
System Architecture of a Distributed Expert System
for the Management of a National Data Network1

** Ioannis Vlahavas, Nick Bassileiades, Ilias Sakellariou

{vlahavas, nbassili, iliass}@csd.auth.gr
Department of Informatics, Aristotle University of Thessaloniki,
54006 Thessaloniki Greece.

Martin Molina, Sascha Ossowski

{mmolina, ossowski}@isys.dia.fi.upm.es
Department of Artificial Intelligence, Technical University of Madrid,
28660 Boadilla del Monte, Madrid, Spain.

Ivan Futo, Zoltan Pasztor, Janos Szeredi

{futo, szeredi}@ml-cons.hu
ML Consulting and Computing Ltd, ML Kft, H-1011 Budapest,
Gyorskocsi u. 5-7., Hungary.

Igor Velbitskiyi, Sergey Yershov, Sergey Golub, Igor Netesin

{vel, yershov, golub, netesin}@netman.ts.kiev.ua
International Software Technology Research Center Technosoft,
44 acad. Glushkov Avenue, Kiev, 252187, Ukraine.

Abstract

The management of large data networks, like a national WAN, is without any doubt a complex task.
Taking into account the constantly increasing size and complexity of today’s TCP/IP based networks, it
becomes obvious that there is a demanding need for better than simple monitoring management tools. Expert
system technology seems to be a very promising approach for the development of such tools. This paper
describes the system architecture of ExperNet, a distributed expert system for the management of the National
Computer Network of Ukraine, and the implementation of the tools used for its development. ExperNet is a
multiagent system built in DEVICE, an active OODB enhanced with high level rules, that uses CS-Prolog II to
implement the communication facilities required. The system employs HNMS+ and BigBrother, two modified
versions of existing network management tools, in order to obtain a complete view of the monitored network.

keywords: Distributed expert systems, agents, network management, distributed prolog.

1 The work described in this paper is funded by the EU INCO-Copernicus project ExperNet: A Distributed Expert

System for the Management of a National Network, No 960114
** The order in which the authors appear does not reflect their contribution to the work described in this paper.

1. Introduction
The exploitation of a large WAN cannot be effectively achieved without a user-friendly and

intelligent network management software. Existing network management software cannot meet the
requirements of such large-scale networks, mainly because it offers, in most cases, only monitoring
tools. One of the most important directions for the practical application of network management
software, is its enhancement with higher level decision support and diagnostic services.

ExperNet is a distributed expert system for the management of the National Network of Ukraine,
developed in the framework of a joint EU funded research project. The development of expert
systems for WAN management is only at research and experimental stage. There are difficulties in
the formalization of such a task because of the incompleteness and lack of adequate information
about network state, the large scale of behaviour characteristics, and the continuous evolution of the
network environment. The absence of practical and verified expert systems for large, complex
modern technological systems like WANs, demonstrates the complexity of the task and pose a great
challenge ahead.

Distributed expert systems using co-operative problem solving strategies with new general
conflict detection and conflict resolution mechanisms, seem to provide a feasible but also an elegant
solution to the WAN network management problem. Such a distributed expert system, requires an
sufficient communication facilities and an efficient expert system shell that is able to cope with large
amounts of data and offer multiple knowledge representations. Another important point in the design
of the system is that there must be an efficient way of determining the network state and capturing
important network events, in other words an efficient monitoring schema. The implementation of
such a functionality has to be in accordance with the existing network monitoring facilities, namely it
has to adopt to the Simple Network Management Protocol (SNMP) in order to have control over the
existing network devices.

This paper describes the ExperNet system architecture, that fulfils the above requirements, and
presents the system components.

2. The ExperNet System Architecture
As the network management

problem of the ExperNet project
has turned out to be inherently
distributed, we conceive the
ExperNet architecture as
multiagent system. At each
management node there is one
agent, specialised in managing
the network area that the node is
responsible for. In consequence,
the structure of the system
architecture goes in line with the
structure of the pre-existing
organisation of the experimental
zone of the network. The overall
architecture of the system is
shown at figure 1. Each ExperNet
agent is attached to an HNMS+

server; the latter provides necessary information about the state of the network to the former.

M anagement Node

HNMS+
Server

ExperNet Agent

Device

CSP-II

Knowledge
Base

I/O
Module

I/O
Module

DB
module

HNMS+
Server

DB
module

SNMP
device

SNMP
device

SNMP
device

....

....

I/O
Module

SNMP
device

ExperNet Agent

ExperNet Agent

....

BigBrother

SNMP Connection

HNMP Connection

Figure 1: ExperNet System Architecture

Additional information is provided by Big Brother, a tool for monitoring local computer resources.
The agents are developed in DEVICE, and communication facilities are provided by CS-Prolog II.
All system components, shown in the figure, are described in the rest of the paper.

Each agent comprises two types of knowledge: local knowledge for individual problem-solving
(i.e. for local network management) and social knowledge for co-ordination (i.e. for harmonising
local network management with the activities of acquaintance nodes).

2.1 Local Problem-solving
In order to characterise the knowledge model of each agent we have applied advanced knowledge

engineering techniques. The particular characteristics of the domain of network management include
complex problem-solving tasks (classification, diagnosis, planning, etc.) which suggests to use the
concept of model-based system development, that has recently become popular among researchers
and knowledge engineers, for the development of large and complex knowledge-based systems. For
instance, some recent methodologies and tools such as Kads [17], KSM [10], Protégé-II [15], follow
this model-based approach. According to this, we have modelled the agents’ problem-solving
competence as a three step process: (1) symptom detection, where administrators watch out for
symptoms of undesired network states and behaviours (e.g. a certain service –ftp, www, etc.– does
not respond, a host is unreachable, over/under-utilisation of links or equipment, etc.); (2) diagnosis,
which is done by discriminating hypothesis of different degrees of precision on the basis of network
data and the result of exploratory actions to find the causes of symptoms (e.g. inadequate capacity for
some resource, unbalance of workload and resources, resource malfunctions, etc.) and (3) repair,
where a sequence of repair actions is proposed to solve the problem.

Each step is realised by
customising generic knowledge
modelling methods [17]. The
heuristic classification problem
-solving method [8] constitutes
a typical reasoning structure for
classification problems and is
used for symptom detection. It
follows three steps (abstraction,
matching and refinement)
which, in our model, are
supported by two types of
knowledge bases: one about the
network model for abstraction
and refinement, that includes a
declarative representation of the
network structure, and another
that uses a set of problem
scenarios relating symptoms
and observables. For diagnosis,
the establish and refine method
is used [7]. This method can be
conceived as an abstract

reasoning pattern based on a heuristic search in a taxonomy of hypotheses of problems. Our particular
adaptation of the establish and refine method makes use of three primitive inferences: (1) refine
problem hypotheses uses a knowledge base represented by a taxonomy of hypothesis classes using

Manage Network

Diagnose and
Repair

Abstract Match Refine
Hipothesis

Refine Select
Best

Acquire
Observ.

Select
Specialist

Determine
Applicab.

Propose
Plan

Decompose
Plan

Compose
Plan

Detect Diagnose Repair

Heuristic
Classification

Establish &
Refine

Hierarchical
Planning

Propose
Partial Plan

Hierarchical
Planning

Plan
Structure

RefinementHeuristic
Plans

Applicab.
Conditions

Plan
Structure

Acquisition
Methods

Hypothesis
Validity

Hypothesis
Taxonomy

Network
Model

Problem
Scenar.

Network
Model

Figure 2: Local Problem Solving

the is-a relation; (2) select best hypothesis makes use of knowledge about the validity of hypotheses
(represented using frames) to establish whether any of the input hypothesis can be proved, and (3)
acquire additional observables determines the sequence of exploratory actions to get additional
observables by using a knowledge base about acquisition methods (represented by rules). Finally, the
hierarchical planning method is used for the repair task. This method is based on a search in a
hierarchy of specialists that are knowledgeable about partial abstract plans, which are dynamically
composed during the reasoning [5]. The particular instance of the hierarchical planning method that
we use in the network management domain, makes use of four specialists (top level, fault detection,
performance management and configuration) and uses five primitive inferences supported by four
types of knowledge bases.

2.2 Social Co-ordination
An important part of a node administrator’s time is not spent in local problem-solving, but in co-

ordinating its work with other administrators. In the particular case of ExperNet, three types of
situations require co-ordination: (1) Information acquisition, when additional observations are
needed, which are available (or can be acquired) within the agent society, but are not accessible (or
cannot be acquired) by the node itself. (2) Responsibility conflicts, when different agents intend to
perform similar tasks. (3) Interest conflicts, when one agent does not agree with its role in a certain
repair plan or with the effects that some plan will have on its local situation.

We model the process of co-ordination in the above situations as conversations [1], i.e. logically
coherent sequences of agent interactions. Conversations that cope with responsibility conflicts are
very simple, as they just involve one interaction, transferring the responsibility for some task from the
sender to the receiver. We propose three kinds of conversations of this type: diagnosis and repair
delegation, repair delegation and isolation delegation. Information acquisition problems are
managed by means of the observable acquisition and the plan refinement conversations, in the course
of which a needy agent asks some target agent for a certain observable or plan; the latter may either
reply with this information or by notifying its inability (or unwillingness) to facilitate it. Plan
acceptance conversations manage interest conflicts, where all affected agents need to agree in order
that a proposed plan be accepted.

Interactions within a conversation are based on a message-passing model. Every message that is
exchanged during such interactions can be considered as Speech Acts, as by emitting it the sender
wants to influence the behaviour of the receiver [14]. The following table resumes the different
messages that are used in the network management model as well as their intended effect on the
receiver.

Table 1. Types of Messages and Interactions
Message types Receiver’s intended reaction
ASK FOR observable acquires observable & informs sender
ASK FOR plan acceptance decides about acceptance & informs sender
ASK FOR plan refinements refines plan & informs sender
DO diagnosis and repair performs diagnosis and repair tasks
DO isolation performs problem isolation
DO repair performs repair task
ANSWER WITH observable informs about observable
ANSWER WITH plan acceptance informs about plan acceptance
ANSWER WITH plan refinements informs about plan refinements

Within conversations there are various degrees of freedom for the involved agents, as they

usually may choose from several behaviour options (in the simplest case to accept or to reject a
request). An agent’s choice is not just determined by information respecting its local situation, but

also by its knowledge and experience with other nodes in the network. It thus maintains agent models
of all acquaintances that it interacts with including itself [11]. These models endow the agent acquires
with additional capabilities: (1) problem interest: checks whether the modelled agent is believed to
interested in being notified about a problem (e.g. because it is indirectly affected by that problem and
wants to isolate it in order to keep its effects as local as possible); (2) plan interest: checks whether
the modelled agent needs to be notified about a given plan (either because it is involved in it or
because its side-effects concern the modelled agent); (3) plan rights: checks whether there is a need
to obtain the agreement of the modelled agent for enacting a given plan; (4) observation capability,
checks whether the modelled agent is believed to by capable of acquiring the value of a given
observable; (5) diagnosis capability, determines if the modelled agent is capable of performing
diagnosis for a given symptom; (6) plan repair capability, checks whether it can elaborate a plan for
a given problem; (7) plan refinement capability, analyses whether the agent may refine a given
abstract plan for a given problem.

On this basis, the three step local problem-solving cycle of an agent can be extended, leading to
the following control loop, followed by ExperNet agents:

1. Detect symptoms.
2. Inform agents interested in the symptoms, in order to diagnose

them.
3. Diagnose problem (if the agent is responsible).

 If there are missing observables, ask agents for acquiring
 the corresponding value.

4. Inform agents interested in problems, in order to isolate them.
5. Inform agents interested in problems, in order to repair them.
6. Generate a repair plan (if the agent is responsible).

 If necessary, asks agents for plan acceptance

 Figure 3: Structure of the method followed by an agent to manage the network.

3. The Device Expert System Shell
For the implementation of the knowledge model, the DEVICE [2,3] expert system shell is

selected, since it presents a number of interesting features, like multiple rule type support and Object
Orientation. DEVICE (Data-driven & EVent-driven rule Integration using Complex Events) is a
sequential Knowledge Based System that runs on top of ADAM and EXACT. The former is an
OODB built in Prolog, while the latter is an extension of ADAM with events and ECA rules (Figure
4). DEVICE is in fact, an active OODB enhanced with high-level rule facilities. It provides the
infrastructure for the smooth integration of production and deductive rules into an active OODB that
generically supports event-driven rules only. The integration is based on the compilation of the condi-
tion of both high-level rule types into a discrimination network that consists of simple and complex
events which record and combine database modifications that could possibly make a rule fire.

A rule base in DEVICE, can be a mixture of ECA, production and deductive rules. The two latter
are high-level rules, whose integration into the active OODB has been smoothly achieved in
DEVICE. Backward chaining or goal-driven rules are also supported in DEVICE in the form of
methods. Methods are pieces of Prolog code, therefore a backward chaining declarative language is
provided. For the efficient matching of the production rules, DEVICE smoothly integrates a RETE-
like discrimination network into an active OODB system as a set of first class objects by mapping
each node of the network onto a complex event object of the active database system. In order to bring
the full functionality of production systems into an active database system, heuristic conflict
resolution strategies (OPS5 approach), namely refractoriness, recency and specificity, have been

incorporated into the rule selection mechanisms of the integrated environment. The production cycle
of DEVICE is presented in figure
5.

The resulting system is a
flexible, yet efficient, KBS that
gives the user the ability to
express knowledge in a variety
of high-level forms for advanced
problem solving in data intensive
applications.

The ability of DEVICE to
handle large collections of data
is important for the development
of the ExperNet system, since
the information in any WAN
concerning the status of the

various network devices is large. It has to be
noted here, that the OO architecture and data
types supported by DEVICE naturally adopt to
existing representations of network
management information, such as MIB and
HNMS+ MIB, providing an easy mapping of
network variables to DEVICE objects. For the
needs of ExperNet, DEVICE has been
implemented in CS-Prolog-II, a language
which, among others, offers extended
communication facilities. The latter, in
conjunction with the ability of integrating
Prolog code with production rules in a simple,
clear and robust manner, offers an expert
system shell in which communication can be
easily implemented, thus offering a powerful
platform for the development of any agent
based system.

4. The CS-Prolog II System
In the development of any multiagent system, a crucial issue is the implementation of the

communication facilities that are required for the co-operation and co-ordination of the involved
agents. In ExperNet these facilities are developed using CS-Prolog II a distributed Prolog enhanced
with networking facilities.

4.1 General overview
CS-Prolog II distributed Prolog system is being developed from 1995. The syntax and the built-in

procedures of the language are based on the standard ISO/IEC 13211-1. It is extended with features
that were not included in the standard, like modularity, multitasking, real-time programming and
network communication.

CS-Prolog II, supports the communicating sequential process programming methodology in a
Prolog environment. On a single processor machine the concurrent processes are controlled by a

event manager

rule
scheduling

rule manager

parser/
pre-compiler/
optimizer

compiler

non-materialised
deductive rule
manager

deductive rule
manager

production
rule manager

complex event
network

event object
creation

checking
occurrence

rule tree

rule creation updates
updates

firing rule
i

inherits

inheritsinherits

ADAM
d

Prolog

ADAM

EXAC
T
DEVICE

User

rule object
creation

OODB
classes

Prolog
modules

Figure 4: The architecture of the DEVICE system.

Discrimination
Network

Active OODB

Rule matching

Action execution

Event signalling

Data modifications

DEVICE

USER

meta-classes
objects

classes

Event Manager
complex events

Rule Selection Rule Manager Conflict set

Figure 5: The production cycle of DEVICE

time-sharing scheduler. The inter-process communication is ensured by a rendezvous mechanism
(synchronous message passing through communication channels). Processes can backtrack, however
communication is not backtrackable. The channel based communication had recently been extended
with networking capabilities. This makes possible message passing between different CS-Prolog II
applications across the Internet. CS-Prolog II also provides communication with foreign (non CS-
Prolog) applications, an interface to relational data base systems, real time programming methods like
cyclic behaviour, reaction to predefined events, timed interrupts, etc.

The system consists of three main components: a compiler, a linker and a runtime system. The
compiler contains a pre-processor similar to what is found in C compilers. The integrated
development environment is based on OSF/Motif and runs on UNIX platforms. The main advantage
of this environment is the multi-window trace utility in which the debugging messages of separate
processes appear in separate windows.

4.2 Networking facilities
As a natural extension of CS-Prolog II channel concept, the external communication conceptually

consists of unidirectional message streams. In order to facilitate speed-up of external communication,
asynchronous message passing is introduced as an option. Send operation in this case still remains
blocking but the condition for continuing execution is the availability of sufficient buffer space
instead of the commencement of the matching receive operation.

For the Prolog programmer the communication environment appears as a homogenous address
space (community). All partners will be accessed via channel messages. A separate mechanism is
introduced for connecting channels to external partners. The most important entity for this task is the
so-called port. Ports represent incoming message substreams. They are explicitly created and play the
role of a sender for a CS-Prolog II channel specified at the time of port creation. The other end of the
channel can be used in the same way as the receiving end of any internal channel. At port creation, a
buffering parameter can be specified indicating the size of message buffer.

Another important notion in CS-Prolog II is the connection. A connection is the representation of
an outgoing message stream. Its attributes include the local channel, the partner’s name and the
partner’s port (if partner is not foreign) to where the stream is directed. Its size of the connection’s
message buffer can be set at creation. If the value of the buffering attribute is greater than zero then
more than one message can be stored in the connection buffer, allowing several send operations to
complete without blocking.

In a centralised subnetwork of CS-Prolog II applications managed by a (possibly foreign)
manager program, the following types of partners can appear for a specific CS-Prolog II program:
• Private partners; their addresses have to be available in advance for the program (hardwired in the

program, obtained from a file, e.t.c.).
• Net partners, which have signed up at the manager, and our program included them in its local

picture of the network. The address of a net partner is obtained from the manager.
• Latent partners, who are known by manager, but our program didn’t include them in its local

network picture. The address of a latent partner (and some other attributes too) can be asked from
the manager.
In the current TCP/IP implementation of the CS-Prolog II low-level communication protocol, in

order to be able to communicate with a net partner, a configuration process has to be performed as for
private partners. In other words the program has to add explicitly this partner using special built-in
predicate.

In future CS-Prolog II versions, if the underlying network layer provides the possibility of
communicating with partners with known addresses without building a specific transmission path to
them, the explicit configuration of net partners can be omitted.

5. Capturing the Network State
The size and complexity of National Computer Network of Ukraine are of the most important

issues in its management [13], creating problems in the area of full-fledged data collection for
ExperNet intelligent agents. We have approached this problem by modifying the Hierarchical
Network Management System (HNMS) and BigBrother network monitoring tool, in the way
presented in the following.

5.1 The HNMS+ System
The HNMS system prototype version was developed to cover the network management needs

that arose because of the continuing installation of large, high speed local and wide-area networks for
the Numerical Aerodynamic Simulation (NAS) Faculty at the NASA Ames Research Center [12].
This prototype version of HNMS is available on the Internet.

The prototype version of the available HNMS consists of two types of modules, which typically
reside on separate hosts throughout the network. The Server module is the hub for the network data; it
provides a center for dissemination of global topology and status information. The User Interface
(UI) module resides on workstations with graphics capabilities and provides access to real-time or
logged data. All inter-module communication is done using the Hierarchical Network Management
Protocol (HNMP) described in [12]. The protocol requires the use of new HNMS MIB, which defines
a set of variables in addition to standard SNMP variables[6,16]. HNMS MIB objects represent IP
network elements within HNMS system. Each object is identified by a unique number, its HNMS id,
which is assigned by the server. Objects belong to one of the following classes which represent
network entities or other useful information about network management: Internet, Network, Subnet,
Interface, Processor, Site, Equipment, Administrator, or Address.

HNMS provides four types of status diagrams, each representing the view of state of a network
element using a colour code. These diagrams are updated by the server, reflecting changes of the
element's status. The WAN diagram depicts the state of the IP network and the routers over a
geographical reference (e.g. a map of Ukraine). The Site diagram represents all LANs that are
connected to the routers at a given site. The Custom diagram allows the user to construct a diagram
with any set of network elements he wishes to observe. Finally, the Object diagram is a textual
display of the HNMS variables.

Although Input/Output (IO) modules were mentioned in the general architecture of HNMS, the
prototype version did not support multiple IO modules, and as a consequence, there was no true
hierarchy in its structure. Therefore, the implementation of IO module functionality was necessary to
collect local information about the behaviour of particular subnetworks that are compound parts of
National Network of Ukraine. The IO modules reside on hosts located at strategic points within WAN
(regional, district, metropolitan-area subnetwork) and handle actual data collection. Our IO modules
use SNMP [6,16] protocol for local data collection from the SNMP agents attached on the actual
network devices. These modules pass filtered management data, up to the server module. In
accordance with the overall architecture of HNMS, data are sent from IO to servers only when their
values change. Thus the hierarchical installation of IO modules allows to avoid flooding the network
with management traffic and creating bottlenecks when management information is directed to
ExperNet agents. The new HNMS is named HNMS+ and it is a true hierarchical distributed system
which fully supports HNMS functionality and extends it with new features.

Additionally, the fourth type of module mentioned in the HNMS external specification, the
database module, was developed. The database module is an SQL front-end process that stores
HNMS+ MIB variable values in a PostgreSQL database with a frequency given by the user (usually
approx. 1 minute). The database module interacts with the HNMS+ server/IO module store only
when variables of local server/IO modules change in order to avoid network overloading by SQL

requests.
Finally, an interface of the ExperNet agents with HNMS+ was implemented in CS-Prolog II as a

special Knowledge-based intelligent processing (KBIP). The KBIP module is an application that
obtains, through HNMP protocol, information about network traffic and utilisation of the network
elements.

On each node HNMS+ provides to the ExperNet agents an immediate perception of the state of
network. Using KBIP modules, ExperNet agents not only are able to immediately determine the
general state of the network but also be notified by HNMS+ about important network events.

5.2 The BigBrother Monitoring System
In order to sufficiently monitor the network state and services availability, the information

obtained by standard SNMP agents is not enough. An important issue is the evaluation of particular
TCP/IP network services quality (like ftp, http, smtp and nntp), services reliability and local host
resources like CPU, disk and so on.

Big Brother is a free Web-based UNIX Systems monitor, developed by Sean MacGuire [4]. Big
Brother consists of simple shell scripts which periodically monitor local system conditions (Local
System Monitor or bb-local.sh) and network connectivity (Network monitor or bb-network.sh) as well
as Intra-machine communications programs (bb, bbd, nettest). Disk usage, CPU loading, ftp, smtp
and http servers, and important processes can be kept track of. The results of monitoring are reported
in a status matrix (using a colour code) for each system/area combination, which is displayed on a
central monitoring station (Display Server) and presented through a Web based user interface.

For the needs of ExperNet, we have integrated HNMS+ and BigBrother in order to achieve
monitoring of TCP/IP services and remote computer resources by the ExperNet intelligent agents.
HNMS+ MIB was extended to incorporate the additional monitoring values of the status matrix of
BigBrother that correspond to all services/resource types included in the latter. HNMS+ server (or IO
module) analyses a local log file created by BigBrother and fills out the previously mentioned MIB
variables.

Additionally to existing BigBrother processes, a UNIX daemon (module) was developed that
offers the possibility of remote UNIX command invocation. This was necessary since, ExperNet
intelligent agents, in some cases, require information that cannot be obtained directly from HNMS+,
but only through command execution on the monitored remote hosts, as for example information
obtained by the “traceroute” and “tcpdump” packet monitoring utilities. Although in such cases the
usual “rsh” UNIX command could be used, the above solution was preferred since it offers the
possibility to restrict the set of commands that are allowed, through appropriate configuration of the
module, thus leading to a more flexible and secure system.

To conclude, the modified BigBrother provides information to ExperNet intelligent agents
through HNMS+, not only about the status of the most important TCP/IP network services, but also
about the operational parameters of the individual monitored hosts. It also offers a relatively secure
remote command invocation that allows the system to better monitor or even control the network.

6. Current Status and Future Work
Currently the major part of the project has been successfully completed. This part comprises the

design of the overall system, as well as the implementation of the various components that have been
described in the present paper. A large part of the knowledge base has been encoded in the language
of DEVICE. We are now approaching the final phase of the implementation which consists of the
development of a graphical user interface, the installation of the final system in Ukraine and the
verification phase.

One simple but yet very important way in which ExperNet can be extended is the enrichment of

the knowledge base so that it will be able to handle a larger set of network failures. Currently the
system covers a rather limited number of such cases, since our main goal was to have a pilot system
that will successfully demonstrate the applicability of expert system technology to the management of
large networks.

Depending on the results of the application of ExperNet in the management of the National
Network of Ukraine, the system could be adopted to provide services in larger data networks in
Europe as well as other countries, and lead to an improvement of the end-user services, as well as
relieve the administrators of much of the burden they have to face in their everyday practice. Taking
into account the growth rates of the TCP/IP based networks world-wide and their constantly
increased complexity, such functionality might not only be desirable but also essential in the near
future.

7. References
[1] Barbuceanu M., Fox S.: «COOL: A Language for Describing Coordination in Multi Agent Systems».

Proc. ICMAS, 1995
[2] Bassiliades N. and Vlahavas I., "DEVICE: Compiling Production Rules into Event-Driven Rules

Using Complex Events", Information and Software Technology, Vol. 39(5), pp. 331-342, Elsevier
Science, 1997.

[3] Bassiliades N. and Vlahavas I., "Processing Production Rules in DEVICE, an Active Knowledge Base
System", Data & Knowledge Engineering, Vol. 24(2), pp. 117-155, Elsevier Science, 1997.

[4] BigBrother. A Web-based Unix Network Monitoring and Notification System. Available at URL:
http://www.iti.qc.ca/users/sean/bb/bb.html

[5] Brown, D.; Chandrasekaran, B.: Design Problem-solving: Knowledge Structures and Control
Strategies, Morgan Kaufman, 1989

[6] Case J., Fedor M., Schoffstall M., Davin J. Simple Network Management Protocol, RFC 1157, SNMP
Research, Performance Systems International, MIT Laboratory for Computer Science, 1990.

[7] Chandrasekaran, B.; Johnson, T.; Smith, J.: «Task-Structure Analysis for Knowledge Modelling».
Communications of the ACM 35 (9), 1992

[8] Clancey W.: «Heuristic Classification». Artificial Intelligence 27, 1985
[9] Cockburn, D. ; Jennings, N.: «ARCHON: A Distributed Artificial Intelligence System for Industrial

Applications» in «Foundations of DAI». O’Hare and Jennings (eds.), Wiley, 1996
[10] Cuena J., Molina M.: «KSM: An Environment for Knowledge Oriented Design of Applications Using

Structured Knowledge Architectures». In «Applications and Impacts. Information Processing 94». Vol
2 K. Brunnstein and E. Raubold (eds.). Elsevier, 1994. (see also: http://www.isys.dia.fi.upm.es/ksm).

[11] Cuena J., Ossowski S.: «Distributed Models for Decision Support». To appear in «Introduction to
Distributed Artificial Intelligence». Weiss and Sen (eds.) AAAI/MIT Press, 1998

[12] George Jude A., Schecht Leslie E. The NAS Hierarhical Network Management System / In “Integrated
Network management III”, H.-G. Hegering and Y. Yemini (Editors), Elsevier Science Publishers,
Amsterdam, 1993.

[13] Matov Alexander. The development of Internet-like networks in Ukraine // Networks and
Telecommunications, Kiev, no.2, 1997. - pp.4-11.

[14] Müller, H.-J.: Negotiation Principles» in «Foundations of DAI». O’Hare and Jennings (eds.), Wiley,
1996

[15] Puerta A.R., Tu S.W., Musen M.A.: «Modelling Task with Mechanisms». International Journal on
Intelligent Systems. Vol 8, 1993.

[16] Rose M. The Simple Book: An Introduction to Management of TCP/IP-based Internets. Prentice-Hall,
Inc., New Jersey, 1991.

[17] Wielinga B.J., Schreiber A.T., Breuker J.A.: "KADS: A Modelling Approach to Knowledge
Engineering". Knowledge Acquisition, 1992.

