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ABSTRACT 
Single Nucleotide Polymorphisms (SNPs) constitute important 
genetic markers with numerous medical and biological applications 
of high scientific and economic interest. SNP datasets are typically 
high dimensional, containing up to million features. Reasons 
originating from both biology and machine learning, dictate to 
perform feature selection which is mainly performed after feature 
evaluation. In this paper we present methods for SNP evaluation 
and eventually selection, based on combining results obtained from 
established genetic marker evaluation methods originating from the 
field of population genetics. To achieve this we have formulated 
the feature selection task as a ranking aggregation problem, which 
is a classical problem in social choice and voting theory. 

CCS Concepts 
• Applied computing ➝ Life and medical sciences➝ 
Bioinformatics  

• Applied computing ➝Life and medical sciences ➝ Genetics 
➝ Population genetics 

• Computing methodologies ➝ Machine learning ➝ Machine 
learning algorithms ➝ Feature selection 
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1. INTRODUCTION 
Nowadays, many scientific fields, including biology, have entered 
the era of big data [1]. The term big data is a broad term to describe 
very high dimensional datasets and all related difficulties to process 
and analyze them [2]. Terabyte sized datasets are now common in 
biology [3], due to significant advances in biotechnology and more 

specifically high-throughput technologies, which have enabled 
even small laboratories to become big data generators [1]. 
SNPs are nowadays considered one of the most important 
biological markers due to the fact that SNP data analysis is used in 
applications such as identification of disease related mutations, 
Qualitative Trait Loci detection (QLT), food traceability, brand 
authentication, discrimination between wild and/or farmed 
populations and anthropological forensic investigations [4]. 
SNP datasets are considered high dimensional. Animal and plant 
datasets can contain hundreds of thousands loci whereas human 
datasets millions [5]. High dimensional datasets come along with 
many difficulties both in processing and analysis. High 
computational cost in training and the decrease of the 
generalization ability due to the curse of dimensionality [6] are two 
of the most important ones from the data mining perspective. From 
a biology perspective the production of genome wide dataset is too 
expensive. Fortunately, for many high dimensional datasets most 
features are irrelevant to the outcome and consequently the 
elimination of those redundant features can improve the 
classification accuracy [6]. This is also the case for SNP datasets. 
An important task in SNP analysis is the assignment of individuals, 
or groups of individuals, to their population of origin, based on their 
(multi-locus) genotypes [7], which is the classification task 
performed with specialized classifiers for genetic data. It is evident 
from the above that a feature selection step before the classification 
is an essential step. Feature selection in SNP datasets is based on 
ranking SNPs according to their informativeness i.e. the marker 
information content, which is the amount of information that a 
locus holds regarding the ancestry of an individual [8]. 
Although many methods exist in the field of population genetics to 
perform the feature evaluation task, no method can be broadly 
accepted as the most successful one because none outperforms the 
others in all circumstances [5]. In this paper we present methods for 
SNP evaluation and eventually selection, based on combining 
established SNP selection methods from the field of population 
genetics. These methods are inspired by the ranking aggregation 
problem which is a classical problem in social choice and voting 
theory. 

2. BACKGROUND KNOWLEDGE 
2.1 Single Nucleotide Polymorphisms – SNPs 
Single nucleotide polymorphisms are the most common type of 
genetic variation among living organisms. Each SNP represents a 
specific difference in a single nucleotide. For instance, consider two 
genotyped DNA fragments from different individualsseq1: 
ATCTG and seq2: ATGTG. Those two differ in one nucleotide in 
the third position. SNPs can be extremely harmful especially when 
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they are located in genes or gene regulatory regions and harmless, 
mainly when they are located in non-coding regions i.e. not in 
genes.  
An allele is one of the possible alternative forms of the 
same gene or same genetic locus. In the previous example there 
were two alleles (C and G), which is the most common case in SNP 
variations. A marker with only two alleles is called biallelic. 

2.2 Population Genomic Datasets – SNP 
Datasets 
SNP datasets are high-dimensional. Usually animal datasets can 
reach a hundred thousand attributes (SNPs), whereas human 
datasets can contain over a million SNPs. Each attribute of a SNP 
dataset is a biallelic marker genotype i.e. a variation between two 
nucleotides. Consequently, each attribute can have at most three 
values, occurring from the combination of two nucleotides. For 
instance, one SNP can have the following genotype values AA, GG 
and AG (GA is considered the same) which occur from Adenine 
and Guanine alleles.  

3. SNP EVALUATION METHODS 
Comparisons of the different metrics have been published many 
times and results are contradictory. In general, no method 
outperforms all others in all cases and differences between metrics 
are marginal [5].Based on the findings of Ding et al.[9] and 
Wilkinson et al. [4] we decided to use Pairwise Wright’s FST[10] 
and Informativeness for Assignment [8]in the experimental process 
described later. These metrics are probably the most informative 
and Delta [11], is probably the most commonly used measure of 
marker informativeness. 

3.1.1 Delta 
For a biallelic marker the delta value is given by the following 
equation: 

 
δ = �pAi -pA

j � 

where pAi is the frequency of the allele A in the ith population and 
pAj is the frequency of the same allele in the jth population. It is 
important to mention that delta is calculated only between two 
populations, so if there are more than two populations, the delta 
value is computed for each one of every possible combination 
between existing populations and their average is subsequently 
calculated in order to produce a value for each SNP marker. 

 
3.1.2 Pairwise Wright’s FST 

Pairwise Wright’s FST for more than two populations is computed 
with the same approach as outlined for delta. For a biallelic marker 
the FST value is given by the following equation: 

 
FST =

Ht-Hs

Ht
 

where Hs is the average expected heterozygosity across 
subpopulations and Ht is the expected heterozygosity of the total 
population [36] and they are given by the following equations: 

𝐻𝐻𝑡𝑡 = 2 ∗ 𝑝𝑝𝐴𝐴 ∗ 𝑝𝑝𝐵𝐵 

𝐻𝐻𝑠𝑠 = 𝑝𝑝𝐴𝐴
𝑖𝑖 ∗ 𝑝𝑝𝐴𝐴

𝑗𝑗 + 𝑝𝑝𝐵𝐵
𝑖𝑖 ∗ 𝑝𝑝𝐵𝐵

𝑗𝑗  

 

where pAi is the frequency of the allele A in the ith population, pAj 
is the frequency of the same allele A in the jth population and pA is 
the frequency of allele A in all populations. Notations for allele B 
are defined similarly.  
 

5.3.2 Informativeness for Assignment (In) 

In is a mutual information-based statistics that takes into account 
self-reported ancestry information from sampled individuals [8]. 

 

𝐼𝐼𝐼𝐼 =  �(−pj log2 pj +
𝑁𝑁

𝑗𝑗=0

�(pij log2 pij)/K 
𝐾𝐾

𝑖𝑖=0

) 

 
where i= 1,2,…,K are the populations with K≥2 and N are the loci, 
pij denotes the frequency of allele j in population I and pj denotes 
the average frequency of allele j over K populations. 
In all cases allele frequencies are calculated as in [9]. 

4. VOTING SYSTEMS AND RANKING 
AGGREGATION PROBLEM 
 
Voting system is called a method by which voters choose between 
available options, with its most common application being the 
election process. Social choice theory or voting theory is a scientific 
subfield combing economics, political sciences and mathematics. 
There are numerous voting systems and they are mainly 
characterized by the method that voters use to express their 
preferences. The voting systems we used in this study belong to the 
class of preferential voting systems or ranked voting systems in 
which voters rank options in a hierarchy on the ordinal scale. The 
core of each preferential voting system is how those votes can be 
aggregated to yield a final result which is the so called ranking 
aggregation problem. More formally, the ranking aggregation 
problem is the problem of computing a consensus ranking of the 
alternatives, given the individual ranking preferences of several 
voters [12]. 
In recent years problems regarding aggregation of few long lists 
have gained much popularity due to two important fields of their 
applications. The first field is the World Wide Web and the 
aggregation of results from different search engines, to provide a 
more successful ranking. The second field is bioinformatics and the 
analysis of high-throughput data mainly combining results from 
different gene expression experiments [13]. Considering that 
marker informativeness measures produce long lists of ranked 
SNPs, this kind of high level meta-analysis can be performed to 
combine results obtained from different measures and therefore 
produce a more successful list in terms of classification accuracy. 

4.1 Ranking Aggregation Methods 
All implemented methods used in this study belong to heuristic 
methods [13] and can be divided in two categories, the borda 
methods and those which use Markov chains. 

4.1.1 Borda Methods 
Borda methods are intuitive, easy to understand and are based on 
the initial method proposed by French mathematician and political 
scientist Jean-Charles de Borda in 1781[14]. Each one of the L 
voters ranks options in a hierarchy producing a rank list of choices. 
In our setting voters are represented by the three genetic methods 
(Delta, Pairwise FST and In) and the available options are considered 



the SNPs. The score of each choice (u) at the ith ranked list (Borda 
Score – B(ui)) is its position in the list. The final score of each 
option is calculated from the following function: 

𝐵𝐵(𝑢𝑢) = 𝑓𝑓(𝐵𝐵1(𝑢𝑢), 𝐵𝐵2(𝑢𝑢), … , 𝐵𝐵𝐿𝐿(𝑢𝑢)) 
It is obvious that the function f can be any function that can 
combine the scores. In our study we used the following functions: 

• 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐿𝐿) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑥𝑥1|, |𝑥𝑥2|, … , |𝑥𝑥𝐿𝐿|}    (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

• 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐿𝐿) =  (∏ |𝑥𝑥𝑙𝑙|𝐿𝐿
𝑙𝑙=1 )1 𝐿𝐿�    (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

• 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐿𝐿) =  ∑ |𝑥𝑥𝑙𝑙|𝑝𝑝𝐿𝐿
𝑙𝑙=1 𝐿𝐿⁄    (𝑝𝑝 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

• 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐿𝐿) =  ∑ |𝑥𝑥𝑙𝑙|1𝐿𝐿
𝑙𝑙=1 𝐿𝐿⁄    (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑝𝑝 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,

𝑝𝑝 = 1) 

4.1.2 Markov Chain Methods 
The other two methods are based on Markov chains and they are 
less intuitive. The main idea is to construct the transition matrix of 
an ergodic Markov chain. Its stationary distribution will assign a 
larger probability to a state that is ranked higher [13].The two 
Markov methods differ in the construction of the transition matrix. 
The chain will move to a state with better ranking in at least one of 
the input lists in MC1, whereas half of the input lists in MC2. The 
exact description of the method can be found in [13]. 

5. EXPERIMENTAL SETUP 
In this subsection we present the experimental process and the 
evaluation of the proposed methods. 

5.1 Dataset 
For the experimental analysis we used the dataset which is 
described in detail in the work of Wilkinson et al. [15]. The dataset 
is a complete coverage of the types of pigs in the UK and consists 
of 446 pigs from 7 traditional British breeds, 5 commercial 
purebreds, an imported European breed and an imported Asian 
breed that were genotyped with the PorcineSNP60 BeadChip 
(59436 SNPs)[16]. 

5.2 Data Preprocessing 
The first step in data analysis is the preprocessing of the data. The 
preprocessing step includes a series of analyses in order to ensure 
high quality of data submitted to further analysis and consequently 
to ensure the high quality of the final results. During the 
preprocessing step, the following analyses were performed: Firstly, 
missing value detection. Afterwards, validation of the dataset to 
contain only biallelic markers, i.e. containing no more than two 
alleles, which is a common problem occurring mainly in non-
curated data. Moreover, conversion of the data in all the formats 
used in the analysis (PED and ARFF files) using the PED Converter 
offered in software TRES [5]. Finally, splitting the dataset into train 
and test set (70/30), again using TRES. 
 

5.3 SNP Evaluation and Rank Aggregation 
The main analysis started with the three established methods 
(Delta, FST and In). We first obtained the three ranked SNP lists 
which correspond to the three different evaluation algorithms. The 
SNP evaluation task was performed using TRES. Afterwards, the 
three lists were used as input to the six different ranking 
aggregation algorithms. Consequently, six new SNP rankings were 
produced.  

5.4 Method Comparison 
For the evaluation step we used GENECLASS2.0 [17]. 
GENECLASS2.0 is a software that offers an extensive list of 
genetic assignment methods. Such methods assign an individual to 

the population of origin based on its genotype. In our case we used 
the Bayesian assignment method of Rannala and Mountain [18] 
which has been extensively used.   
For the evaluation of each method (the three genetic and six 
proposed) we followed the same procedure. Firstly, we generated 
reduced datasets (in GENEPOP format) using TRES.  Each 
generated dataset was based on the original training and evaluation 
datasets (train and test) and contained a subset of the original 
59,436 SNPs. The containing attributes/SNPs of each dataset were 
based on each method’s ranked SNP list. Each subset contained 
some of the most informative SNPs starting from the 20 most 
informative up to 200 with 20 SNPs step. Therefore for each 
method we created 10pairs of data sets (train and test) which were 
evaluated separately in Geneclass2 using the genetic assignment 
test proposed by Rannala and Mountain. 

6. RESULTS AND DISCUSSION 
The following figures (figure 1) depict the experimental 
procedure’s results. More specifically, figure 1 shows the 
assignment accuracy for the first 100 SNP. Assignment accuracies 
for subsets of 120 – 200 SNPs are omitted intentionally because all 
methods have managed to surpass the threshold of 95%, which is 
the desired in similar studies, with less than 100 SNP. Methods 
illustrated in figure 1 are the Arithmetic Mean (ARM), Geometric 
Mean (GEM), Median (MED), p - norm for p = 2 (L2N), Markov 
Chain 1 (MC1), Markov Chain 2 (MC2), Delta, Pairwise Wright's 
FST (PWFst) and Informativeness for Assignment (In). 

 
Figure 1: Assignment accuracy of the methods for 5 SNP 
subsets. Green and red cells depict the best assignment 
accuracy achieved at each SNP subset from a proposed 

method or from an established method respectively. Blue cells 
depict the first time a method surpassed the 95% accuracy. 

The green color cells in Figure 1 indicate those cases where 
proposed methods had better assignment accuracy than the three 
established genetic ones for a certain number of SNPs.  
Contrariwise, red cells depict cases where established genetic 
methods performed better. Finally, blue cells depict cases where the 
desired threshold of 95% has been surpassed for the first time. 
Figure 1 shows that PWFST surpasses all other methods in 
assignment accuracy at 20 SNPs reaching 84%. At 40 SNP there is 
a completely different situation where all metrics exceed the 
assignment accuracy of PWFST. Moreover, two of the proposed 
methods exhibit best performance (L2N and MC2). At 60 SNPs two 
of the proposed methods surpass the desired limit of 95%. At 80 
SNPs, all methods except In have exceeded the threshold of 95%. 
Again, two of the proposed methods achieved the best 
performance. Finally, at 100 SNP all methods surpass the 95% 
threshold, whereas all the proposed methods achieve almost 100%. 
Results clearly show that aggregation methods, although slightly, 
performed better compared to the established genetic methods 
almost in all SNP subsets except for initial 20 SNP based subset, 
where PWFST performed better, although failing to exceed the 
desired threshold of 95%. A general conclusion is that ranking 
aggregation methods tend to increase the performance of the 
methods. Considering that these aggregation methods have been 
implemented intact, without any adaptation to the examined 
problem of SNP selection, it is evident that this study can be the 



basis on which amendments would give greater results compared 
to the established genetic methods. 

7. CONCLUSION AND FUTURE WORK 
This study is the first attempt in literature, to our knowledge, to 
apply ranking aggregation methods for the informative marker 
selection task. The initial purpose of this study is to decide whether 
the aggregation of results obtained by the established genetic 
methods can produce comparable or better results. Initially, we 
implemented six different aggregation algorithms producing six 
different metrics for SNP evaluation. Afterwards, we performed a 
comparative study with the three most commonly used algorithms 
in the area in order to evaluate their accuracy. Initial results showed 
that the proposed methods performed better than the established 
methods, but they are not able to replace them. Moreover, 
experiment should be performed in more datasets, because the use 
of a single dataset is a limit for the validity of the conclusions. The 
fact that the results are marginally better, is a great sign that the area 
is fruitful for research, and that appropriate amendments to the 
proposed methods which can capture the individual nature of the 
genetic data can give significantly better results.  
Firstly, following the observation that the metric PWFST picks by 
far the first 20 most informative SNPs, a possible amendment could 
be to modify the aggregation algorithm in order to give greater 
weight to the methods had the largest increase in accuracy between 
subsets of SNP. For example, a higher weight could be given to the 
20 first SNPs selected based on the PWFST because the 
classification accuracy is at 84%. In the next 20 (20-40) the increase 
in accuracy is not so great in PWFST, compared with the Delta and 
In. Therefore in the 20-40 SNP interval greater weight could be 
given in the selected SNP from both methods and not just by 
PWFST. 
As mentioned before, the rating of each SNP is the ranking order 
within the list, ignoring the information of the relative position of 
the SNP in the list. In the future study emphasis should be given on 
the relative position of the SNP within each list through the scores 
obtained from each metric (eg FST score, Delta Score). Such an 
approach would give more information about the assignment 
accuracy of each SNP aiming to achieve better results after method 
combination. 
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