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Abstract.  Energy  disaggregation  refers  to  the  separation  of  appliance-level  data  from  an
aggregate energy signal originated from a single-meter, without the use of any other device-
specific sensors. Due to the fact that deep learning caught great attention in the last decade,
numerous  techniques  using  Artificial  Neural  Networks  (ANN)  have  been  developed  to
accomplish  this  task.  Whereas  most  of  the  current  research  focuses  on  achieving  better
performance, the goal of this paper is to design a computationally light deep neural network
based  on  attention  mechanism.  A thorough  analysis  shows  how  the  proposed  model  is
implemented and compares the performance of two different attention layers in the problem of
energy disaggregation. The novel architecture achieves fast training and inference with minor
performance trade-off when compared against other computationally expensive state-of-the-art
models.

Keywords: energy disaggregation, non-intrusive load monitoring, artificial 
neural networks, attention

1 Introduction

Energy  disaggregation  provides  the  ability  to  estimate the  electrical  energy
consumption of an appliance, using only the total power consumption of a house. It
is  also  known  as  non-intrusive  load  monitoring  (NILM). With  the  use  of  a
disaggregation algorithm on the aggregate signal the power of the target device is
approximated. Further analysis can identify inefficiencies of the various appliances, in
order to reduce their energy usage. Additionally, with the use of NILM, the electrical
energy  management  may  be  improved  towards  a  direction  of  nullifying  the
unnecessary waste of energy usage, one of the crucial factors of climate change and
global warming. 

In  modern  times,  smart  meters  are  used  in  a  more  frequent  fashion  among
residential houses and buildings [1], causing NILM to be one of the most trending
energy data analytics techniques [2] in the residential and small commercial sector.
Smart  houses  integrate  home  energy  management  systems  (HEMS)  in  order  to
monitor and manage electrical appliances, reducing energy cost for consumers. In
HEMS appliance load monitoring (ALM) can be achieved with either intrusive or non-
intrusive monitoring methods [3]. The main advantage of  NILM against  intrusive-
loading monitoring (ILM) is that it requires measurements from a single mains meter
instead of multiple meters. Load monitoring is cheaper and more straightforward,
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although ILM offers higher accuracy.
This paper contributes to the research of NILM in two major points. First, with the

design  of  a  lightweight  model  using artificial  neural  networks.  As  a result,  faster
training and inference times were achieved with a minor performance decrement in
comparison  to  a  state-of-the-art  architecture.  In  the  second  place,  with  the
introduction  of  Attention  in  the  task  of  energy  disaggregation  alongside  with
promising results.

The structure of this article is as described bellow. To begin with, the related work
about NILM and energy disaggregation is presented. Secondly, the idea and purpose
of Attention is described alongside with the corresponding related work. Section 3.1
includes a short explanation of the calculations inside the attention mechanism. In
section 4, there is an in depth analysis of the novel architecture and a presentation of
its  purpose and  benefits.  Next,  the methodology  of  experiments  is  described.  In
section 6, there is a presentation of the most important results. Finally there are
conclusions and proposals for future work.

2 Related Work

The problem of  energy disaggregation states back to mid 1980s when it was firstly
introduced by Hart. Hart [4] proposed a combinatorial optimization method in order
to  extract  the optimal  states  of  the target  appliances so  that  the sum of  power
consumption would be the same as the meter reading.  This method is applicable
only  on  devices  that  have  finite  number  of  states,  thus  it  cannot  be  used  on
appliances with variable consumption. 

NILM research interest has raised a lot with the rise of internet of things.  For a
long  time  one  of  the  most popular  methods  solving  the  energy  disaggregation
problem  was  Factorial  Hidden  Markov  Models  (FHMM),  an  extension  to  Hidden
Markov Models (HMMs). In FHMM the architecture consists of multiple independent
HMMs in parallel,  where the observed output is  a combination of all  the hidden
states. Kolter and Jaakkola used additive FHMMs, where the output was the sum of
all the independent HMMs outputs [5].

The  rise  of  machine  learning  and  deep  learning  pushed  researchers  to  use
techniques from the sectors of Natural language processing (NLP), Computer Vision
and Time Series Analysis.  In 2015, Kelly and Knottenbelt [6] described three novel
architectures  using three different  kinds of  ANNs,  an  LSTM network,  a  denoising
autoencoder architecture and a network to regress start/end time and power. These
models outperformed Hart’s algorithm and FHMM on experiments executed on the
UK-DALE [7]  data set.  Mauch and Yang [8]  investigated an other method using a
recurrent network with LSTM neurons on low frequency (<1kHz) real power data.
The experiments were executed on REDD [9] dataset alongside synthetic data. This
approach showed good performance for appliances with recurring patterns allowing
low frequency power measurements.

In 2017 Zhang et al. [10] implemented an architecture called Sequence-to-Point
using CNNs layers, outperforming the results of Kelly and Knottenbelt [6]. A key point
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of difference of this model in respect to the recurrent architectures in [6] and [8] is
that  a  window of  aggregate  data  is  considered in order to  predict  the appliance
consumption on a single time step, thus the name Sequence-to-Point. On the other
hand, in [6] and [8] a single time step of the aggregate signal is used to predict the
device  power  consumption at  a the same time step. Krystalakos  et  al. [11]  used
Gated Recurrent  Units  (GRUs)  instead of  LSTMs alongside with  dropout  layers  in
order to improve the efficiency of previous RNN architectures. Furthermore, a sliding
window approach was used in  similar manner as proposed in [10], where the model
receives  a window of  past data  and predicts  the power consumption at  a  single
point. 

Due to the lack of a benchmark method, the comparison of various methods and
models  most  of  the  time  is  questionable.  In  an  effort  to  efficiently  tackle  this
challenge,  Symeonidis et  al.  [12]  proposed a set  of  experiments  as  a  benchmark
basis.  In  addition,  the  Stacking  method  of  five  popular  architectures  is  explored
resulting in promising results on 2-state devices. In a nutshell, regarding the matters
of reproducibility  and comparability  of  NILM frameworks, it is  suggested to be a
standardization of the assessment procedures [13,14].

Although there has been great progress in the energy disaggregation field using
Deep Learning and ANNs, the deployment of NILM systems is still questionable. Due
to the large number of parameters, these models have slow training and inference
times.  Additionally,  NILM  research  mostly  focuses  on  designing  one  model  per
device, resulting that a complete NILM system should intergrate as many models as
the  number  of  devices  the  target  environment  contains.  Thus,  these  type  of
architectures  are  not  directly  applicable  in  real  time  situations,  where  energy
measurements  are  obtained  with  high  sampling  frequencies  providing  huge
quantities of data. The creation of lightweight architectures is a first and important
step in order to achieve successful deployment of NILM on embedded systems. The
next step is to consider multi-label machine learning models, where one model is
trained in order to identify more than one appliances.  Basu et al. [15,16] were the
first to introduce the multi-label classification in NILM tasks, with the use of known
machine learning algorithms such as decision trees and boosting. The most recent
work  considering  multi  label  classification  in  energy  disaggregation  published  by
Nalmpantis and Vrakas [17], where a novel framework called multi-NILM is proposed.
In multi-NILM approach, a dimensionality reduction technique called Signal2vec [18]
is combined with a lightweight disaggregation model, achieving better results versus
a state of the art multi-label classification approach.

3 Attention Mechanism

One  of  the  most  common  tasks  in  machine  learning  is  to  extract  input-output
relations such as in machine translation and image captioning,  where source and
target  sequences  have  different  lengths  in  general.  In  Deep  Learning,  the  most
popular  way  of  dealing  with  this  format  of  tasks  is  with  sequence  to  sequence
models (seq2seq). The original seq2seq architecture (Sutskever et al. [19]) consists of
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two essential RNNs; the encoder and the decoder. The encoder’s role is to compress
the sequential input into a context vector of fixed length, which contains a summary
of the source sequence.  On the other side, given the context vector, the decoder’s
purpose is to construct the target sequence. The calculation of the context vector is
derived after processing each time step of the input and keeping the last hidden state
of the encoder. In practice seq2seq models fail to process very long sequences. One
possible reason can be attributed to the fixed length of the context vector. 

The purpose of attention, as introduced by Bahdanau [20], is to assist the decoder
to focus on the most important parts of the input.  It provides information between
the entire input sequence and the decoder output at each time step. The idea is that
at every time step of the decoder an alignment vector is computed containing the
score between the input’s sequence and the decoder’s output at the corresponding
moment. As a result, the context vector is a combination of the alignment vector and
the encoder’s output.  The model successfully focuses on the relevant parts of the
input sequence.

There are different types of attention, depending on how scores and alignments
are  computed.  The  most  common  ones are  the  Additive  [20]  and  the
Multiplicative/Dot  [21].  In  addition,  Cheng  [22]  proposed  a  different  attention
mechanism called Self-Attention which is also referred as intra-attention. The benefit
is that different positions of the same inputs are related. Self-Attention can adopt
both Bahdanau’s and Luong’s scoring functions. The neural network that is proposed
in this research incorporates Additive and Dot attention mechanisms.

3.1 Dot and Additive Attention

In general an Attention layer receives three kind of vectors; query,  key and value.
Depending on the query, attention computes an output based on the key and value.
The  steps  to  calculate  the  output  are  described  below  and  depicted  in  Fig.  1.

Fig. 1: Inside Attention mechanism.

Firstly, a score function is used to measure the similarity between a query (q) and a
key (ki) and for each query-key pair, scores (αi) are computed.

ai = score(q, ki) (1)
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Secondly,  these scores  are  normalized to add to one,  using a softmax.  Thus,  the
attention weights are obtained as follows.

         
b i=

exp (ai )

∑
j

❑

exp (a j )
        (2)

          
The last step is to combine the values (v) and the attention weights (b) as a weighted
sum.            

         output=∑
i=1

n

bi v i    (3)

 
The main difference between Additive and Dot attention mechanisms is the scoring
function. As the name suggests,  in  the Dot mechanism scores  between keys  and
queries  are computed by calculating the dot product. On the other hand, Additive
attention computes scores as a non-linear sum.

For the purpose of using an attention layer between the CNN and GRU layers the
idea  of  Self-Attention  was  used.  In  Self-Attention  the  aim  is  to  learn  the
dependencies between all the parts of the same input sequence. In this set up as
query, key and value inputs the Attention layer receives the output of the CNN layer.

4 Neural Network Architecture

The goal of  this  paper is to design a computationally light  neural network.  Being
inspired by Window GRU (WGRU), a lightweight architecture has been developed.
The novel model  is called Self-Attentive-Energy-Disaggregation (SAED) and is up to
7.5 times faster in training and up to 6.5 times faster in inference, while there is
trivial trade-off in performance.

WGRU consists of a CNN layer, two Bidirectional GRU layers and one Dense layer
before the output layer. Also drop out was used to prevent overfitting.  In order to
design a less demanding model the most natural step is to try to reduce the number
of parameters. However,  we noticed that reducing the parameters was leading to
dramatic performance decrease. Thus, the key concept was to find an alternative
layer and GRU was replaced by the Attention Layer. 

SAED  combines  the  benefits  of  three  different  types  of  layers.  Firstly  a  1D
convolution layer extracts new features. 1D convolution layers can recognize local
patterns  in  a  sequence  at  certain  positions  of  a  sequence,  which  can  later  be
recognized at different positions. As a consequence, 1D convnets are time invariant.
Next,  the  attention  mechanism learns  to  focus  on  the  most  important  features.
Following a recurrent neural  network is capable of extracting sequential patterns.
Lastly, the dense layer acts as a regressor, giving the final result. The architecture is
shown in Fig. 1.

It  is  important  to  point  out  that  in  the  proposed  model  the  Attention  layer
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functions as a Self-Attention mechanism receiving as input only the output of the
CNN layer. 

Recently, Tensorflow officially released two Attention layers, Attention  layer which
corresponds to Dot Attention and AdditiveAttention layer.  In this paper the model
comes with either Additive or Dot attention mechanism, mentioned as SAED-add and
SAED-dot correspondingly.

As optimization algorithm Adam was used [23], while the loss was measured using
mean squared error. The model was developed using Keras and Tensorflow 2.2.0 and
all the experiments executed on a Nvidia GPU GTX-1060 6Gb. NILMTK framework
[24] was used for loading and prepossessing the data. 

Fig. 2
Architecture of the Attention model.

5 Methodology of Experiments

For the experiments only real data was used with sampling period of 6 seconds and
batch size of 1024. According to previous research [11], the optimal size of the input
vector  is  device-dependent.  The  devices  that  were  chosen  alongside  the  sliding
window sizes are presented in Table 1. Αll  the models were trained for 5 epochs
following the benchmark methodology described in [12], where the experiments are
divided  in  four  categories;  Single  Building  NILM,  Single  Building  learning  and
generalization on same dataset, Multi building learning and generalization on same
dataset  and  Generalization  to  different  dataset.  The  Experiments  were  executed
following that order.

Table 1. Sliding window sizes (in samples) used for each device.

The first category is about experiments where training and testing are applied on the
same house at different time periods, in order to evaluate the model in the same
environment  where  training  took  place.  If  a  model  doesn’t  perform well  in  this
category  of  experiments  it  is  probably  weak  [12].  The  second  category  of
experiments refers to training and inference on different buildings of the same data
set. The purpose of these experiments is to inspect the generalization potential of
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the model on unseen buildings. Different buildings mean that different appliances
are used, the residents have different habits, resulting in divergent energy patterns.
Within the same data set though, similarities of the energy footprint of each building
are  also  expected.  These  similarities  are  mainly  attributed  to  properties  of  the
electricity  grid,  common  seasonality  or  weather  conditions and regionality.  Thus,
more experiments are required to evaluate the generalization ability of the model in
depth.

In the third category, training data is collected from different houses of the same
data set and inference is executed on an unseen building, while in the last category
of  experiments training data is  also collected from different houses although the
model is tested on houses of a different data set.

The fact that in these experiments the training data is composed from different
houses,  evaluates the sufficiency of the model  in  learning from multiple/different
sources.  In  addition,  the  challenge  for  the  model  is  higher  in  the  last  category,
because it has to successfully learn from high variety data  and infer on unseen data
from a different data set. These two categories (especially the last) are considered as
tough tasks for the models and if a model excels in them then it is considered very
strong [12].

In this paper all the models were trained and tested using the UK-DALE [7] data for
the first three categories, while as test data for the fourth category of experiments
we used the REDD [9] data set. These data sets are considered dissimilar, because
they  are  originated  from different  countries;  UK-DALE contains  measurements  of
house-hold devices in UK and REDD measurements of house-hold devices in USA.

All the experiments are summed up in Table 1. For Kettle the fourth category of
experiments was not executed due to the lack of kettle device in the REDD data.

Table 2. Buildings used for train and inference.

For categories 1 and 2 the training on house 1 from UK-DALE is during the first 9 
months of 2013 while the inference contains the last 3 months of the same year. For 
categories 3 and 4 the ratio of test versus training data depends on each device. In 
addition, for some devices the REDD data contains very few measurements which 
resulted in bad results even for the State of the art model.
    In order to evaluate and compare the models with Attention versus the state of the
art WGRU model, three metrics are used; F1 score, Relative Error in Total Energy 
(RETE) and Mean Absolute Error (MAE). The purpose of the F1 score is to evaluate 
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the ability of model to detect on/off energy states. MAE (measured in Watts) and 
RETE (dimensionless) are used in order to measure how capable is the model in 
predicting the actual electrical power consumed by the device.  
    Considering as E’ the predicted total energy, E the true value of total energy, T the 
length of the predicted sequence, yt’ the inferred power consumption and yt the true
value of power consumption at time point t, the metrics are calculated as:

 

          F 1=2
Precision× Recall
Precision+Recall

          (4)

          RETE=
|E ' − E|

max ( E' , E )
                              (5)

          MAE=
1
T
∑
❑

❑

|y t ' − y t|                   (6)

  
Given the number of true on state predictions (TP), false on state predictions (FP) 
and false off state predictions (FN),  Precision and Recall are computed as such:

  

                         Precision=
TP

TP+FN
                  (7)

            

          Recall=
TP

TP+FP
                                                            (8)

                 

6 Results and Comparisons 

Due to the size of the results, the most important of them are presented in Tables 3 –
21, where the best are highlighted. Also, the average duration of a training epoch, 
measured in seconds GPU, is mentioned. The complete set of results alongside with 
the supplementary code are provided in the following github repository: 
https://github.com/Virtsionis/SelfAttentiveEnergyDisaggregator. 

 Table 3. Dish Washer, Category 1                 Table 4. Dish Washer, Category 2

        
      Table 5. Dish Washer, Category 3                   Table 6. Dish Washer, Category 4
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As shown in Table 3, in Category 1 experiments of Dish Washer the SAED models 
perform on par with WGRU in up to 7.1 times faster training time per epoch. In 
Category 2, SAED-dot is the clear winner with similar metric values as the SAED-add 
model, but with almost half the training time per epoch. In Category 3 of the same 
device, Table 5, the SAED models show better performance. Specifically the SAED-
add performs better in respects to F1 and RETE, whereas in terms of MAE all the 
models perform the same. As presented in Table 6, in Category 4 the SAED-dot 
achieves better F1 score and MAE, while SAED-add has lower METE. It occurs that 
SAED shows promising results on Dish Washer in comparison to the WGRU, with 
faster training and better performance in Categories 2-4. 
    In similar manner, Tables 7-10 present the results on the Washing Machine for 
Categories 1-4 accordingly. In Category 1, SAED-dot is 7.5 times faster than WGRU 
trading of maximum 10% performance regarding the metrics F1 and MAE. As 
presented in Table 8, in Category 2 SAED-dot performs on par with WGRU but with 
7.5 times faster training time per epoch. Results for Category 3 are shown in Table 9, 
where the SAED models have 7% greater F1 score than the WGRU and similar MAE. 
In terms of RETE in this category of experiments, the WGRU is a clear winner. Results 
of the fourth category of experiments can be found in Table 10. In this category, the 
SAED models are trained 7.2 times faster and with lower RETE and METE values than 
the WGRU.

It is notable that disaggregating Dish Washer and Washing Machine, the SAED 
models have comparable or better performance with the WGRU while training time 
per epoch was up to 7.5 times faster.

 Table 7. Washing M., Category 1       Table 8. Washing M., Category 2 

   

     Table 9. Washing M., Category 3      Table 10. Washing M., Category 4

   

Results for the Fridge are summed in Tables 11-14. As presented in Table 11, in 
Category 1 WGRU achieves greater F1 score while SAED-add shows promising results 
with the smallest RETE and MAE of the three models, reaching up to 4 times faster 
training times. In Category 2, WGRU is a clear winner, whereas in Categories 3 and 4 



10

the SAED models perform the same as the WGRU showing good generalization 
capabilities.

 Table 11. Fridge,  Category 1        Table 12. Fridge, Category 2 

  

       Table 13. Fridge,  Category 3        Table 14. Fridge, Category 4 

  

In Categories 1 and 2 of the Kettle, shown in Tables 15-16, the three models have 
comparable RETE and MAE values, but the WGRU achieves the best F1 score in 7.7 
slower training time. In the third category of experiments presented in Table 17, the 
WGRU is the winner in terms of F1 and RETE, whereas in MAE all the models perform
the same. 
    The above results reveal that the SAED models show difficulties in disaggregating 
two-state devices in comparison to the WGRU. Especially, in Categories 1-2 of the 
Fridge and the Kettle the SAED has low values on F1 score, but it achieves good 
results in Categories 3-4 of the Fridge. The low values of F1 score indicates the 
difficulty of the models to identify the On/Off states of the test devices. 

   Table 15. Kettle,  Category 1         Table 16. Kettle, Category 2

     
    

       Table 17. Kettle, Category 3

The results of the experiments on the Microwave are displayed in Tables 18-21. As 
presented in Tables 18-19, in Categories 1-2 the WGRU performs better than the 
SAED models in terms of F1. In the same categories, the SAED performs on par with 
the WGRU regarding the RETE and MAE metrics. In the third category of experiments
SAED models outperform the WGRU, where in Category 4 WGRU achieves 17% 
better F1 score in 10 times slower training time. Considering that the Microwave is a 
multi-state device with variable power consumption and on-state duration, the SAED 
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models show descent performance comparing with the WGRU. 
    

  Table 18. Microwave,  Category 1         Table 19. Microwave, Category 2

      

Table 20. Microwave,  Category 3         Table 21. Microwave, Category 4

    

Overall, the SAED models achieve good performance in disaggregating multi-state 
devices instead of successfully detecting two state devices. Furthermore, the SAED 
performs good in experiments of Categories 3-4, a fact that reveals the great 
generalization capability of the proposed models.
    An important and frequently neglected parameter when comparing models is the   
inference time. It is obvious that the size of test data affects the duration of 
inference. In order to compare the models, the inference time for several sizes of test
data was measured. The inference time of each model, when disaggregating, is 
presented in Fig. 3, where 1 day of data is equal to 14351 samples.
   

Fig. 3 Inference time versus inference time period for Kettle.

Given 1 day of test data, inference time of WGRU was 5.77 seconds, while SAED-add 
and SAED-dot achieve 1.56 seconds and 2.27 seconds respectively. As a 
consequence, SAED-add model is 3.7 times faster than the WGRU and almost 1.5 
times faster than the SAED-dot. For 1 week of test data, SAED models are more than 
5.2 times faster than the WGRU completing inference in almost 6.8 seconds instead 
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of 35.6 seconds. Given 1 month of test data, the SAED-dot is 5.7 faster than WGRU 
with similar test time as the SAED-add. Finally, with test data size of 3 months, the 
SAED-dot is almost 6.5 times faster than the State of the art and 1.2 times faster than
the SAED-add. In this case WGRU inference time was 468.87 seconds versus 72.56 
seconds of SAED-dot and 87.89 seconds of SAED-add.

7 Conclusions and Proposals for Future Work

In general, the proposed lightweight SAED models showed good performance and in
some cases  better  results  in  comparison to  the  State  of  the art  model  (WGRU).
Interestingly, the SAED seems to perform better on multi-state devices than on two-
state  devices.  In  order  to  extract  more  insight  on  this  matter,  experiments  on
different devices should be executed. Furthermore, achieving good performance on
the Categories 3 and 4 of experiments, points out the generalization power of the
novel architecture. In terms of speed, the SAED models was up to 7.5 and 6.5 faster
than the WGRU in training and inference accordingly, resulting that the SAED is more
eligible for deployment on embedded systems.  

Between the SAED-dot and  SAED-add, there is not a clear winner, although the
SAED-dot has faster training. Additionally, training and testing on different devices
and  data  sets  should  be  executed  in  order  to  evaluate  and  compare  these
mechanisms in detail. 

It  should  be  mentioned  that  the  architecture  of  the  SAED models  could  be
optimized.  SAED was  designed  after  preliminary  experiments  and tests  mainly  in
order to decide the optimal position of the attention layer. It is suggested that more
experiments should be executed considering the number of neurons in CNN, GRU
and Dense layers.

To summarize, the use of Attention mechanism granted great generalization ability
to a simple and light model, making it possible to achieve good performance in short
amount of training and inference times. Therefore, Attention may be used in other
architectures in order to improve them in the task of NILM.
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