important that they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SETN ’16, May 18-20, 2016, Thessaloniki, Greece
c© 2016 ACM. ISBN 978-1-4503-3734-2/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903220.2903225

are charged using energy from renewable sources (e.g., wind,
solar). Crucially, given the intermittency of these sources,
mechanisms as part of a Smart Grid [1], need to be devel-
oped to ensure the smooth integration of such sources in our
energy systems. EVs could potentially help by storing en-
ergy when there is a surplus, and feed this energy back to
the grid when there is demand for it [3].

Indeed, the ability of EVs to store energy while being
used for transportation [4] represents an enormous potential
to make energy systems more efficient. On the one hand,
given that vehicles drive only for a small percentage of the
day, and considering the fact that EVs are equipped with
large batteries, they could be used as storage devices when
parked (i.e., as part of Vehicle-to-Grid (V2G) schemes [3]),
and thus dramatically increase the storage capacity of the
network. On the other hand, given that large numbers of
EVs need to charge on a daily basis, (40% of EV owners in
California travel daily further than the range of their fully
charged battery [5]) if EVs charge as and when needed, they
may overload the network. For this reason, new scheduling
mechanisms are required to be able to manage the charg-
ing of EVs –Grid-to-Vehicle (G2V)– while considering the
constraints of the distribution networks within which EVs
need to charge [8]. Similarly, battery swap schemes which
can be used instead of simple battery charge and can mini-
mize waiting times at the charging stations [7], must also be
efficiently designed and smoothly integrated to the grid.

Advanced Artificial Intelligence (AI) techniques (e.g., to
mathematical programming based optimization, electronic
markets and coalition formation) have been proven to be ef-
ficient in solving a number of EV-related problems, and a
large number of such solutions already exists [6]. However,
one of the key findings of [6] is that interoperability between
various technologies and techniques is missing, and it is vital
for successful large scale EV deployments. Thus, there is a
need EV technologies to be able to work seamlessly and ef-
ficiently together. Different types of chargers should be able
to work with all EV models, and data exchanged between
entities (EVs, charging points, network operators) should
have an understandable by all format and meaning. The
EVLib1 library tries to solve such problems, as it provides a
simple, yet efficient, interface for the management of the ba-
sic EV activities (i.e., charging, dis-charging, battery swap)
in a charging station level, while making use of a plethora of
(renewable) energy sources. Precisely, it seeks the simula-

1http://sourceforge.net/projects/evliblibrary

http://dx.doi.org/10.1145/2903220.2903225

tion of charging stations that are linked to a Smart Grid and
use multiple energy sources. A long term aim is this library
to be used for the development of a charging station’s in-
formation system which will communicate with the energy
provider’s central information system to allow for optimal
energy usage and maximal EV satisfaction. Finally, the li-
brary’s efficiency and scalability have been tested in realistic
scenarios, while the correctness and safety of the code have
been verified using state of the art tools.

2. THE EVLIB LIBRARY
EVLib is implemented in the JAVA programming lan-

guage, and its main goal is to manage the charging, discharg-
ing and battery swap functions related to EVs and support
their integration into a single charging station. The library
supports a large number of functions to properly manage
EV-related activities. There are three main functions, as
well as a number of secondary ones, while each function is
executed in 2 phases, namely the pre-processing and the
execution. Figure 1 provides the library’s detailed class dia-
gram. In all functions, a set of discrete time points is used,
while the actual duration of each time point can be defined
by the user. The main functions are as follows:
1) Charging (G2V technology): There are 2 types of
charging depending on the charging time, namely the fast
and the slow charging. The execution of a charging event
requires first the pre-processing phase where a quest for an
empty charger and available energy is performed. If the pre-
processing phase is successful, the execution phase begins.
2) Battery swap: The pre-processing phase requires for a
battery with enough range to be available in the charging
station. If such a battery is found, the execution function
can be called and the battery is swapped into the EV.
3) Discharge (V2G technology): Similarly to a charging
event, a discharging event first demands the pre-processing
phase where a quest for an empty dis-charger is made. If
this phase is successful then the execution begins.

The library also supports a number of secondary func-
tions: The creation of a charging station, as well as the
creation and integration of a charger, dis-charger or bat-
tery swapper in the station. Additional operations are the
recharging of batteries which are later to be swapped into
EVs, as well as the ability to add new batteries to the storage
in order seamless operation of the battery exchange process
to be achieved. Finally, the total cost of the charging, dis-
charging and battery swapping can be calculated based on
a series of costs (e.g., energy cost) defined by the user.

On the creation of the charging station, 4 waiting lists are
created. One for the charging events which want fast charg-
ing, one for the charging events which want slow charging,
one for the discharging events, and one for the vehicles wait-
ing for battery exchange. Each list can be managed either
automatically by the library using the default settings, or
manually by the user. Moreover, each time an event is added
to a list, an expected maximum waiting time is calculated,
and once an event is executed these times are updated.

Moreover, the library lets the user manage and use a
plethora of energy sources, through the use of an energy
warehouse, for the supply of energy to the charging station.
The library includes 6 different relevant classes, where each
class describes a different energy source. The amount of
available energy in the warehouse is updated in a regular
basis. The energy in the warehouse can either be updated

Figure 1: EVLib Class Diagramm

in predefined time points during the day, or the user can
select these time points manually. The user can also rank
the sources of energy used for a battery charge (e.g., solar
energy may be preferred to wind).

2.1 Structure of EVLib
Here, the main classes of the library are presented.

2.1.1 ChargingStation
ChargingStation class describes a charging station and is

a central class in EVLib. It includes a plethora of fields,
where some of the most significant ones are the following:
1) chargingRatioSlow field for the rate of slow charging, 2)
unitPrice field for the price of each energy unit for charging,
3) automaticQueueHandling field for the option of how each
list is going to be handled. Most of the fields have relevant
methods to define their value and their return.

The class provides 3 constructors: The first, ChargingSta-
tion(int id, String name, String[] kinds, String[] source, float[][]
energAm) demands an id, a name, a table with the kinds
of charging that supports, a table with the sources of en-
ergy that are used, and a table with the currently available
amount of energy from each source in the energy storage.
The second, ChargingStation(int id, String name, String[]
kinds, String[] source) is similar to the first one, but does
not need the table with the given energy sources. The third,
ChargingStation(int id, String name) only requires an id and
a name for the charging station.

ChargingStation class has a number of methods, where
the most important ones are the following: 1) updateDis-
ChargingQueue(DisChargingEvent d) inserts a discharging
event to the waiting list, 2) checkChargers(String k) checks
for a kind of charger according to the argument, 3) insertEn-
ergySource(EnergySource z) inserts an energy source to the
charging station, 4) customEnergySorting(String[] energies)
sorts the types of energy sources in the row they are defined
in the argument, 5) setSpecificAmount(String v, float q) sets
an amount of energy in a specific energy source, finally 6)
batteriesCharging(String kind) charges the batteries which
are to be used for exchange with the type of charging given
in the argument

2.1.2 Charger
An object of this class represents a charger of a charg-

ing station. The most important fields are the following:
1) kindofcharging field for the kind of charging the charger
supports, 2) busy field shows if a charger is busy or not, 3)

commitTime field for the time the charger is occupied.
Charger class provides one constructor, Charger(int id,

ChargingStation station, String kindofcharging), as well as
methods: 1) executeChargingEvent(ChargingEvent ch) ex-
ecutes a charging event and, 2) handleQueueEvents() exe-
cutes the first charging event in the waiting list. Note that,
the DisCharger and ExchangeHandler classes operate simi-
larly to the Charger class.

2.1.3 ChargingEvent
ChargingEvent class is responsible for the representation

of a charging event. The fields that are used are the follow-
ing: 1) amEnergy field which shows the amount of energy
the event needs, 2) chargingTime field is the duration of the
charging event, 3) mode field which can take 5 values each of
them indicating the state of a charging event (i.e., ready to
be executed, inserted to the waiting list, cannot be executed,
just created, executed).

ChargingEvent class disposes 3 constructors. The first
constructor ChargingEvent(ChargingStation station, Elec-
tricVehicle vehicle, float amEnerg, String kindOfCharging)
demands the charging station the vehicle visited, the vehicle
that is going to be charged, the energy that is asked for and
the type of charging the user wants. The second construc-
tor ChargingEvent(ChargingStation station, ElectricVehicle
vehicle, String kindOfCharging, float money) is similar to
the first one but instead of energy there is an argument that
shows the money for which the user demands energy. The
third constructor ChargingEvent(ChargingStation station,
ElectricVehicle vehicle, String kindOfCharging) is for the
battery exchange function. In the kindofCharging argument
the user gives the “exchange” value. The main methods of
this class are: 1) preProcessing() method which materializes
the preliminary process before the charging, 2) execution()
is competent for performing the charging.

2.1.4 ElectricVehicle
This class describes an electric vehicle and inherits from

the Vehicle abstract class. It contains 2 fields which are: 1)
driver field for the driver of the car and, 2) battery for the
battery that is linked to the vehicle.

The class has 1 constructor, ElectricVehicle(int id, String
brand, float cubism). The most significant methods are: 1)
vehicleJoinBattery(Battery k) method links a battery with
the vehicle and, 2) setDriver(Driver p) sets a driver to the
electric vehicle.

2.1.5 Battery
This class is responsible for the representation of a battery

and its main fields are: 1) remAmount field for the remain-
ing amount of energy and, 2) batteryCapacity field for the
capacity of the battery.

Battery class provides 2 constructors: The first, Battery(int
id, float remAmount, float batteryCapacity) demands an id,
a value for the remaining amount of energy in the battery,
and a value for the capacity of the battery. The second,
Battery(int id) requires only an id. Moreover, the most im-
portant methods are: 1) setBatteryCapacity(float u) sets a
capacity for the battery, 2) setRemAmount(float r) sets a re-
maining amount for the battery, 3) reRemAmount() returns
the remaining amount of battery’s energy and, 4) reBat-
teryCapacity() returns the capacity of the battery.

2.1.6 EnergySource

The library disposes a sum of renewable and non-renewable
energy sources that can provide energy to the charging sta-
tion. Specifically there are 5 sub-classes, each of them rep-
resenting a renewable source and 1 sub-class for the energy
from non-renewable sources. All classes have the same inter-
face and inherit this abstract class. It includes 1) an id field,
2) station field that stores the charging station the source is
attached to. Each of the 6 classes that inherit EnergySource
class contain an energyAmount field, which stores the energy
that is going to be inserted after each update.

Every class (e.g., Solar) supports 2 constructors: The
first one Solar(int id, ChargingStation station, float[] ener-
gyAmoun) demands an id, the charging station the source
will be attached to, and a table with the amount of energy
for some updates. The second, Solar(int id, ChargingStation
station) requires an id and the charging station the source
will be embodied. Moreover, EnergySource class has 2 meth-
ods: 1) reAmount(int num) returns the energy to be given
in the charging station at a specific update and, 2) modi-
fySpecificAmount(int num, float am) modifies a amount of
energy that is going to be given at a specific update.

3. USING EVLIB
This section presents a step-by-step explanation of how to

set up a charging station and carry out some functions with
EVLib. In so doing, class EVLibEx1.java is created.

Step 1: Determination of the kind and the number of
chargers. We create table kind and we use the argument
“slow” to create a slow charger and the argument “fast” to
create a fast charger in the chargers’ table. Step 2: Def-
inition of the energy sources that will be connected to the
station. We create table source. Regarding the types of en-
ergy, the argument “wave” corresponds to a Wave (energy)
object, “geothermal”to a Geothermal object and“nonrenew-
able” to a NonRenewable object. Step 3: We construct a
table whose first dimension represents the number of energy
sources and the second one the number of updates that we
want initially to define the energy to be given to the station.
In this case, we want only at the first update to provide
energy, thus the second dimension will be equal to 1.

String[] kinds={"fast","slow","slow"};

String[] source={"wave","nonrenewable","wind"};

float energyAmounts[][] = new float[4][1];

for(int i=0;i<4;i++)

energyAmounts[i][0] = 40;

Step 4: Creation of a charging station. We specify the
number of (dis-)chargers and the number of simultaneous
exchanges of battery that can be supported in the station.

ChargingStation station =

new ChargingStation(2,"Florida",kinds,

source,energyAmounts);

station.setNumOfSlots(2);

station.setExchangeSlots(2);

Step 5: A new vehicle, its battery and a new driver are
defined. Step 6: The battery and the driver are linked to
the vehicle.

ElectricVehicle vehicle =

new ElectricVehicle(4,"Honda",2000);

Battery b = new Battery(4,50,100);

Driver driver = new Driver(1,"Nick");

vehicle.vehicleJoinBattery(b);

vehicle.setDriver(driver);

Until now we dealt with forming the framework around
the station. For running a charging event we can use the
following code: Step 7: Creation of 1 charging event.

ChargingEvent event1 =

new ChargingEvent(station,vehicle,20,"fast");

Step 8: Pre-processing and execution phase of the charging
event.

event1.preProcessing();

event1.execution();

Step 9: Construction of a discharging event.

DisChargingEvent event2 =

new DisChargingEvent(station,vehicle,25);

Step 10: Pre-processing and execution phase of the dis-
charging event.

event2.preProcessing();

event2.execution();

Step 11: Construction of an exchange battery event.

ChargingEvent event3 =

new ChargingEvent(station,vehicle,"exchange");

Step 12: Pre-processing and execution phase of the battery
exchange event.

event3.preProcessing();

event3.execution();

4. SOFTWARE TESTING
The library has been proven to achieve low execution

times and good scalability (see Figure 2 for CPU usage
times). Moreover, the library was checked for errors re-
garding the code development, errors about the view of the
code or security holes that may exist using state of the art
tools. In so doing, FindBugs2 and CheckStyle3 were uti-
lized. FinbBugs is a tool which carries out static testing on
Java code. Alongside, CheckStyle reports all cases which
do not follow patterns of proper programming, related to
the view and logical development of code. In addition to
these programs, a number of unit tests, related to the ba-
sic classes(ChargingEvent, Charger, DisChargingEvent, Dis-
Charger) were developed using JUnit 4. All the errors that
were discovered were corrected.

5. CONCLUSIONS AND FUTURE WORK
As mentioned earlier in the text, Electric Vehicles is a con-

tinuous growing sector that is strongly related to the Smart
Grids and the extended use of renewable energy sources.
The bidirectional communication between EVs and the Smart
Grid creates great opportunities for the IT and the power
systems sectors, however in order advances to be achieved
interoperability issues need to be solved. The EVLib tries
to solve such problems by providing a simple, yet efficient

2http://findbugs.sourceforge.net/
3http://checkstyle.sourceforge.net/

Figure 2: CPU usage time
interface for the management of all major EV-related ac-
tivities such as the charging and dis-charging of batteries,
as well as the battery swapping, while using energy from
renewable sources.

Future work will focus on the integration of more ad-
vanced AI techniques, such as optimization, electronic mar-
kets, agent-based negotiation and coalition formation to fur-
ther expand the library’s capabilities. Moreover, mecha-
nisms and techniques for managing uncertainty and increase
fault tolerance will also be studied. Finally, a real world val-
idation of the library where the already promising empirical
results would be verified, would be proved useful.

Acknowledgment
Emmanouil Rigas gratefully acknowledges financial support
from the Hellenic Artificial Intelligence Society (EETN) for
attending this conference.

6. REFERENCES
[1] H. Farhangi. The path of the smart grid. Power and

Energy Magazine, IEEE, 8(1):18–28, January 2010.

[2] IEA. Global ev outlook. Technical report, 2013.

[3] W. Kempton and J. Tomic. Vehicle-to-grid power
fundamentals: Calculating capacity and net revenue.
Journal of Power Sources, 144(1):268 – 279, 2005.

[4] W. J. Mitchel, C. E. Borroni-Bird, and L. D. Burns.
Reinventing the automobile: Personal urban mobility
for the 21st century. MIT Press, 2010.

[5] M. A. Nicholas, G. Tal, and J. Woodjack. California
statewide charging survey: What do drivers want?
92nd Annual Meeting of the Transportation Research
Board, 2013.

[6] E. Rigas, S. Ramchurn, and N. Bassiliades. Managing
electric vehicles in the smart grid using artificial
intelligence: A survey. Intelligent Transportation
Systems, IEEE Transactions on, 16(4):1619–1635, Aug
2015.

[7] E. S. Rigas, S. D. Ramchurn, and N. Bassiliades.
Algorithms for electric vehicle scheduling in
mobility-on-demand schemes. In Intelligent
Transportation Systems (ITSC), 2015 IEEE 18th
International Conference on, pages 1339–1344, Sept
2015.

[8] E. S. Rigas, S. D. Ramchurn, N. Bassiliades, and
G. Koutitas. Congestion management for urban ev
charging systems. In Smart Grid Communications
(SmartGridComm), 2013 IEEE International
Conference on, pages 121–126, 2013.

	Introduction
	The EVLib Library
	Structure of EVLib
	ChargingStation
	Charger
	ChargingEvent
	ElectricVehicle
	Battery
	EnergySource

	Using EVLib
	Software Testing
	Conclusions and Future Work
	References

