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Abstract 

 
This chapter focuses on Active Knowledge Base Systems and more specifically it presents 

various implementation techniques that are used by the numerous systems found in the literature 

and on applications made based on such systems. Systems are compared based on the different 

techniques and on their efficiency on various applications. Finally, the Active Object-Oriented 

Knowledge Base System DEVICE is thoroughly described giving emphasis on its advantages 

against similar systems. Furthermore, two applications based on the DEVICE system are 

described: Deductive Databases and Data Warehouses. 
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I. Introduction 

Knowledge is the information about a specific domain needed by a computer program in order to exhibit 

an intelligent behavior over a specific problem. Knowledge includes both information about real-world 

entities and relationships between them. Furthermore, knowledge can also take the form of procedures on 

how to combine and operate on the above information. Computer programs that encapsulate such 

knowledge are called knowledge-based systems. 

Knowledge is usually captured in some form of human logic and programmed through non-

deterministic, declarative programming languages, such as Prolog and OPS5. These languages allow the 

programmer to define in a highly descriptive manner the knowledge of a human expert about problems 

and their solutions. Furthermore, programs written in such languages can be extended easily because the 

data and program structures are more flexible and dynamic than the usual. 

Contemporary real-world computer applications try to model the complex and vast amount of the 

modern society's knowledge that must be handled by knowledge-based systems. More “traditional” 

applications suffer similarly from the existence of large amounts of data, which are equivalent to facts in 

the context of knowledge-based systems. The traditional solution is to couple the programs that process 

data with special systems devoted to the efficient and reliable storage, retrieval and handling of data, 

widely known as Database Management Systems (DBMSs). 

The same trend is followed for knowledge-based systems where the management of knowledge 

has moved from the application to the Knowledge Base Management Systems (KBMS). KBMSs are an 

integration of conventional DBMSs with Artificial Intelligence techniques. KBMSs provide inference 

capabilities to the DBMS by allowing the encapsulation of the knowledge of the application domain 

within the database system. Furthermore, KBMSs provide sharing, ease of maintenance, and reusability 

of knowledge, which is usually expressed in the form of high-level declarative rules, such as production 
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and deductive rules. The Knowledge Base System (KBS) consists of the KBMS along with a specific set 

of rules (called the rule base) and data or facts (called the database). The rule base and the database of a 

KBS are collectively called the Knowledge Base (KB). 

A recent trend to bridge the gap between knowledge base and database systems is active database 

systems. Active database systems constantly monitor system and user activities. When an interesting 

event happens they respond by executing certain procedures either related to the database or the 

environment. In this way the system is not a passive collection of data but also encapsulates management 

and data processing knowledge. 

This re-active behavior is achieved through active rules which are a more low-level, procedural 

counterpart of the declarative rules used in knowledge-based systems. Active rules can be considered as 

primitive forms of knowledge encapsulated within the database; therefore, an active database system can 

be considered as some kind of KBS. 

All rule paradigms are useful for different tasks in the knowledge base system. Therefore, the 

integration of multiple rule types in the same system is important. This will provide a single, flexible, 

multi-purpose knowledge base management system where users/programmers are allowed to choose the 

most appropriate format to express the application knowledge. 

The objective of this chapter is to discuss some of the existing approaches to building a KBMS by 

integrating one or more rule types in a DBMS, giving emphasis on solutions based on the re-active 

behavior of Active Knowledge Base Systems. The implementation techniques found in various literature 

systems are presented and compared according to their functionality and efficiency. 

Finally, the chapter presents in detail the Active Object-Oriented Knowledge Base System 

DEVICE that integrates multiple rules types into an active OODB system. Furthermore, applications 

based on the DEVICE system, such as Deductive Databases and Data Warehousing are discussed. 

The rest of this chapter is as follows; Section 2 presents active databases and the various 

approaches followed towards Active Knowledge Base Systems by unifying multiple rule types into a 
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single system. In section 3, we present in detail the DEVICE system, which integrates data-driven 

(production) rules into an active OODB system that supports generically only event-driven (ECA) rules. 

This section presents the rule language, the compilation scheme, the rule matching algorithms, and the 

rule semantics of the DEVICE system. Section 4, presents two applications based on the DEVICE system, 

namely Deductive Databases by supporting deductive rules and derived data through production rules and 

Data Warehousing by coupling DEVICE with a multi-database system. Finally, section 5 concludes this 

chapter with a discussion of current and future directions for active knowledge base systems. 

II. Active Database and Knowledge Base Systems 

In this section we overview active database and knowledge base systems. Specifically, we present various 

techniques for implementing active rules into a database system and on unifying high-level rules into an 

active database system, resulting in an active knowledge base system. 

A. The Rule Spectrum 

Knowledge Base Management Systems (KBMSs) are normal Database Management Systems (DBMSs) 

extended with some kind of knowledge. Knowledge usually means some kind of declarative language, 

and takes the form of rules [1]. According to which rule type has been integrated into a DBMS, we 

distinguish between two types of KBMS: deductive and active database systems. 

Deductive databases [2, 3, 1] use declarative logic programming style rules (also called deductive 

rules) that add the power of recursively defined views to conventional databases. Deductive rules describe 

in a declarative manner new, derived data in terms of existing data, without an exact description of how 

new data are created or treated. 

On the other hand, active database systems extend traditional database systems with the ability to 

perform certain operations automatically in response to certain situations that occur in the database. For 
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this reason they use low-level situation-action rules (also called active rules) which are triggered when a 

situation arises in the database. As a consequent a set of actions is performed on the database. Active 

rules can be used to provide for varying functionality to the database system, such as database integrity 

constraints, views and derived data, authorization, statistics gathering, monitoring and alerting, 

knowledge bases and expert systems, workflow management, etc. Active rules can take the form of data-

driven or event-driven rules. 

Data-driven or production rules are more declarative than event-driven rules [4] because their 

situation part is a declarative description of a firing situation (a query) without an exact definition of how 

or when this situation is detected. 

Event-driven or Event-Condition-Action (ECA) rules are more procedural because they explicitly 

define their triggering situation [5]. Specifically, ECA rules are triggered by an event that occurs inside or 

outside the system, then a condition is checked to verify the triggering context and, finally, the actions are 

executed. 

Despite the differences of the above rule types in their syntax, semantics, use, and 

implementation, it has been proposed by Widom [5] that active and deductive rules are not distinct but 

rather form a spectrum of various rule paradigms. Widom has described a general common framework 

under which all rule types found in the literature can be placed by adapting slightly the framework. 

Figure 1 shows how the above rule types fit into the rule spectrum. 

All rule paradigms are useful in an active KBMS. Therefore, the unification of the various rule 

types in a single system is an important research task that has received considerable attention over the 

recent literature. 
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According to Widom, higher-level rule can be translated into (and, therefore, emulated by) 

lower-level rules. Furthermore, the semantics of high-level rules can be extended to cover the semantics 

of lower-level rules, so that the latter can be used in a system that supports a high-level rule system. 

In the following subsections of this section, we present in more detail various approaches to 

active databases, and then, we discuss various techniques to unify some or the entire set of the above rule 

types. Notice that the presentation of implementing deductive rules over an active database is deferred 

until section IV, where deductive databases is described as an application of active knowledge base 

systems. 

B. Active Database Systems 

An Active Database System (ADB) is a conventional, passive database system extended with the 

capability of reactive behavior. This means that the system can perform certain operations automatically, 

in response to certain situations that have occurred in the database. 

An ADB is significantly more powerful than its passive counterpart because it can achieve the 

following: 

• perform functions that in passive databases systems must be encoded in applications; 
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Figure 1. The rule spectrum 
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• facilitate applications beyond the scope of passive database systems; 

• Perform tasks that require special-purpose subsystems in passive database systems. 

The desired active behavior of ADBs is usually specified using active rules. There is a certain 

confusion about the term “active rules”; some researchers [4, 6] denote by this term the production rules 

met in expert system technology [7, 8], while others refer to the Event-Condition-Action (ECA) rules [9, 

10, 11, 12] met in many active database systems. 

Henceforth, we will use the term active rules to denote both these rule types collectively. 

Furthermore, we will use the above specific terms to address to each of the two active rule types in order 

to avoid the confusion: 

• Production or “data-driven” rules are the rules of the form: 

IF� condition� THEN� action�

The condition of these rules describes data states that should be reached by the database. When 

the condition is satisfied the production rule is fired (or triggered) and its set of actions is executed against 

the database. 

• ECA or “event-driven” rules have the following form: 

ON� event� IF� condition� THEN� action�

The ECA rule is explicitly triggered when the event of the rule has been detected, either in the 

database, caused by a data manipulation operator or externally by another system. The condition of the 

rule is only then checked and if satisfied the rule action is executed. 

Typically, ADB systems support only one of the above two active rule types. However, there are 

few systems that support both ones. 
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1. ECA Rules 

In the literature there are several ADB systems that support ECA rules. Most of them are object-oriented, 

such as HIPAC [10], SENTINEL [9], REACH [13], ADAM/EXACT [14, 11], SAMOS [12], AMOS [15], 

ACOOD [16], and NAOS [17]. ECA rules are the most “natural” choice for generic rule support since 

events conform to the message-passing paradigm of object-oriented computation and every recognizable 

message/method can be a potential event. Therefore, ECA rule execution can be very easily implemented 

as a “detour” from normal method execution. 

Just before and/or right after method execution there is an opportunity to check if there is an 

event that should be monitored for this method and class. If there is, then the event occurrence is detected 

and signaled to the event manager of the system. Method execution proceeds normally between the two 

event detection phases. Therefore, event detection can be easily implemented as a side effect of the 

normal OODB method execution mechanism. 

Events can be either database operations or happenings of interest external to the database, e.g. 

clock events or operating system events (interrupts). Furthermore, events can be both simple (primitive) 

and complex (compound). Complex events are combinations of simple events through event constructors, 

such as conjunction, disjunction, sequence, periodical, etc. Complex events are useful for integrating 

temporal aspects in an active database or for expressing complex logical conditions, as in 

SNOOP/SENTINEL [18], SAMOS [19], and ODE [20]. Furthermore, in section III we will show how 

complex events have been used in DEVICE to integrate production rules into an active database [21]. 

In relational databases, there are a number of different implementation techniques. This is mainly 

due to the fact that relational databases have a number of predefined generic operations that are common 

to all relations. Therefore, it would be quite inefficient to check for events every time a generic operation, 

such as insert or delete, is executed on any relation. 

Among the first relational database systems to support ECA rules are POSTGRES [22] and 

STARBURST [23]. POSTGRES uses a tuple marking technique where each tuple that is a candidate to 
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trigger an ECA rule is permanently marked by a rule lock that indicates which rule will be triggered at 

run-time. Some times a rule lock is placed on the relation instead, when the granularity of the rule cannot 

be determined at rule-creation time or for space-saving purposes. At run-time, the tuple that is “modified” 

is checked for rule locks, and the appropriate rules are then executed. 

STARBURST uses its extended features (such as attachment procedures which is a concept 

similar to demons in the technology of frame-based expert systems) in order to log the operations that 

trigger ECA rules. At the end of the transaction or at user-specified checkpoints the rule manager collects 

the triggered rules from the log and executes them. 

Finally, A-RDL [24] and ARIEL [4] support events and ECA rules on top of production rules 

using delta-relations, a technique that will be described thoroughly in the next subsection. 

a. Coupling modes. An important aspect of ECA rule execution is the exact time of event detection, 

condition checking, and action execution relative to the triggering operation and the end of the 

transaction. There are three possibilities for relative processing between event detection and condition 

checking (EC coupling) and between condition checking and action execution (CA coupling), called rule-

coupling modes. 

• Immediate. There is no delay between the evaluation/execution of the predecessor and successor ECA 

rule parts. For example, the action is executed immediately after the condition is satisfied. 

• Deferred. The evaluation/execution of the successor ECA rule part is delayed until the end of the 

current transaction. For example, the condition of the rule is not checked after its event has been 

signaled but at the end of the transaction. This coupling mode may prove useful for e.g. checking 

integrity constraints, where many single updates violate the constraint but the overall effect is a valid 

transaction. If the condition is checked immediately after the first “illegal” update then a constraint 

violation will be detected, while if the check is delayed until the end of the transaction, the constraint 

violation might be repaired by following updates. 
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• Decoupled. The evaluation/execution of the successor ECA rule part is done in a separate 

transaction that might or might not depend on the current transaction. This mode is useful when long 

chains of rules are triggered and it is preferable to decompose it into smaller transactions to increase 

the database concurrency and availability. 

A more detailed description of the concepts and features of ADBs can be found in the Active 

Database Manifesto [25]. Most of the above ADB systems can be found in an excellent collection of 

ADB research prototypes [26]. Here we have tried to introduce some of the concepts of active rules and 

present some implementation details about various active rule systems that will help our later discussion 

of multiple rule integration. 

2. Production Rules 

Several active relational database systems, such as RPL [27], RDL1 [28], DIPS [29], DATEX [30], and 

ARIEL [4] support production rules, in the fashion of OPS5-like expert systems. 

All the above systems base their operation on the MATCH-SELECT-ACT cycle of production 

rule systems [7]. More specifically, production systems consist of a) the working memory (WM) that 

holds the initial data of a problem, plus the intermediate and final results and b) the production memory 

that holds the production rules. In analogy, the working memory of database production systems is the 

database itself while the production rules are kept in the system's rule dictionaries. 

During the MATCH phase of the production cycle the system checks which rule conditions match 

with data in the working memory. A rule whose condition has been successfully matched against the 

working memory and its variables have been replaced by actual values is called rule instantiation. 

Production systems execute only one rule instantiation per cycle; therefore, when more than one rule 

instantiations are matched, they are all placed in the conflict set in order to be considered later for 

selection. 

 



 10

During the SELECT phase the system selects a single rule instantiation from the conflict set 

based on various conflict resolution criteria. Finally, the selected rule instantiation is executed in the ACT 

phase. The actions of the production rule may cause additional rule instantiations to be inserted or 

removed from the conflict set. The same procedure is continued until there are no more rule instantiations 

left in the conflict set after a MATCH phase. 

One of the most important bottlenecks in the performance of production systems is the MATCH 

phase. The naive approach is to match all production rule conditions against all working memory 

elements at each cycle. However, various algorithms have been proposed that incrementally decide which 

rules should be added to or removed from the conflict set, such as RETE [8], TREAT [31], A-TREAT [4], 

GATOR [32], and LEAPS [30]. 

Almost all of the above algorithms are based on the compilation of the production rule conditions 

into a graph that is called discrimination network. The latter accepts in its input the modifications that 

occurred in the working memory and output the rule instantiations that should be added to or removed 

from the conflict set. The discrimination network usually maintains some information on the previously 

inserted elements in order to decide if the new elements combined with the previous ones make some 

rules match. 

Most of the database production rule systems that we mentioned at the beginning of this section 

use some kind of discrimination network. More specifically, RPL uses a main-memory variation of 

RETE, while RDL1 uses a special petri net called Production Compilation Network [33]. DIPS system 

uses a novel, efficient rule condition matching algorithm that stores a “compressed” variation of the 

RETE network tokens into relational tables. Finally, ARIEL uses the A-TREAT algorithm, which uses 

virtual α-memories to save some space compared to TREAT along with special selection predicate 

indices for speeding-up the testing of selection conditions of rules. 

In contrast, DATEX uses a complicated marking scheme [30], like POSTGRES, which employs a 

number of different indices to guide the search for matching first selection conditions and then to perform 
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joins to the appropriate direction of the condition. However, we believe that the same general principles 

apply to both the LEAPS algorithm and the discrimination network algorithms, and the only conceptual 

difference, in LEAPS, is that the discrimination network is not centralized but distributed across several 

persistent data structures. Of course, this distribution has certain benefits concerning the space and time 

complexity of the algorithm compared to the discrimination network algorithms. The price to be paid, 

however, is the increased compilation complexity and the inability to incrementally add new rules. 

C. Active Knowledge Base Systems 

In the previous subsection we have presented the integration of various rule types in various database 

systems. All rule paradigms are useful for different tasks in the database system. Therefore, the 

integration of multiple rule types in the same system is important. This will provide a single, flexible, 

multi-purpose knowledge base management system. Furthermore, such multi-rule systems are active 

because they support event detecting mechanisms. 

In this subsection we present various techniques for unifying two or more different rule 

paradigms. More specifically, recall Figure 1 from the previous subsection where the systems that 

attempt to integrate multiple rule types using a common framework are shown along with arcs that 

indicate which rules are the generic ones and which are emulated using the former. In this subsection we 

describe two major integration categories concerning ECA and production rules: a) integration of ECA 

rules in production rule systems, and b) integration of production rules into active database systems that 

support ECA rules only. In section IV the unification of production and deductive rule semantics is 

presented as an application of active knowledge base systems. 
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1. Integration of Events in Production Rule Conditions 

ECA rules are low-level rules that describe explicitly their activation time. For example, the following 

rule does not allow any employees named 'Mike' which earn more than 500000 to be inserted to the 

relation emp: 

ON� APPEND� emp�

IF� emp.name='Mike'� and� emp.sal>500000�

THEN�DELETE� emp�

Production rules, on the other hand, do not explicitly describe when they are activated. Instead, 

their declarative condition states that if somehow, at some point, the situation is met in the database, the 

rule is activated. Therefore, a generic difference between the event description of ECA rules and the 

condition of production rules is that the former describes a change in the state of the database while the 

latter describes a static database state. 

In order to integrate events in the condition of production rules a new construct is needed to 

describe dynamic changes in the database instead of static conditions. This construct is delta relations. A 

delta relation consists of the tuples of a relation that have been changed during the current transaction or 

between rule checkpoints. 

There are various delta relations for each normal database relation to reflect the various changes 

that can be applied to any given relation: a) for the tuples that have been inserted, b) for the deleted 

tuples, and c) for the tuples that have been updated. Delta relations are transient relations that hold data 

modifications during a transaction. After the transaction is committed these relations are flashed into their 

normal counterparts. 

Using delta relations the ECA rule that has been presented at the beginning of this section can be 

expressed as the following production rule: 

IF� e� IN� inserted_emp� and� e.name='Mike'� and�

� e.sal>500000�
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THEN�DELETE� e�

The above rule can be used interchangeably with the ECA rule at the section beginning. 

The technique of delta relations has been used by most systems that integrate events in production 

rules. For example, ARIEL [4] and A-RDL [34] are mainly production database rule systems that also 

support the use of ECA rules using delta relations. Of course, their approaches are slightly different from 

the one that has been described here. 

ARIEL allows the definition of both production and ECA rules. However the conditions of either 

rule types cannot refer to the delta relations directly. Instead, delta relations are used by the low-level 

mechanism to “translate” the event into a condition reference to a delta relation. Of course, transition 

conditions can be expressed; i.e. the condition can explicitly refer to old and new values of a tuple. 

A-RDL, on the other hand, does not allow the ECA rule syntax, i.e. events cannot be defined 

explicitly. It allows only the production rule syntax with explicit reference to delta relations, which is 

equivalent to event definition. Exactly the same concept is used in the integration of active and deductive 

rules using the Propagation-Filtration algorithm [35]. 

2. Integration of Production Rules in Active Databases 

ECA rules are the most low-level rule type of the rule spectrum (Figure 1); therefore, they provide the 

most programming constructs for implementing add-on features with varying functionality in active 

databases. Production rules, on the other hand, are high-level programming tools with simple, declarative 

semantics, which is only a subset of the semantics that can be expressed with ECA rules. Of course, 

production rules in return are easier for a naive user to use than ECA rules. 

The limited functionality of production rules can be easily “emulated” by ECA rules. The reason 

to do so is that a single system could provide both rule paradigms for different user categories. 

There are two approaches to integrating production rules into ECA rules: the multi-rule and the 

single-rule approaches. Both are based on the compilation of a production rule into one or more ECA 
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rules. The ECA rules are then triggered by data modification events and they act accordingly in order to 

implement the semantics of production rules. In the rest of this subsection we present and compare these 

two production rule compilation techniques. 

a. The Multi-Rule Approach. According to the multi-rule scheme, each production rule is translated into 

many ECA rules. Each ECA rule is triggered by a different, simple event, which is derived from a single 

condition element of the condition of the production rule. The condition of each ECA rule is almost the 

same as the condition of the production rule, minus the event. 

This technique has been proposed both for production rules [36, 37] and deductive rules [38, 39]. 

Here we concentrate solely on production rules, while deductive rules are described in section IV. 

Consider the following production rule: 

P1:� IF� a� &� b� &� c� THEN� <action>�

where a, b, c are testing patterns for data items (tuples, objects, etc.) which we will be called, henceforth, 

just data items for brevity. Notice that these patterns can include variables, even shared among the 

patterns, which are not shown in this and the next rule examples. The above rule is compiled into the 

following 3 ECA rules: 

EP1:� ON� insert(a)� IF� b� &� c� THEN� <action>�

EP2:� ON� insert(b)� IF� a� &� c� THEN� <action>�

EP3:� ON� insert(c)� IF� a� &� b� THEN� <action>�

The event insert(x) is a primitive event which is detected and signaled when the data item x 

is inserted in the database. 

These three ECA rules suffice to monitor the database for the satisfaction of the condition of a 

production rule. The deletion of the data items a, b, c, need not be monitored since a conflict set that 

holds previously matched but not yet fired production rules does not exist. Therefore, the falsification of a 

previously satisfied declarative condition is indifferent. 
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b. The Single-Rule Approach. The single-rule integration scheme is based on the compilation of the 

condition of the declarative rule into a discrimination network that is built from complex events. The 

complex event network is associated with the event-part of an ECA rule. In this way the condition of the 

declarative rule is constantly monitored by the active database. The condition-part of the ECA rule is 

usually missing, except in some cases that will be mentioned later. Finally, the action-part of the ECA 

rule depends on the type of the declarative rule. This technique has been proposed for both production 

and rules [21, 40] that are described here and for deductive rules [41] that are described in section IV. 

Following the single-rule compilation scheme, the production rule P1 is translated into the 

following ECA rule: 

SP1:�ON� insert(a)� &� insert(b)� &� insert(c)�

� [IF� true]�

� THEN� <action>�

where the operator & denotes the conjunction of the events. 

The event manager of the ADB monitors individually the above primitive events. When each of 

them is detected its parameters are propagated and stored in the discrimination network, much alike the 

production systems. When more than one of them are detected their parameters are combined at the nodes 

of the network in order to detect the occurrence of the complex event incrementally. When, finally, the 

complex event is detected, the condition of the rule has been matched and the event manager forwards a 

tuple (or token) with the complex event's parameters to the rule manager which is responsible to schedule 

it for execution. 

Notice that the incremental condition matching requires that when a primitive event occurrence is 

detected, then its parameters must be matched against the parameters of all previously detected event 

occurrences for the rest of the events, rather than only with the currently occurred ones. In order to 

achieve this, the parameters of all event occurrences are kept in the complex event network even after the 

end of the transaction. Actually, they are never deleted unless an explicit deletion is issued. 
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The single-rule approach corrects many of the problems associated with the multi-rule 

approach. In the following, these are discussed in detail. 

Rule maintenance. In the multi-rule translation scheme, if someone wants to delete or temporarily disable 

a production rule, he/she must perform the same operation to all related ECA rules. However, this 

requires special care since the user might forget some of the ECA rules, and the rule base would then 

become inconsistent. 

The single-rule approach avoids this problem by creating only one rule, which is maintained more 

easily. The de-activation of all the events (both simple and complex ones) associated with a deleted or 

disabled rule is automatically done by the system. 

Redundant condition checking. Recall the production rule P1 and the equivalent, according to the multi-

rule translation scheme, 3 ECA rules EP1-EP3. Assume that the ECA rules have immediate EC coupling 

modes. We will examine what happens when the following sequence of events occurs, in the same 

transaction, in an empty database: 

insert(c);� insert(b);� insert(a)�

ECA rules are considered in the following order: EP3, EP2, EP1. First EP3 and then EP2 are 

triggered but not executed since their conditions are not satisfied. Finally EP1 is triggered, its condition is 

satisfied, and the action is executed. This behavior is correct since the production rule P1 would have 

been fired under the same insertion sequence. 

However, the above sequence of rule triggering creates performance problems since 3 ECA rules 

are triggered, and 6 condition elements are checked either successfully or not. Each of the 3 condition 

elements a, b, c is checked twice; the first time the check fails, while the second succeeds. This 

redundancy leads to poor performance, compared to the performance of the single-rule approach [40, 41] 

where each data item is checked only once. 

Redundant action execution. Now re-consider the above event occurrence sequence but with the 

assumption that all 3 ECA rules have deferred EC coupling mode. This means that at the end of the 
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transaction all the ECA rules are triggered and executed because the data items have already been 

inserted by the time the rule conditions are considered. However, all 3 rules will execute the same action. 

This creates a problem because it is incorrect. 

Of course, various conflict resolution strategies and/or priorities can be established at compile-

time or during the design of the ECA rule base, in order to prevent the redundant execution of multiple 

rule actions. However, this solution complicates things further because these conflict resolution strategies 

must be enforced separately from the conflict resolution criteria that are based on semantics. 

The single-rule approach avoids this problem by having a single rule. Furthermore, the DEVICE 

system that will be presented in the next section has a centralized rule manager that resolves conflicts 

among multiple production rules, allowing only one to fire according to various conflict resolution criteria 

that are based on the semantics of the application. 

Net effect. One more problem associated with the immediate EC coupling mode is the absence of the net 

effect of events. When an event triggers a rule and that rule is selected for execution, there is no way to 

“undo” the rule activation by reversing the effect of the triggering event. For example, when the creation 

of the object activates a rule, the rule is going to fire even if the object is deleted before the end of the 

transaction. 

This problem exists for the rules with immediate EC coupling, even if the underlying active 

system does support net effects, because rules are immediately activated without waiting for the end of 

the transaction. The immediate mode is simply not compatible with the state description nature of 

production rule conditions. 

In the case of immediate EC and deferred CA coupling modes, in order to overcome the absence 

of net effects the condition is re-checked just before the action of the ECA rule is executed. In this way it 

is assured that the event and the condition that triggered the rule after the event signaling is still true at the 

end of the transaction. For example rule EP1 would look under this scheme as follows: 

ON� insert(a)�
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IF� b� &� c� �

THEN� (IF� a� &� b� &� c� THEN� <action>� ELSE� true)�

In the case of deferred EC and CA coupling, the check should be included only in the condition: 

ON� insert(a)� IF� a� &� b� &� c� THEN� <action>�

However, the above solution would incur overhead on the performance of rule execution because 

it duplicates checking of already checked conditions. The single-rule approach avoids this problem of net 

event effects by delaying the execution of triggered rules until the end of the transaction. 

III. DEVICE: An Active Object-Oriented Knowledge Base System 

In the previous section we have presented various techniques for unifying two or more different rule 

paradigms. Among the techniques presented was the single-rule translation scheme, which integrates 

production and deductive rules into an active database system that generically supports only ECA rules. 

In this section, we present in detail an active object-oriented knowledge base system, called DEVICE [21, 

40, 41], which uses the single-rule translation approach. 

In the following, we first describe the architecture and the production rule language of the 

DEVICE system. Then the operational semantics of production rules in DEVICE are described along with 

their integration with ECA rules. The details of compiling the production rule conditions into complex 

event networks are presented separately in order to make clear how rule conditions are incrementally 

matched at run-time. In the next section we present deductive databases as an application of DEVICE by 

implementing deductive rules on top of production rules. 
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A. System Architecture 

The overall architecture of the DEVICE system is shown in Figure 2. DEVICE mainly consists of classes 

and meta-classes, which are introduced to the core active OODB system and extend its functionality. 

More specifically, DEVICE consists of two major components: compile-time and run-time modules. 

The compile-time modules of DEVICE are mainly meta-classes that host the methods for 

compiling the production rule into a network of complex events plus one ECA rule using the single-rule 

translation technique we described in the previous section. 

The run-time modules of DEVICE are various OODB classes that host the structure and behavior 

of complex events and production rules. They are usually referred to as managers, such as the complex 

event manager, the production rule manager, etc. Rules and events are first-class objects, instances of the 

corresponding managers. 

The ECA rule manager is the most generic one and is part of the core active OODB system. The 

production rule manager is a subclass of the ECA rule manager. It partly inherits the functions of the 

former as well as it re-defines many of them in order to capture the higher-level semantics of production 

event manager

ECA rule
manager

deductive rule
manager

production rule
manager

complex event
manager

event object
creation

checking
occurrence

rule
creation

updates
updates

firing rule action

ADAM commandsUser
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rule object
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Figure 2. The architecture of the DEVICE system 
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rules. 

Complex events are subtypes of generic OODB events. Complex events are the building 

components of the discrimination network which is used to match the production rules' conditions. The 

event manager keeps track of which simple events have occurred and combines them incrementally to 

match the rules' conditions. 

The DEVICE system is fully implemented on top of ECLiPSe Prolog as an extension to the active 

OODB EXACT [14], which is an extension of ADAM OODB [42]. DEVICE is an extensible system as it 

is proved in the next section where the implementation of deductive rules on top of production rules is 

described. 

B. The Production Rule Language 

This section describes the system's declarative rule language which follows, for the most part, the OPS5 

[7] paradigm influenced by the OODB context of DEVICE. Production rules are expressed as a condition, 

which defines a pattern of objects to be detected over the database, followed by an action to be taken. 

The condition of a rule is an inter-object pattern, which consists of the conjunction of one or 

more (positive or negative) intra-object patterns. The intra-object patterns consist of one or more attribute 

patterns. For example, the following rule condition defines an employee working in the 'Security' 

department but his/her manager is different from the department's manager: 

PR1:�IF� E@emp(dept:D,manager:M)� and�

� � D@dept(name='Security',manager\=M)�

� THEN� delete� ⇒� E�

The first of the above intra-object patterns denotes an instance E of class emp. The second intra-

object pattern describes the department D of employee E whose name attribute is equal to 'Security' and 

its manager attribute is different from the manager M of E. 
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Variables in front of the class names denote instances of the class. Inside the brackets, attribute 

patterns are denoted by relational comparisons, either directly with constants or indirectly through 

variables. Variables are also used to deliver values for comparison to other intra-object patterns (joins) in 

the same condition or to the action part of the rule. The values can be both object references and normal 

values, e.g. integers, strings. 

We notice here that the condition of PR1 can be written also as: 

E@emp(name.dept='Security',manager:M,manager.dept\=M)�

Attribute patterns can navigate through object references of complex attributes, such as the 

complex attribute name.dept. The innermost attribute should be an attribute of class emp. Moving 

from right to the left of the expression, attributes belong to classes related through object-reference 

attributes of the class of their predecessor attributes. We have adopted a right-to-left order of attributes, 

contrary to the C-like dot notation that is commonly assumed following the functional data model of the 

core OODB system ADAM [43]. Under this interpretation, the chained “dotted” attributes can be seen as 

function compositions. 

During a pre-compilation phase, each rule that contains complex attribute expressions is 

transformed into one that contains only simple attribute expressions by introducing new intra-object 

patterns. The above pattern is actually transformed into the condition of PR1. 

There can also be negated intra-object patterns in the condition. A negated intra-object pattern 

denotes a negative condition that is satisfied when no objects in the database satisfy the corresponding 

positive intra-object pattern. Notice that only safe rules are allowed. The following rule condition 

identifies an employee who has worked more hours than anyone. 

PR2:�IF� E1@emp(hours_worked:H,salary:S)� and�

� � not� E2@emp(hours_worked>H)� and�

� � prolog{S1� is� 1.1*S}�

� THEN� update_salary([S,S1])� ⇒� E1�
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The use of arbitrary Prolog or ADAM goals to express some small static conditions or to 

compute certain values is allowed in the condition through the special prolog{} construct. In the 

appendix, we include the full syntax of the condition-part language. 

The action part of a production rule defines a set of updates to be performed on the database 

objects that were identified in the rule condition. These updates are expressed in an extended Prolog 

language, which includes the default, procedural data manipulation language of ADAM. The syntax of 

the ADAM messages can be found in [43]. 

Examples of production rule actions are given in rules PR1 and PR2 above. In PR1, a 'Security' 

employee is deleted when his/her manager is different from the department’s manager whereas, in PR2, 

the harder worker's salary is increased by 10%. 

C. Integration of Production Rules 

Production rules are integrated in the active database system following these steps: 

1. The condition of the rule is compiled into a discrimination network that consists of complex 

events; 

2. The last event in the network is the triggering event of the ECA rule; 

3. The condition part of the ECA rule is usually true because all condition tests have been 

incorporated into the complex event. However, if the prolog{} construct is present, then the 

Prolog goals are incorporated in the condition of the ECA rule;  

4. The action part of the ECA rule is the same as the production rule action. 

At run-time, the active database system monitors the simple events that have been created for the 

production rules. When a simple event is detected it is signaled to the event manager who is responsible 

for propagating its parameters to the complex event network. The event parameters are propagated 

through tokens, which are tuples that constitute of pairs of condition variables and their values. 
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Tokens can be positive or negative depending on the initial simple insertion or deletion event 

that has been detected. If a token is propagated through the whole complex event network, it means that 

the corresponding rule has been either matched (in the case of positive tokens) or unmatched (in the case 

of negative tokens). The rule along with the last event's parameters is called rule instantiation, and is 

forwarded to the production rule manager in order to schedule it for execution. 

The production rule manager receives all the detected complex event occurrences from the event 

manager and selects those events that activate production rules. The positive rule instantiation tokens are 

placed into the “conflict set”. The negative tokens cause the corresponding positive rule instantiations to 

be removed from the conflict set, if they still exist there. 

When multiple rule instantiations are placed in the conflict set, there is an ambiguity concerning 

the number and order of rules to be executed. The OPS5 approach applies heuristic strategies to select a 

unique rule instantiation to execute [7]. The active database systems’ approach uses priorities to resolve 

the rule execution order. In DEVICE, the OPS5 conflict resolution heuristics have been incorporated into 

the priority mechanism of the active OODB system. The application of any of the heuristics is controlled 

by an appropriate class variable of the rule manager that can be set to on or off. 

The conflict set is a Prolog list (LIFO structure) that is stored as a class attribute in the production 

rule manager. The refractoriness criterion removes the rule instantiation tokens that have been executed 

from the conflict list. The recency criterion inserts the newly derived rule instantiations at the beginning 

of the conflict list, in order to be considered before the older ones. 

Finally, the specificity criteria selectively picks-up at run-time from the conflict set rule 

instantiation tokens that their conditions are more specific than the others. The specificity of a rule is 

determined by the number of event objects involved during condition matching and is calculated at 

compile-time by counting the total number of generated events for the condition. 

After the rule manager selects a rule instantiation for execution, the condition part of the rule is 

checked. Usually the trivial true condition is associated with DEVICE rules unless the prolog{} 
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construct is present at the rule definition. If the condition evaluates to false, then the rule is not fired. If 

the condition is confirmed, then the action part of the rule must be scheduled for execution. The action is 

executed as a compound Prolog goal using the immediate CA coupling mode. 

In DEVICE, rule selection and execution are initiated either at the end of the transaction or at 

intermediate user-specified checkpoints. After the first rule instantiation is selected and executed, the rule 

manager self-raises a checkpoint in order to continue with the next production cycle by considering all the 

previous rule instantiations plus any new ones that have been produced by the execution of rule actions. 

This cycle continues until a fixpoint is reached where there are no more rule instantiations left in the 

conflict set. This happens when rule actions either do not produce new rule instantiations or evoke 

explicit object deletions that propagate up to the conflict set. After the fixpoint is reached, the control of 

the transaction is given back to the user. 

The net effect of events is guaranteed by the deferred EC coupling mode. When two events of the 

same transaction cause contradictory (a positive and a negative) rule instantiation placements in the 

conflict set, then the rule instantiation is eliminated from the conflict set before the rule selection and 

execution sequences begin at the end of the transaction. Therefore, no rule is executed. When the two 

events above are issued at different transactions but the rule instantiation in question has not yet been 

selected for execution, a similar net effect is produced. 

1. Compilation and Matching of Rule Conditions 

The efficient matching of production rule conditions is usually achieved through a discrimination 

network. DEVICE smoothly integrates a RETE-like discrimination network into an active OODB system 

as a set of first class objects by mapping each node of the network onto a complex event object of the 

ADB system. This section overviews both the structure and behavior of the network. More details about 

both the compilation and run-time aspects of the network nodes can be found in [21, 40]. 
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Figure 3. A sample complex event network 

The complex event network consists of 3 event types: primitive, logical, and two-input events. 

Throughout this section, we describe the structure and behavior of these event types using the following 

example whose complex event network is shown in Figure 3. 

PR3:�IF� E@emp(dept=’Toy’,salary:S,manager:M)� and� �

M@emp(salary<S)�

� THEN� delete� ⇒� E�

a. Primitive events. The DEVICE network has multiple input sources, which are the primitive database 

events detected by the active database system. Each attribute pattern inside any intra-object pattern in the 

condition is mapped on a primitive event that monitors the insertion (or deletion) of values at the 

corresponding attribute. In Figure 3, there are several primitive events, such as put_salary, 

put_manager, etc., and their counterpart of type delete_, which are not shown for simplicity. 

The signaling of a put_ type primitive event denotes that a certain database state has been 

reached by inserting data in the database. On the other hand, the occurrence of delete_ type events 

denotes that a certain pattern in the rule condition that was previously present in the database is no longer 

valid. To model such semantics, anti-signaling is used. We notice that update_ type events are 

emulated by anti-signaling a delete_ type event followed by the signaling of a put_ type event. 
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When primitive events are signaled (or anti-signaled), the event manager forwards a positive 

(or negative) token with the message parameters to the successor network. Each network object internally 

processes the input tokens and checks if a complex event can be signaled according to the current input 

signal and the local history of event activation. When appropriate, output tokens are forwarded further in 

the event network. 

b. Logical events. Logical events perform simple attribute tests, and they are only raised when the 

associated condition is satisfied. In DEVICE, logical events map attribute comparisons with constants, 

and they are signaled by primitive events to perform a check on their parameter. If the check is successful, 

an output token is propagated to a successor event in the event network. Logical events are the equivalent 

of α-memories of the RETE network. In Figure 3, there is one such logical event for the attribute test 

against the constant ‘Toy’. 

c. Two-input events. An intra-object pattern that consists of at least two attribute patterns is translated into 

a two-input event (also called intra-object event) that joins the parameters of the input events (primitive 

and/or logical) based on the object identifier (OID) of the message recipient objects. In Figure 3, there 

are two intra-object events. The intra-object event that joins the first two attribute patterns is further 

joined with the third attribute pattern into a new intra-object event. Should more attribute patterns exist 

this procedure goes on until all the attribute patterns are catered for. 

Multiple intra-object patterns are mapped into multiple intra-object events that are joined in pairs 

based on the shared variables between the intra-object patterns in the rule condition. These events are 

called inter-object events. In Figure 3, there should be two inter-object events. The first should join the 

two intra-object patterns on the value of variable M. The second should join the previous inter-object 

event with the second intra-object pattern on variable S. However, these two joins are simultaneously 

performed in the same inter-object event for optimization. Furthermore, we notice that the second inter-

object pattern consists of only one attribute pattern, thus instead of an intra-object event, the intra-object 

pattern is represented in the network by a primitive event. 
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The last inter-object event of the network represents the whole rule condition, and it is directly 

attached to the ECA rule that maps the original rule. 

Intra-object and inter-object events are collectively called two-input events and are treated in a 

uniform way. Here they have been analyzed separately for mere presentation purposes. Two-input events 

are the equivalent of β-memories of the RETE network. 

Two-input events receive tokens from both inputs whose behavior is symmetrical. The positive 

incoming tokens are permanently stored at the corresponding input memories and are joined with the 

tokens of the opposite memory. The join produces positive output tokens (one or more) according to a 

pre-compiled pattern and are propagated further to the event network. 

d. Token deletion. Tokens describe database states, and they persist inside the two-input event memories 

beyond the end of the transaction. They can be only explicitly deleted to reflect deletions in the database. 

The deletion of tokens is triggered by the propagation of anti-signals in the network. 

When a two-input event receives a negative token at one of its inputs, it deletes it from the 

corresponding memory and a negative token is output. The output token contains elements only from the 

deleted (incomplete) token because there is no need to join it with the tokens of the right memory, unless 

the two-input event is the last in the network [21]. 

e. Negation. Negative intra-object patterns denote conditions that should not be met in order for the 

whole rule condition to become true. The negative patterns are treated much the same as the positive ones 

except that the inter-object event whose input corresponds to the negative pattern is a negative event. 

Structurally, negative events do not differ from positive ones. However, their behavior is different 

because the detection of the intra-object event at the negative input indicates that the (negative) inter-

object event does not occur and vice-versa. Another difference of negative events is they behave 

differently depending on the input source: the “negative” or the “positive” inputs. The “negative” input 

does not contribute values to the output token of the inter-object event because the negation is not 
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constructive and only stands for value testing (safety requirement). More details on negative two-input 

events can be found in [40]. 

IV. Applications of Active Knowledge Base Systems 

In this section we present two applications that were implemented on the DEVICE system, namely 

deductive databases and data warehousing. The former is based on the emulation of deductive rules on 

top of production rules. The latter is based on the integration of DEVICE with InterBase*, a multi-

database system. 

A. Deductive Databases 

Deductive databases [2, 1] incorporate aspects of logic programming into databases and thereby they 

bridge the gap between databases and knowledge bases. Deductive databases allow users, through the 

means of deductive rules, to deduce facts concerning data stored in the database. 

A deductive rule consists of the head (also called conclusion or consequent) and the body (also 

called condition or antecedent). The interpretation of a deductive rule is that if the condition of the rule is 

satisfied, then the objects described by the head of the rule should be in the database. 

The body of a DEVICE deductive rule is identical to the condition of a production rule. The head 

or conclusion is a derived class template that defines the objects that are derivable when the condition is 

true. An example of a couple of DEVICE deductive rules is the following: 

DR1:�IF� P@path(edgeBegin:X,edgeEnd:Y)�

� THEN� arc(edgeBegin:X,edgeEnd:Y)�

DR2:�IF� A@arc(edgeBegin:X,edgeEnd:Z)� and�

� � P@path(edgeBegin:Z,edgeEnd:Y)�

� THEN� arc(edgeBegin:X,edgeEnd:Y)�
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The deductive rules above define the transitive closure of the connectivity between any two 

vertices in a graph. Class arc� is a derived class, i.e. a class whose instances are derived from deductive 

rules. Only one derived class template is allowed at the head of a deductive rule. However, there can exist 

many rules with the same derived class at the head. The final set of the derived objects is a union of 

objects derived by all the rules that define the derived class. The derived class template consists of 

attribute-value pairs where the value can either be a variable that appears in the condition or a constant. 

The syntax is given in the appendix. 

1. Common Semantics for Production and Deductive Rules 

The integration of deductive rules in the DEVICE system is achieved by mapping the deductive rule 

semantics on production rules. The RDL1 system [28, 33] made an important contribution to the 

unification of production and deductive rule semantics. More specifically, the production rule language of 

RDL1 has been proved to be as expressive as Datalog with negation [33]. 

The condition of an RDL1 production rule is a range restricted formula of the relational calculus, 

as in Datalog, while the action can be a set of positive or negative literals. A positive literal means the 

insertion of the corresponding tuple in the database while the negative literal means deletion. In contrast, 

Datalog allows only a single positive literal in the head, which is equivalent to the RDL1 rule action. 

According to the semantics of deductive rules, as described by Widom in [5], when the condition 

of the deductive rule is satisfied, then the tuple/object described by the rule head “is in the relation” of the 

head's predicate. There can be two interpretations, according to the materialized and the non-materialized 

approaches to deductive databases. 

If the derived relation/class is materialized then the derived tuple/object must be inserted in the 

database (procedural action). Otherwise, according to the non-materialized approach, the derived 

tuple/object is inserted in the answer set of the query that evoked the rule-processing algorithm. We can 

safely consider that the answer set is a temporarily materialized derived relation, which is deleted after the 
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answer to the query. Therefore, for both approaches, the operational semantics of the bottom-up 

processing of deductive rules can be compared to forward chaining production rules. 

Thus, production and deductive rules differ only in their consequent/action part while the 

condition part is a declarative query over the database for both. The action part of a production rule is an 

explicit set of procedural database modifications while the consequent part of a deductive rule is an 

implicit action of object creation. 

Deductive rule compilation is a little more complex than the above simple scheme. For example, 

consider the following deductive rule: 

D1:� IF� a� &� b� THEN� d�

which (according to the equivalence of deductive and production rules) is translated into the following 

ECA rule, using the single-rule approach of DEVICE: 

SD1:�ON� insert(a)� &� insert(b)�

� [IF� true]�

� THEN� insert(d)�

or into the following 2 ECA rules, using the multi-rule approach of Ceri and Widom [38]: 

ED1:� ON� insert(a)� IF� b� THEN� insert(d)�

ED2:� ON� insert(b)� IF� a� THEN� insert(d)�

The above rules only monitor the insertion of condition data items. However deductive rules must 

also monitor the deletion of condition items in order to keep the database consistent. If for example item 

b is deleted from the database then item d can no longer exist in the database, therefore it must be 

deleted. 

The multi-rule approach of Ceri and Widom [38] extends the rule set ED1-ED2 with the following 

two ECA rules: 

ED3:� ON� delete(a)� IF� b� THEN� delete(d)�

ED4:� ON� delete(b)� IF� a� THEN� delete(d)�
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where the event delete(x) monitors the deletion of the x data item. 

Furthermore, this approach (called delete-and-re-derive) requires one more rule to check and re-

insert some deleted derived objects due to possible alternative derivations: 

ED5:� ON� delete(d)� IF� a� &� b� THEN� insert(d)�

The multi-rule approach of Griefahn and Manthey [39], on the other hand, avoids the unnecessary 

deletions in the first place by incorporating a check in the condition of the “deletion” rules about the 

alternative derivations: 

ED'3:� ON� delete(a)� IF� b� &� ¬d� THEN� delete(d)�

Notice that the ¬d will be re-evaluated based on the deductive rule definition in the new state that the 

database has come after the deletion of d. 

The single-rule approach of DEVICE extends ECA rule SD1 with an ELSE part, which is 

executed when the condition of the original deductive rule is falsified due to the deletion of one or more 

of the data items: 

SD'1:� ON� insert(a)� &� insert(b)�

� [IF� true]�

� THEN�insert(d)�

� ELSE�delete(d)�

Furthermore, a counting mechanism, that was introduced by Gupta et al. in [44], is used in order 

to check if the derived object that is about to be deleted has alternative derivations. 

2. Implementation of Deductive Rules in DEVICE 

As it was noticed in the previous section the simple translation scheme of production rules is not adequate 

to fully capture the semantics of deductive rules. There are certain extensions that should be made: a) the 

anti-action or ELSE part, and b) the counting mechanism. 
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In order to model the deletion of a derived object, production rules are extended with an 

anti_action (or ELSE) part that hosts the derived object deletion algorithm. Using this extended 

scheme, a deductive rule can be modeled by a single production rule if the positive action is mapped to 

the action part of the rule, and the negative action is mapped to the anti_action part: 

IF� condition�

THEN�create(object))�

ELSE�delete(object))�

Furthermore, the rule manager should be extended in order to be able to execute the anti-action 

rule part upon the receipt of a negative token from the event manager. Therefore, the semantics of 

deductive rules are implemented under a new deductive rule manager that is a subclass of the production 

rule manager. The former inherits a part of the common behavior from the latter and overrides some of 

the structural and behavioral features of the latter. 

Concerning the multiple derivations problem, before a derived object is removed from the 

database it must be ensured that it is not deducible by another rule instantiation. For this reason, a counter 

mechanism, which stores the number of derivations of an object [44], is used. If the derived object has a 

counter equal to 1, then it is deleted; otherwise 1 is subtracted from the counter. 

Furthermore, the creation of a new derived object should only be done if the object does not 

already exist, otherwise two distinct objects with the same attribute values will exist. This is a 

consequence of the generic differences between an OID-based OODB and a value-based deductive 

database [45]. When a derived object already exists, then its counter is just increased by 1. 

The above operational semantics is modeled by the following extended production rule which is 

translated into an ECA rule using the procedure described at the beginning of this section: 

IF� condition�

THEN�(IF� exists(object)�

� � THEN� inc_counter(object)� �

� � ELSE� create(object))�
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ELSE�(IF� counter(object)>1�

� � THEN� dec_counter(object)� �

� � ELSE� delete(object))�

The conflict resolution strategies of deductive rules differ from production rules. The recency 

strategy is not used and, therefore, new rule instantiations are appended to the conflict set. The rule search 

space is, thus, navigated in a breadth-first manner in order to model the set-oriented semi-naive evaluation 

of deductive rules [1]. 

Specificity is overridden by the stratification control strategy, which ensures that the derivation 

process has not infinite loops due to recursion and negation. When a deductive rule is created, the derived 

classes that appear in the condition are collected along with their strata (i.e. order of derivation). The 

algorithm presented in Ullman [1] checks if the new rule, along with the existing ones, constitute a 

stratified logic program and modifies their strata as a side effect. The strata define a partial ordering of 

rules, which is used to resolve rule selection at run-time using exactly the same algorithm as for 

specificity. 

B. Data Warehousing 

A Data Warehouse is a repository that integrates information from data sources, which may or may not be 

heterogeneous and makes them available for decision support querying and analysis [46]. There are two 

main advantages to data warehouses. First, they off-load decision support applications from the original, 

possibly on-line transaction, database systems. Second, they bring together information from multiple 

sources, thus providing a consistent database source for decision support queries. 

Data warehouses store materialized views in order to provide fast and uniform access to 

information that is integrated from several distributed data sources. The warehouse provides a different 

way of looking at the data than the databases being integrated. Materialized views collect data from 

databases into the warehouse, but without copying each database into the warehouse. Queries on the 

warehouse can then be answered using the views instead of accessing the remote databases. When 
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modification of data occurs on remote databases, they are transmitted to the warehouse. Incremental 

view maintenance techniques are used to maintain the views consistent with the modifications. 

The deductive rules of DEVICE that were described in the previous subsection provide an 

excellent framework under which materialized views can be implemented. However, DEVICE supports 

data only from its own internal database therefore a new tool that integrates and maintains data from 

heterogeneous databases should be built. This system is called InterBaseKB [47] and is based on the 

integration of DEVICE and a multi-database system, called InterBase* [48]. 

1. System Architecture 

The architecture of the InterBaseKB system is shown in Figure 4. The InterBaseKB system extends 

the InterBase* multi-database with a KB module (KBM) that is responsible for integrating the schema of 

the component database systems and for running the inference engine that materializes the views of the 

component databases inside the data warehouse. The components of the InterBaseKB system are the 

following: 

a. InterBaseKB Server. This server maintains data dictionaries and is responsible for processing InterSQL 
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Figure 4. The Architecture of the InterBaseKB System 
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queries, as in the InterBase* system. Furthermore, it hosts the materialized views of the data 

warehouse. This means that the users of the data warehouse need not access the base data of the CDBSs 

but can instead directly access the views provided for them inside the warehouse. The server does not host 

the global integrated schema because this is defined and maintained inside the KB module, whose 

capabilities of inference and data modeling are a superset of the capabilities of InterBaseKB server. 

However, if the administrator of the data warehouse chooses to materialize the integrated view of the 

CDBS base data, then these will be stored at the InterBaseKB server's database, and the integrated global 

schema will be hosted by the server. 

The InterBaseKB server extends the InterBase* server with triggering capabilities. This means that 

when an InterBaseKB or a KBM client inserts, deletes or updates data in the InterBaseKB server's database, 

an event is raised that signals the occurrence of such a data modification action. This event is 

communicated to the KBM and possibly triggers an active or some declarative rule. 

On the other hand, modifications to the data of the CDBSs are not captured by the triggering 

system of the InterBaseKB server but are handled by the CSIs. However, the changes that are detected at 

the CSIs level are propagated to the triggering subsystem of the InterBaseKB server, which is responsible 

for delegating it to the KBM for further processing 

b. InterBaseKB Clients. These are the clients of the old non-federated multi-database system InterBase* 

and are kept to support the old applications. They connect to the InterBaseKB server and issue InterSQL 

[49] queries against the component databases or the materialized views of the data warehouse which are 

stored inside the InterBaseKB server's database. They cannot be connected to the KBM because InterSQL 

cannot be translated to the fully object-oriented programming language of the KBM. 

c. Knowledge Base Module (KBM). This module includes an active OODB, extended with declarative 

rules and an inference engine for a) integrating the schemes of the component databases and b) defining 

and maintaining the materialized views of the data warehouse. The architecture of the KBM is shown in 

Figure 5. The components of the KBM are the following: 
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The Active Knowledge Base (A-KB) core. The KBM's core is the active object-oriented knowledge base 

system DEVICE (see previous section). The A-KB is responsible for a) integrating the schemes of the 

component databases, b) defining and maintaining the materialized views of the data warehouse (stored at 

the InterBaseKB server), and c) propagating updates of the materialized views to the data sources. 

The A-KB core communicates with the rest of the InterBaseKB system through a number of 

interface components. The administrator of the warehouse directly communicates with the A-KB core and 

can evoke methods for creating/destroying, enabling/disabling declarative rules for integrating the 

schemes of the component database systems and defining materialized views. 

The OO-InterSQL interface. This interface translates the first-order rule definition language of A-KB into 

relational commands of InterSQL. Furthermore, it is responsible for translating simple object accessing 

methods into SQL retrieval/modification operations. 

The Triggering Interface. This interface is responsible for capturing any data modification events trapped 

by either the triggering subsystem of the InterBaseKB server or the component system interfaces. The 

latter are not communicated directly to the KBM, but through the triggering subsystem of the InterBaseKB 

server. Therefore, the triggering interface of the KBM needs to capture only one event format. The events 
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InterBaseKB
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Client

Knowledge Base
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OO-InterSQL
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Figure 5. The Architecture of the Knowledge Base Module 
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raised by the component system interfaces denote changes at the base data of the data sources while the 

events raised by InterBaseKB server denote changes made by the InterBaseKB or the KBM clients to the 

materialized views stored at the warehouse. 

d. KBM Clients. These clients have to be used in order to access the extended features of InterBaseKB, 

like global integrated schema, updateable materialized views, purely object-oriented database 

programming language, and declarative rules for programming expert database applications. This simple 

client accepts user queries interactively or user programs in batch mode and forwards them through the 

network to the KBM. The language used is Prolog extended with object-oriented and persistence features, 

like OIDs, messages, etc. 

e. The Storage System. The KBM needs to store data and methods, both for the user and for internal 

purposes, such as rule and event objects, the discrimination network memories, etc. The storage system is 

based on the built-in storage facilities of the underlying Prolog system, which is either ECLiPSe or 

SICStus Prolog. 

f. Component Database Systems (CDBSs). These are the heterogeneous systems that are integrated into 

the multi-database. Furthermore, they are the data sources for the data warehouse. 

g. Component System Interfaces (CSIs). These components act as an interface for the InterBaseKB server 

to the heterogeneous CDBSs. They translate InterSQL queries and commands to the native query 

language of the CDBS, and translate back the results, therefore they are version specific. While this is 

adequate for InterBase*, in InterBaseKB it is necessary for the interfaces to be able to detect changes of 

base data that have occurred inside the CDBSs by their native users and inform the InterBaseKB and the 

KBM subsequently that the data warehouse views might be inconsistent. It is the task of the KBM to 

decide and propagate these changes to the InterBaseKB server's database. However, it is the responsibility 

of the interface to detect the changes. 
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There are several ways to detect the data changes at the data sources, depending on the nature 

of the source itself. If the data source is a full-fledged database system, then the following solutions can 

be used: 

• If the database system supports triggering or active rule facilities, these can be directly programmed 

through the CSI to directly notify data changes of interest. 

• If the data source lacks active rule facilities, the next alternative is to inspect periodically the log files 

of the CDBSs to extract any interesting events. 

• If the database system lacks both of the above features, the CSI can be programmed to periodically 

query the CSDB (polling) to detect any changes that have occurred since the last query. This can be 

very inefficient if the polling period is too low or very inaccurate if the polling is done infrequently 

and important changes are discovered too late. 

• Finally, if the data (or information) source is not a database system but an application or a utility, 

periodic snapshots of the data can be provided and incrementally compared to detect the changes. 

Regardless of the way the changes of data at the sources are detected, the communication of those 

changes to the data warehouse can either be done as soon as the change is detected or periodically. The 

latter solution can be configured to send the changes at the data warehouse when the latter is off-line, i.e. 

when it is not used for large decision support queries but runs in a maintenance mode. In this way, the 

maintenance of materialized data does not clutter the data warehouse during its normal operation. 

2. View Materialization and Maintenance 

Schema integration in multi-database and heterogeneous environments is usually achieved by defining 

common views of the underlying data. In this way, details of the heterogeneous data sources are 

abstracted away, and the user transparently sees a global schema. The view definition language and view 

materialization mechanism of InterBaseKB is provided by the deductive rules of the A-KB core (namely 
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DEVICE), which has been described in section IV.A. More specifically, each derived class plays the 

role of a view class whose definition is included into the set of deductive rules that have the derived class 

as their head. Details concerning the type of the view class and the update of the views are reported 

elsewhere [47]. 

An important advantage of using a discrimination network for the incremental maintenance of 

materialized views is that the views are self-maintainable [50]. This means that, in order to derive what 

changes need to be made to the materialized views in the warehouse when base data are modified, there is 

no need to query back the data sources [51]. All the necessary past data needed for maintaining the view 

is kept inside the memories of the two-input complex events. 

3. Integration of Heterogeneous Data 

In this section, we describe the mechanisms of InterBaseKB for integrating data from heterogeneous data 

sources. 

a. Schema translation of the component databases. The various component databases or data sources 

probably have their own schemata, which might have been expressed in different data models. Therefore, 

a mechanism is needed to translate the data model of each data source to the common data model of the 

data warehouse. InterBaseKB supports an object-oriented common data model [52], which is rich enough 

to capture the heterogeneity between the data models of the data sources. 

b. Resolution of schematic and semantic conflicts. After the homogenization of the data models, there is 

still a need to resolve the conflicts among the schemata of the data sources. There can be many kinds of 

conflicts among the local schemata [52, 53, 54], such as schematic, semantic, identity, and data conflicts. 

The mechanism for schema integration should be general enough to be able to resolve most of them. 
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Database� company_A� company_B�

class� inventory� inventory�

attributes� dept:� deptID� dept:� deptID�

� item:� string� item1:� integer�

� quantity:� integer� item2:� integer�

� � ...�

� � itemn:� integer�

�

Database� company_C� � � �

class� item1� item2� ...� Itemn�

attributes� dept:� deptID� dept:� deptID� � dept:� deptID�

� quantity:� integer� quantity:� integer� � quantity:� integer�

Table Σφάλµα! Άγνωστη παράµετρος αλλαγής.. Schemata of company databases 

In the following example we demonstrate a schema integration problem (Table Σφάλµα! 

Άγνωστη παράµετρος αλλαγής.) and we also provide the InterBaseKB solution (Figure 6). 

Consider a federation of company databases in a corporation, consisting of OODBs 

company_A, company_B and company_C, corresponding to each of the three companies A, B and C. 

Each database maintains information about the company's inventory. The schemata of the three databases 

are shown in Table Σφάλµα! Άγνωστη παράµετρος αλλαγής.. 

The company_A database has a single class inventory which has one instance for each 

department and each item. The database company_B also has a single class inventory but items 

appear as attribute names whose values are the corresponding quantities. Finally, company_C has as 

many classes items and each instance represents each department and the corresponding item quantity. 

DBA:� IF� I@inventory/company_A(dept:D,item:T,quantity:Q)�

� THEN� inventory(dept:D,item:T,quantity:Q)�

DBB:� IF� I@inventory/company_B(dept:D,T\=dept:Q)�

� THEN� inventory(dept:D,item:T,quantity:Q)�

DBC:� IF� I@T/company_C(dept:D,quantity:Q)�

� THEN� inventory(dept:D,item:T,quantity:Q)�

Figure 6. Deductive rules for integrating schemata 
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DB'

A:� IF� � I@inventory_company_A(dept:D,item:T,quantity:Q)�

� THEN� inventory(dept:D,item:T,quantity:Q)�

DB'
B:� IF� � inventory_company_B@company_B_meta_class(slot_desc:T\=dept)�

� THEN� new_rule('IF� I@inventory_company_B(dept:D,T:Q)�

� � � � � THEN� inventory(dept:D,item:T,quantity:Q)')�

� � � ⇒� deductive_rule�

DB'
C:� IF� � T@company_C_meta_class(slot_desc⊇[dept,quantity])� and�

� � � prolog{string_concat(T,'_company_C',T1)}�

� THEN� new_rule('IF� I@T1(dept:D,� quantity:Q)�

� � � � � THEN� inventory(dept:D,item:T,quantity:Q)')�

� � � ⇒� deductive_rule�

Figure 7. Translation of deductive rules of Figure 6 

The heterogeneity of these databases is evident. The concept of items is represented as atomic 

values in company_A, as attributes in company_B, and as classes in company_C. Without loss of 

generality, we assume that the item names are the same in each database since it is not difficult to map 

different names using our deductive rule language. 

External Schema References. The first database company_A is an external database that shares the same 

schema with the common view. An external relational or OODB schema is translated into InterBaseKB as 

a collection of classes. The schema of the class is the same as the schema of the corresponding external 

relation or class, concerning the names and types of attributes. A relation/class is imported in InterBaseKB 

using a deductive rule for defining a derived class as a “mirror” of the external entity. The external (base) 

class is represented in the condition of the rule using the normal rule syntax extended with a reference to 

the name of the external database. 

The class inventory of database company_A is imported into InterBaseKB as shown in Figure 

6. The name of the database from which the relation/class is imported appears just after the name of the 

class. Each imported database is represented in InterBaseKB as a meta-class. This meta-class contains all 

the necessary information about the imported database, such as its name, type, network address of CSI 

 



 42

and CDB, exported relation/classes, communication and/or storage protocols, etc. This information is 

copied from the system's data directory [48]. 

Figure 7 shows the translated deductive rules of Figure 6. The translation of rule DB'
A is straight 

forward because it just contains a reference to an external database and the classes of the external 

databases are automatically renamed, thus appending the name of the database. 

Second-order Syntax. The derived class inventory will be also used to import inventory data from the 

rest of the company databases. However, the import of the other databases cannot be done in such a 

straightforward manner because items are either attribute or class names, therefore a second order syntax 

is needed. When variables of a deductive rule language can range over attribute or class names, we say 

that the rule language has second-order syntax. The databases for company_B and company_C are 

imported as shown in Figure 6. 

Rule DBB has a variable C that ranges over all the attributes of the class inventory of database 

company_B, except attribute dept, which is explicitly mentioned in the condition. Rule DBC has again 

a variable C that ranges over the classes of database company_C. Despite the second-order syntax, the 

above rules are interpreted using a set of first-order rules using the meta-classes of the OODB schema. 

Each second-order reference for OODB classes in a rule is transformed into a first-order reference to the 

equivalent OODB meta-classes. Furthermore, a deductive rule that contains second-order syntax is 

transformed into a production rule that creates first-order deductive rules. Figure 7 shows the translated 

deductive rules of Figure 6. 

Concerning the condition, the intra-object (class) pattern is replaced with a pattern of the meta-

class of the class. The new meta-class pattern can match its instances, which are the classes to be 

“discovered” by the second-order constructs of the original rule. The attribute patterns of the original rule 

are transformed in attribute tests of the slot_desc attribute of the meta-class. This set-valued attribute 

is present in every meta-class and contains the description (name, type, cardinality, visibility, etc.) for 

each attribute of its instances (classes). 
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The condition of the second rule that contains a variable for an attribute name (itemi) is 

directly translated into a meta-class pattern whose slot_desc attribute is retrieved and propagated to 

the rule action. Thus, the variable C stands now for a value of the slot_desc attribute, and the second-

order construct is transformed into first-order. Since the class name (inventory_company_B) is 

known from the original rule, the instance of the meta-class (company_B_meta_class) in the meta-

class pattern is instantiated. 

The condition of the third rule is slightly different since the class name is a variable in the 

original rule. Therefore, the variable now appears as the OID of the instance of the meta-class pattern. 

Furthermore, the selection of the classes among the instances of the meta-class 

(company_C_meta_class) is restricted to those that have at least the attributes dept and 

quantity. 

The transformed rules are production rules and their action is a method call to create a new 

deductive rule. The deductive rule has first-order syntax since any variables that appear in the place of 

attributes or classes have already been instantiated by the condition with the meta-class pattern. Rule DB'
C 

also contains a call to a Prolog built-in predicate in order to construct the proper name for the itemi 

classes. Similar calls are also included in the actual implementation for creating the rule strings (e.g. for 

incorporating the variables), but are omitted here to ease the presentation. 

The production rules of Figure 7 are triggered even if they are generated after the creation of the 

class and meta-class schema because the A-KB core includes a rule activation phase at the end of rule 

creation. Furthermore, the A-KB core creates events for every method of the OODB schema, including 

meta-classes. Rules DB'
B, DB'

C will be fired as many times as the number of items in the respective 

databases and the same number of deductive rules will be generated. The new deductive rules will also be 

activated and fired based on the same mechanism. Rule DB'
A is a deductive rule and it will behave as 

described in Section IV.A. 
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c. Integration transparency. After local schemata have been translated into the common data model 

and a single global schema exists, the users of the data warehouse are unaware of the origins of data. 

Instead the system distributes their requests transparently to the appropriate data source. This is achieved 

using similar mechanisms as those described in section IV.B.2. More details can be found in [47]. 

V. Conclusions and Future Directions 

In this section, we summarize the material we have presented throughout this chapter. We have initially 

presented how various database systems have been extended with active and production rules turning 

them into active Database systems. In the sequel, we have presented various techniques that integrate 

multiple rule types into the same database system resulting in active Knowledge Base systems. 

We have, finally, described in detail the DEVICE system, which integrates production rules into 

an active OODB that supports only the lowest-level ECA rules. Then, we have presented two applications 

based on the DEVICE system, namely deductive databases and data warehousing. The DEVICE system is 

quite extensible and allows the implementation of various rule types on top of production rules. The result 

of such an extension is a flexible, yet efficient, active KBMS that allows the user to work with many rule 

types, according to the application type and/or his/her programming proficiency level.  

More specifically, the highest the rule type level, the more naive programmer the user can be. For 

example, deductive rules are used for specifying complex views in a declarative manner, which are more 

or less queries to the data. Production rules are used for programming in an expert system style and 

enforcing integrity constraints. Finally, ECA rules can be used for a variety of data maintenance, security, 

and integrity enforcement tasks, including programming applications. 

The current trend in knowledge base systems is to develop large-scale knowledge-based 

applications in order to overcome the difficulties in developing intelligent software. We believe that the 

next decade will establish knowledge-based applications into the mainstream of software technology 
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since the demanding complexity of modern real-world problems requires the use of human expertise to 

be dealt with. 

A distinctive feature that knowledge base systems must have for future applications is activeness. 

Active knowledge base systems will respond intelligently to emerging situations without user 

intervention. Knowledge-based systems that are built on such a reactive behavior will be able to control 

complex distributed systems in a seamless manner. 
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Appendix 

<production_rule>� ::=� if� <condition>� then� <action>�

<deductive_rule>� ::=� if� <condition>� then� <derived_class_template>�

<derived_attribute_rule>� ::=� if� <condition>� then� <derived_attribute_template>�

<condition>� ::=� <inter-object-pattern>�

<inter-object-pattern>� ::=� <condition-element>� ['and'� <inter-object-pattern>]�

<inter-object-pattern>� ::=� <inter-object-pattern>� 'and'� <prolog_cond>�

<condition-element>� ::=� ['not']� <intra-object-pattern>�

<intra-object-pattern>� ::=� [<var>'@']<class>['('<attr-patterns>')']�

<attr-patterns>� ::=� <attr-pattern>[','<attr-patterns>]�

<attr-pattern>� ::=� <var-assignment>� |� <predicate>�

<attr-pattern>� ::=� <attr-function>':'<var>� <rel-operator>� <value>�

<var-assignment>� ::=� <attr-function>':'<var>�

<predicate>� ::=� <attr-function>� <predicates>�

<predicates>� ::=� <rel-operator>� <value>� [{� &� |� ;� }� <predicates>]�

<rel-operator>� ::=� =� |� >� |� >=� |� =<� |� <� |� \=� �

<value>� ::=� <constant>� |� <var>�

<attr-function>� ::=� [<attr-function>'.']<attribute>�

<prolog_cond>� ::=� 'prolog'� '{'<prolog_goal>'}'�

<action>� ::=� <prolog_goal>�

<derived_class_template>� ::=� <derived_class>'('<templ-patterns>')'�

<derived_attribute_template>� ::=� <var>'@'{<class>}'('<templ-patterns>')'�

<templ-patterns>� ::=� <templ-pattern>� [','� <templ-pattern>]�

<templ-pattern>� ::=� <attribute>':'{<value>� |� <aggr_func>'('<var>')'}�

<aggr_func>� ::=� count� |� sum� |� avg� |� max� |� min�

<class>� ::=� An existing OODB class or derived class�

<derived_class>� ::=� An existing OODB derived class or a non-existing OODB class�

<attribute>� ::=� An existing attribute of the corresponding OODB class or derived class�

<prolog_goal>� ::=� An arbitrary Prolog/ADAM goal�

<constant>� ::=� A valid constant of an OODB simple attribute type�

<var>� ::=� A valid Prolog variable 
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