
Transferring Experience in Reinforcement Learning
through Task Decomposition

(Extended Abstract)

Ioannis Partalas
Department of Informatics

Aristotle University of
Thessaloniki, 54124, Greece
partalas@csd.auth.gr

Grigorios Tsoumakas
Department of Informatics

Aristotle University of
Thessaloniki, 54124, Greece

greg@csd.auth.gr

Konstantinos Tzevanidis
Department of Informatics

Aristotle University of
Thessaloniki, 54124, Greece
ktzevani@csd.auth.gr

Ioannis Vlahavas
Department of Informatics

Aristotle University of
Thessaloniki, 54124, Greece
vlahavas@csd.auth.gr

ABSTRACT
Transfer learning refers to the process of conveying expe-
rience from a simple task to another more complex (and
related) task in order to reduce the amount of time that is
required to learn the latter task. Typically, in a transfer
learning procedure the agent learns a behavior in a source
task, and it uses the gained knowledge in order to speed up
the learning process in a target task. Reinforcement Learning
algorithms are time expensive when they learn from scratch,
especially in complex domains, and transfer learning com-
prises a suitable solution to speed up the training process. In
this work we propose a method that decomposes the target
task in several instances of the source task and uses them to
extract an advised action for the target task. We evaluate
the efficacy of the proposed approach in the robotic soccer
Keepaway domain. The results demonstrate that the pro-
posed method helps to reduce the training time of the target
task.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
transfer learning, reinforcement learning

1. INTRODUCTION
Transfer learning refers to the process of conveying ex-

perience from a simple task to another more complex (and

Cite as: Transferring Experience in Reinforcement Learning through
Task Decomposition (Short Paper), I. Partalas, G. Tsoumakas, K. Tze-
vanidis and I. Vlahavas,Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sich-
man, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hun-
gary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

related) task in order to reduce the amount of time that is
required to learn the latter task. Typically, in a transfer
learning procedure the agent learns a behavior in a source
task, and then it uses the gained knowledge in order to speed
up the learning process in a target task.

Recently, transfer learning among Reinforcement Learn-
ing (RL) agents has received a lot of attention [1]. This is
due to the fact that RL algorithms are time expensive when
they learn from scratch, especially in complex domains, and
transfer learning comprises a suitable solution to speed up
the training process.

In this work we propose a novel method for transfer learn-
ing among RL agents, which is based on the decomposition
of the target task in several different instantiations of the
source task. The identified source instances are used in or-
der to provide an advice to the target task.

We evaluate the proposed approach in the Keepaway do-
main [2]. The empirical evidence show that the proposed
approach reduces the complete training time in the target
task. Additionally, experiments we conducted in large tasks
show that the proposed approach scales well with respect to
the size of the problem.

2. THE PROPOSED APPROACH
One of the key novel contributions, and at the same time

a basic assumption, of the proposed approach is the obser-
vation that in certain domains the target task (states and
actions) can be mapped to a number of different instantia-
tions (states and actions) of the source task. We hypothesize
that the different mappings will increase the effectiveness of
transfer learning algorithms, compared to a single mapping.

In this work we propose an approach that receives an ac-
tion advice based on the source instances. The basic steps
of the proposed approach can be summarized as follows:

• Decompose the target task to valid instances of the
source task.

• Extract an advice from the instances

• According to a strategy follow or not the advice



2.1 Mapping the target task
Formally, given that the target task can be mapped to

N instances of the source task, the specification of N pairs
of mapping functions is required. Each pair (f i

S, f i
A), i =

1 . . . N consists of a function f i
S : Starget → Ssource mapping

the set of target states, Starget, to the set of source states,
Ssource, and a function f i

A : Atarget → Asource that partially
maps the set of target actions Atarget to the set of source
actions Asource. By partially, we mean that certain actions
in the target domain, might not have a corresponding action
in the source domain in some of the instantiations.

2.2 Extracting Advice
Having defined the functions that establish a mapping

from a target task to several instantiations of the source
task, the next step is to use the knowledge acquired in the
source task to improve the learning procedure in the target
task. In order to accomplish this, the proposed method uses
the experience gained from the source task to extract an
advice for the target task.

We assume that the RL agent has been trained in the
source task and that it has access to a function Q′(s′, a′)
returning an estimation of the Q value for a state s′ and
action a′ of the source task. The agent is currently being
trained in the target task, learning a function Q(s, a) that
approximates the Q function, and senses the state s. The
action that will be executed by the agent is ruled by the
ǫ−Advice procedure which is depicted in Algorithm 1. This
is a variation of the well known ǫ − greedy rule which is
used to balance the exploration and the exploitation in RL
algorithms.

Algorithm 1 The ǫ-Advice strategy.

1: procedure ǫ-Advice(ǫ,s, fS, fA, Q, Q′)
2: p← RandomReal(0, 1)
3: if p ≤ ǫ then

4: return random action
5: else

6: Q′

max ← 0
7: a′

max ← ∅

8: imax ← 0
9: for i← 1 . . . N do

10: s′ ← f i
S(s)

11: for all a′ ∈ As′

source do

12: if Q′

max < Q′(s′, a′) then

13: Q′

max ← Q′(s′, a′)
14: imax ← i

15: a′

max ← a′

16: end if

17: end for

18: end for

19: aadv ← gimax

A (a′

max)
20: acur ← arg maxa Q(s, a)
21: if Q′

max −Q(s, acur) > Q(s, aadv) then

22: return aadv

23: else

24: return acur

25: end if

26: end if

27: end procedure

According to the ǫ − Advice strategy the learning agent

can select to explore the state space, to exploit the current
knowledge or to exploit the experience from the source task.
In lines 9 to 19 the algorithm extracts the advised action
from the source task.

More specifically, for each instance i of the source task
that is recognized in the target task, the corresponding map-
ping function f i

S is used to transform the target state s to
its source representation s′. Then for each available action
in the state of the source task, the corresponding Q-values
are computed. The computation of the Q-values depends on
the function approximation method that is used.

As the algorithm iterates over the instances, it stores the
maximum Q-value, Q′

max and the corresponding action amax,
along with the index, imax, of the instance that they corre-
spond to.

After the advised action is extracted, it is transformed
to its target representation using a mapping function gA,
which is an inverse function of fA and maps a source action
to its equivalent target action. After that, the algorithm
checks (lines 21-25) whether to act according to the current
learned policy or to follow the action that is suggested by
the source task.

The agent must prefer the advised action if the differ-
ence between the Qmax value and the maximum value of
the current learned Q-function, Q(s, acur) is greater than
the value of the current learned Q-function for the advised
action Q(s, aadv).

In the initial stages of learning, the agent will be biased
to prefer the recommended actions depending on the impact
of the source task Q-values. The impact of the source task
depends strongly on how much time we spent in training it.
More specifically, if the source task was trained for a small
number of episodes then the Q-values will be also small and
afterwards the agent in the target task will use the advised
actions for a small period. As learning proceeds, the values
of the target Q-function will increase and the initial bias will
be overridden.

Training the source task in more episodes will cause greater
values of Q′ and a more valuable Q-function. So its more
desirable to use the advised (and more reliable) actions for
a longer period in the initial stages of learning in the target
task. This is achieved by the ǫ − Advice strategy as the
target values of Q will need more time to exceed the source
Q′ values.

The complexity of the proposed algorithm is linear with
respect to the instances that are identified in the target task.

3. EXPERIMENTS
In order to evaluate the efficacy of the proposed approach

we run a series of experiments in the Keepaway domain [2].
Due to space limitations, it is not possible to present the
experimental evaluation. Therefore, we refer the reader to
the following URL, where the complete experimental part
can be found: http://mlkd.csd.auth.gr/tlExper.pdf.

4. REFERENCES
[1] V. Soni and S. Singh. Using homomorphisms to

transfer options across continuous reinforcement
learning domains. In AAAI Conference on Artficial
Intelligence, pages 494–499, 2006.

[2] P. Stone and R. Sutton. Keepaway soccer: A machine
learning test bed. pages 207–237. 2002.


