
Software Defect Prediction Using Regression via Classification

Bibi S., Tsoumakas G., Stamelos I., Vlahavas I
Department of Informatics, Aristotle University of Thessaloniki,54124 Thessaloniki, Greece

{sbibi,greg,stamelos,vlahavas}@csd.auth.gr

Abstract

In this paper we apply a machine learning approach
to the problem of estimating the number of defects called
Regression via Classification (RvC). RvC initially
automatically discretizes the number of defects into a
number of fault classes, then learns a model that predicts
the fault class of a software system. Finally, RvC
transforms the class output of the model back into a
numeric prediction. This approach includes uncertainty
in the models because apart from a certain number of
faults, it also outputs an associated interval of values,
within which this estimate lies, with a certain confidence.
To evaluate this approach we perform a comparative
experimental study of the effectiveness of several machine
learning algorithms in a software dataset. The data was
collected by Pekka Forselious and involves applications
maintained by a bank of Finland.

1. Introduction

Although there is diversity in the definition of
software quality, it is widely accepted that a project with
many defects lacks quality. Knowing the causes of
possible defects as well as identifying general software
process areas that may need attention from the
initialization of a project could save money, time and
work. The possibility of early estimating the potential
faultiness of software could help on planning, controlling
and executing software development activities.

A low cost method for defect analysis is learning from
past mistakes to prevent future ones. Today, there exist
several data sets that could be mined in order to discover
useful knowledge regarding defects [7], [14]. Using this
knowledge one should ideally be able to: a) Identify
potential fault-prone software, b) Estimate the specific
number of faults, and c) Discover the possible causes of
faults.

Several data mining methods have been proposed for
defect analysis in the past [5], [9], [15], [28] but few of
them manage to deal successfully with all of the above
issues. Regression models estimates are difficult to
interpret and also provide the exact number of faults
which is too risky, especially in the beginning of a project
when too little information is available. On the other hand
classification models that predict possible faultiness can

be comprehensible, but not very useful, because they give
no clue about the actual number of faults.

These issues led us to the proposal of a different data
mining approach, called Regression via Classification
(RvC) [22], that benefits from the advantages and caters
for the disadvantages of both regression and classification
approaches. RvC involves the discretization of the target
variable into a finite number of intervals, the induction of
a classification model for predicting such intervals and
the transformation of the model's predictions back into
specific numerical estimates.

To our knowledge, RvC has not been applied for
software fault prediction in the past, despite the many
benefits that it offers. It is a method that considers
uncertainty, produces comprehensible results and is a
reasonable alternative to regression problems that need a
logical explanation. Additionally the method performs all
of the three tasks of defect prediction, estimates a
particular number, estimates a fault class and suggests
potential causes of faults.

 In order to evaluate RvC in terms of its
prediction accuracy, we make a comparative evaluation of
several classification algorithms for the implementation
of the RvC framework with classical regression
algorithms used in past approaches and other state-of-the-
art regression algorithms from the field of Machine
Learning such as support vector machines and model
trees. For the evaluation of all these approaches a data set
was used that involves maintenance data from bank
applications [14]. It contains data about the size and
defects of each application. The results coming from the
application of RvC methods show that both regression
and classification accuracy of the models is competitive
to those of regression models and in most cases RvC
outperforms them.

The rest of this paper is organized as follows. The next
section presents an overview of the related work. In
Section 3, we present the RvC framework along with
details concerning the implementation of this method for
the problem of software defect prediction. The
description of the dataset and the learning algorithms
applied to the data sets are found in section 4. Section 5
presents the evaluation results along with the extracted
software fault prediction models. Finally, in Section 6, we
conclude the paper and present ideas for future work.

2. Related work

The earliest studies in fault prediction focused on

establishing relationships between software complexity,
usually measured in lines of code, and defects. Widely
known metrics introduced during 70s is Halstead’s theory
[6] and McCabe’s cyclomatic complexity [13]. The usual
drawback of complexity metrics is that they indicate
software size as the only predictor of faults. Therefore in
80s and afterwards research has tried to relate software
complexity to sets of different metrics, deriving
multivariate regression models [12], [9], [15]. Regression
models on the other hand presented the disadvantage of
providing results difficult to interpret that ignored causal
effects. In the 90s classification models were adopted to
solve this problem. Clustering [28], logistic regression
[4], [8] and Bayesian nets [5] are applied for the
estimation of fault-proneness. Most of the above studies
estimate potential fault proneness of software components
without providing particular fault numbers.

In the same decade due to the large number of research
in this field several studies compared different methods
such as regression techniques and classification
techniques but each time the most accurate method varied
according to the context of the study. Principal
component analysis, discriminant analysis, logistic
regression, logical classification models, layered neural
networks, and holographic networks are applied in [12],
while MARS regression method and classification
methods such as rules, CART and Bayesian networks are
compared in [15]. Fenton and O’Neil [5] provided a
critical review of literature and suggested a theoretical
framework based on Bayesian networks that could solve
the problems identified. They argued that complexity
metrics should not be the only predictor of defects, they
pointed out that statistical methodologies should pay
attention on the data quality and the evaluation method
and finally they stressed that it is important to identify the
relationship between faults and failures.

As mentioned in [5] clearly all of the problems
described cannot be solved easily, however modeling the
complexities of software development using new
probabilistic techniques presents a positive way forward.
In this study we propose the use of Regression via
Classification for modeling uncertainty in software defect
prediction. Using this method we will attempt to solve
several of the problems mentioned in literature such as,
interpretability of the results, use of size as the only
predictor, combination of results with expert opinion.

3. Regression via Classification

Supervised Machine Learning considers the problem
of approximating a function that gives the value of a
dependent or target variable y, based on the values of a

number of independent or input variables x1, x2, …, xn.
If y takes real values, then the learning task is called
regression, while if y takes discrete values then it is called
classification. Traditionally, Machine Learning research
has focused on the classification task. It would therefore
be very interesting to be able to solve regression problems
taking advantage of the many machine learning
algorithms and methodologies that exist for classification.
This requires a mapping of regression problems into
classification problems and back, which has been recently
studied by some researchers [22], [24].

The whole process of Regression via Classification
(RvC) comprises two important stages: a) The
discretization of the numeric target variable in order to
learn a classification model, b) the reverse process of
transforming the class output of the model into a numeric
prediction.

Three methods for discretization are equal-interval
binning, equal-frequency binning and K-means
clustering. The first one divides the range of values of a
numerical attribute into a predetermined number of equal
intervals. The second one divides the range of values into
a predetermined number of intervals that contain equal
number of instances. The k-means clustering algorithm
starts by randomly selecting k values as centers of the
ranges. It then assigns all values to the closest of these
centers and calculates the new centers as the mean of the
values of these ranges. This process is repeated until the
same values are assigned to each of the k ranges in two
consecutive iterations.

Once the discretization process has been completed,
any classification algorithm can be used for modeling the
data. The next step is to make numeric predictions from
the classification model that is produced. This model
predicts a number of classes which correspond to
numerical intervals of the original target variable. There
remains the problem of transforming this class to a
specific number, in order to assess the regression error of
the RvC framework. A choice for this number should be a
statistic of centrality that summarizes the values of the
training instances within each interval.

3.1 Our RvC implementation on the problem of
software defect prediction.

In this study in order to determine the actual parameters
of the discretization process of the RvC framework, we
decided to use a wrapper approach [11].

The wrapper approach evaluates the different
configurations of an approach by performing cross-
validation and selects the configuration with the best
accuracy. Similar to that approach, we run the
discretization process using all three methods and
experiment with the number of classes in the range 2 to
1+3.3log(n). The upper bound of the number of classes

was proposed in [21] however, this is just a statistical
proposal for the number of classes, that does not take
into account any knowledge about the domain and tends
to propose a rather large number of classes. For this
reason we used it as an upper bound in the wrapper
approach.

In total our implementation evaluates 3*(1+3.3log(n)-
2)=9.9log(n) different configurations of the discretization
process using 10-fold cross-validation [10]. The 10-fold
cross-validation process splits the data into 10-equal
disjoint parts and uses 9 of these parts for training the
RvC framework and 1 for testing. This is done 10 times,
each time using a different part of data for testing. The
training data are used initially to discretize the faults
(using one of the configurations) and then to train a
classification algorithm. The learned model is then
applied to the test data. For the transformation of the
output of the classification model back to a numeric
estimate we use the median of the values in each interval,
as it is usually a more robust centrality measure than the
mean. So, for each test instance we calculate the absolute
difference of the number of faults in this instance with the
median value of the predicted class interval. The average
of these differences for all test instances is the Mean
Absolute Error performance metric for numeric
prediction. The configuration with the lowest average
Mean Absolute Error over all the 10 folds of the cross-
validation is selected as the configuration to use.

4. Data sets and learning algorithms

We firstly describe here the data set that was used in
the experiments. We then present the learning algorithms
that were used for RvC and ordinary regression on this
data set.

4.1 Pekka data set

The data set used in this study is the Pekka data set
that comes from a big commercial bank in Finland, which
began to collect development and maintenance data as
early as 1985 until 1995. The data were collected by
Pekka Forselious and are presented in [14]. From the 250
projects of the database, a subset of 67 applications was
presented in [14] and used in the evaluation. The
variables of the data set used in our analysis are presented
in table 1. Target of the study is, based on existing
knowledge of historical data, to provide a prediction
model for the number of faults that will appear during the
maintenance of software applications.

Table 1: Variables of Pekka data set.

Borg:Business organization type Classification

variables Morg: Internal business unit

Apptype: Application Type
Dbms: Database system

Tpms: Transaction Processing
management system
r1: Number of users
r2: Configuration
r3: Change management
r4: Structural flexibility
r5: Documentation quality
r6: People dependence
r7: Shutdown constraints
r8: Online transaction processing
integration
r9: Batch processing integration

Risk Factors
Values of risk
factors range
from 1 to 5.
1= least risky
situation
5= most risky
situation

r10: Capacity flexibility
F.P (function points)
Pcobol (% of code in cobol)
Ptelon (% of code in telon)
Peasy ((% of code in easy)
T (recovery capability)

Quantitative
variables

Ageend (total months maintained)
 Disksp (disk space used)
 Avetrans (average transactions/ 24 h)
 Cpu (cpu usage)
 Pjcl (% of code in jcl)
 Appdef (number of defects) target

variable

4.2 Learning algorithms

We used the WEKA machine learning library [26] as
the source of algorithms for experimentation. For the RvC
framework we used the following classification
algorithms as implemented in WEKA with default
parameters unless otherwise stated:

• IBk: the k nearest neighbor algorithm [1].
• JRip: the RIPPER rule learning algorithm [3].
• PART: the PART rule learning algorithm [25].
• J48: the C4.5 decision tree learning algorithm [18].
• SMO: the sequential minimal optimization algorithm

for training a support vector classifier using RBF
kernels [16].

We will further analyze PART, RIPPER and C4.5
algorithms as the results of these algorithms are presented
in section 4.

C4.5 outputs a decision tree, while the other two
(PART and RIPPER) output a set of classification rules.
Each rule has a body, which consists of one or more
conditions under which the rule will fire, and a head
which consists of the predicted class of faults. We also
present two quantitative measures of the rule's quality: a)
support, which is the is the ratio between the number of
records that satisfy the rule body and the total number of
records in the database, and b) confidence, which is the
ratio between the number of database records that satisfy

both the rule body and head and the number of records
that satisfy just the rule body.

We must note here that RIPPER and PART belong to
the separate-and-conquer family of rule learning
algorithms. These algorithms learn one rule, remove the
examples that this rule covers and proceed with the next
rule. Any remaining uncovered examples, are handled by
a default rule that fires without any conditions and
predicts the most frequent class among the remaining
examples. Therefore the support and confidence of each
rule is reported based on the subset of the examples that
remained for that rule. This also implies that the rules are
presented in the order that they are discovered, and during
execution they are considered in this order.

For ordinary regression we used the following
algorithms as implemented in WEKA with default
parameters unless otherwise stated:
Linear: A least median squared linear regression
algorithm [19].
• MLP: an algorithm for training a multi-layer

perceptron [2].
• Reg-IBk: the k nearest neighbor algorithm [1], using

cross-validation to select the best k value.
• SMOreg: the sequential minimal optimization

algorithm of [20] for support vector regression using
RBF kernels.

• M5P: an algorithm for generating M5 model trees
[17], [26]. This algorithm is used twice, one for the
production of a model tree and one for the production
of a regression tree.

• REPTree: a fast regression tree learner that uses
information variance reduction and reduced-error
pruning [26].

5. Results and discussion

In this section we first present the evaluation results
and then the classification models that were extracted
from the data set will be presented and discussed. The
performance of the approaches was measured by their
average Mean Absolute Error (MAE) for the 10 folds of
the cross-validation process. The MAE function is given

by: ∑
=

−=
n

i

EiPi
n

MAE
1

||
1

Where n is the number of instances in the test set, P is
the actual fault number and E is the predicted one.

In addition, for RvC we calculated the average
classification accuracy of the algorithms which provides
the percentage of projects for which the correct fault class
has been successfully estimated, the average number of
fault classes and the percentage of times that each of the 3
discretization methods was used.

Table 2: Mean absolute error of RvC and regression
approaches

 Pekka data set

SMO 6,69
RIPPER 7,15
PART 7,70
C4.5 8,53

R
v
C

IBk 7,88
SMOreg 7,07
Linear 7,96

REPTree 7,72
M5P regression tree 7,71
M5P model tree 7,28
IBk 8,27

R
e
g
re
s
s
io
n

MLP 7,22

Table 2 shows the average Mean Absolute Error of all

the approaches on the Pekka dataset. We firstly notice
that RvC actually manages to get better regression error
than the standard regression approaches. Indeed within
the top three performers we find two RvC approaches
(SMO, RIPPER) and only one regression approach
(SMOreg). The best average performance is obtained
with RvC and the SMO algorithm, while the SMOreg
algorithm for regression is the second best. Relatively
good performance is also obtained by the symbolic
algorithms (RIPPER, C4.5 and PART) that produce
comprehensible models. Another thing that must be noted
is the fact that RvC achieves improved performance
overall than regression approaches, even though it uses a
rough estimation of the actual numbers.

Table 3 shows the accuracy of the RvC classification
algorithms, the mean number of classes in the 10 folds of
the cross-validation and the percentage of times that each
of the three methods (M1:equal-width, M2: equal-
frequency, M3:k-means) was used for discretizing the
number of defects. We first notice that the most accurate
algorithms are SMO and PART and this has certainly
contributed to the corresponding low regression error of
RvC. However, RvC with RIPPER managed to achieve
low regression error even though the classification
accuracy of RIPPER was relatively low. This shows that
apart from the classification accuracy, the actual
discretization of defects into intervals is also important
for the regression error.

Initially, the RvC and regression algorithms have been
applied to the whole data set (67 projects). The results
when considering the whole data set pointed out the
project with ID 55, which presented 163 defects, as an
outlier. Almost all classification methods created a fault
class with that project as a single member while the rest
of the projects were classified into another class. In order
to create meaningful models whose results could be
exploited the models were recreated omitting the project
with ID =55.

Table 3: Accuracy, mean number of classes and
percentage of each discretization method

 PEKKA

 Acc Av. C M1 M2 M3

SMO 0,94 2,00 1,00 0,00 0,00

PART 0,72 4,40 0,60 0,10 0,30

IBk 0,69 2,40 0,40 0,50 0,10

C4.5 0,67 3,90 0,60 0,10 0,30

RIPPER 0,46 5,40 0,40 0,60 0,00

Table 4 presents the rule sets that were produced by

RvC with the RIPPER and PART algorithms
accompanied with a point estimate in brackets and
confidence and support values. In the results of the
RIPPER approach function points and CPU usage are the
sole predictors of defects. In the results of PART list of
rules the type of the organization and the unit in which
the application is destined play important role in the
estimation. The decision tree of Figure 1 has two splitting
nodes. The number of function points is the splitting
criterion for both nodes. For each suggested class the
median number of the class is indicated as the most
probable fault number of the class as a point estimate
(PE) along with support and confidence values.

Table 4: Rule list produced by RvC with PART and

JRIP on the Pekka data set.

JRIP list of rules
Body Head (C) (S)
F.P ≤ 986 9.5< D ≤59 (20) 87.5 12.12
cpu ≥ 292 2.5< D ≤9.5 (5) 60.0 15.15
F.P ≥ 671 2.5< D ≤9.5 (5) 80.0 7.58
 0≤ D ≤0.5 (0) 39.5 65.15
PART list of rules
Body Head (C) (S)
F.P ≤ 939 and
morg =
ACCOUNT

0≤ D ≤8.43 (1) 92.31 19.7

F.P ≤ 939 and
 borg = RETAIL

0≤ D ≤8.43 (1) 85.71 21.2

morg= PAYMENT
and r1=5

0≤ D ≤8.43 (1) 85.71 10.6

cpu ≤ 506
and r6=2

0≤ D ≤8.43 (1) 85.86 21.4

r5=1 0≤ D ≤8.43 (1) 63.26 5.48
morg= deposit 50.57< D ≤59 (53) 100.0 3.03
Ageend ≤ 40 8.4<D ≤16.86 (11) 66.67 4.55

16.86< D ≤25.29
(20)

74.55 3.39

A project variable that appears often in the results of

the three classification methods is Function Points. This is
reasonable, as function points is a metric indicative of the

size of a software application, and as the size of a
software project grows so does its complexity. Software
complexity is widely accepted as the primary- cause of
defects. An interesting rule is the one indicated by PART
decision list that application that are destined for deposit
units tend to appear a large number of faults. Probably
this can be explained by the fact that the requirements for
applications for these units are relatively demanding and
strict as a single fault could cause loss of money. Even
small defects that otherwise would be ignored in such
applications are recorded and fixed. Also the applications
that have low CPU usage seem to be less fault prone.
Another rule that can be confirmed intuitively is the one
that supports that application with equal or less than 40
months of maintenance tend to present many faults. A
surprise to us was that only r1, r5 and r6 (number of
users, documentation quality and people dependence)
appeared from the risk factors.

Figure 1: Decision tree C4.5 for Pekka data set.

One could argue that the predicted fault classes of
RvC are large and therefore contain fuzzy information.
This argument can be confronted with the fact that RvC
even when two few fault classes are considered succeeds
comparable and even lower regression error from
traditional regression models when considering the
median value of a class as a point estimate. There are
though several advantages by that type of prediction:
• It can provide a better understanding of software

defects by automatically dividing their numerical
values into significant intervals.

• Apart from a numerical estimate of faults, it also
outputs an associated interval of values, within which
this estimate lies, with a certain confidence. This way
it reduces the level of uncertainty associated with just
a point estimate, and provides more knowledge
concerning the defects to the end user.

PE= 2

PE= 39 PE= 2

• It allows the production of comprehensible models of
software defects that are easily interpretable by project
managers and other non-experts in data mining
technology.

6. Conclusions and Future work

In this paper the framework of Regression via
Classification (RvC) was applied to the problem of fault
prediction. Our motivation was to exploit the advantages
of classification algorithms in order to solve the main
drawbacks of regression algorithms, such as the
incomprehensibility of the produced models and their
inability to provide a good point estimate of faults. RvC
provides a complete framework for defect prediction
producing as an output a fault class into which the actual
fault number may fall in, along with a particular most
probable fault number within this class. The
representation of the fault knowledge can be in the form
of rules and decision trees which are among the most
expressive and human readable representations for
learned hypotheses.

In general RvC as a data mining method offers a
convenient way to solve problems that are not explained
purely logically but rather probabilistically. Software
fault estimation is one of these problems: we are not sure
of the factors that affect directly the existence of faults
and we expect a support from statistical methods to point
out the underlying relationships that appear in fault data.
Some of the results of the application of RvC technique
were expected and confirmed by intuition like the
influence of a software application size on the existence
of faults. The success of the method is that it provides a
framework for discovering potential causes of faults that
are not profound like the one that implies that
applications for deposit organizations are fault-prone.
In addition, we must stress the very good results of RvC
in terms of regression error. Despite the fact that RvC
outputs the median of an entire interval as its point
estimate of faults, it manages to outperform most of the
regression approaches in predictive accuracy.

In the future we intend to apply the proposed
methodology to other software data sets [7] involving
other software quality attributes in addition to defects. We
will also experiment with methods that combine different
classification algorithms such as Stacking [27] and
Effective Voting [23] for the purpose of increasing the
predictive performance of RvC.

7. References

[1] Aha, D., Kibler, D.W., and Albert, M.K., “Instance-based
learning algorithms”, Machine Learning, Vol. 6, 1991, pp. 37-
66.
[2] Bishop, C.M., “Neural Networks for Pattern Recognition”,
Oxford University Press, 1995.
[3] Cohen, W.W., “Fast Effective Rule Induction”, In
Proceedings of the 12th International Conference on Machine
Learning, Morgan Kaufmann, 1995, pp. 115–123.
[4] Emam, K.E, Melo, W., Machado, J.C., “The Prediction of
Faulty Classes Using Object-Oriented Design Metrics”, Journal
of Systems and Software, Vol. 56, 2001, pp. 63-75.
[5] Fenton, N., Neil, M., “A Critique of Software Defect
Prediction Models”, IEEE Transactions on Software
Engineering, Vol 25(5), 1999, pp.675-689.
[6] Halstead, M.H, “Elements of Software Science”, Elsevier,
North-Holland,1975.
[7] International Software Benchmarking Standards Group,
http://www.isbsg.org.
[8] Kamiya, T., Kusumoto, S., Inoue, K., “Prediction of Fault-
proneness at Early Phase in Object-Oriented Development”, In
Proceedings of the 2nd International Symposium on Object-
Oriented Real-Time Distributed Computing, IEEE Computer
Society,1999, pp. 253-258.
[9] Khoshgoftaar, T.M., Seliya, M., “Tree-Based Software
Quality Estimation Models For Fault Prediction”, In
Proceedings of the 8th IEEE International Conference on
Software Metrics, 2002, pp. 203-215
[10] Kohavi, R., “A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection”`, In Proceedings of
the 14th International Joint Conference on Artificial
Intelligence, 1995, pp. 1137-1145
[11] Kohavi, R, “Wrappers for Performance Enhancement and
Oblivious Decision Graphs”. PhD Thesis. Department of
Computer Science, 1995, Stanford University.
[12] Lanubile, F., Lonigro, A., Visaggio, G., “Comparing
models for identifying fault-prone software components”, In
Proceedings of the 7th International Conference on Software
Engineering and Knowledge Engineering, 1995, pp.312-319.
[13] McCabe, T.J, “A Complexity Measure,” IEEE
Transactions on Software Engineering, Vol. 2 (4), 1976, pp.
308-320.
[14] Maxwell, K., “Applied Statistics for Software Managers”,
Prentice-Hall, 2002.
[15] Neumann, R., Bibi, S., “Building fault prediction models
from abstract cognitive complexity metrics- analyzing and
interpreting fault related influences”, In Proceedings of the
International Workshop on Software Measurement/Metrikon,
2004, pp. 575-587.
[16] Platt, J., “Fast Training of Support Vector Machines using
Sequential Minimal Optimization”, In Advances in Kernel
Methods - Support Vector Learning, (Eds) B. Scholkopf, C.
Burges, and A. Smola, MIT Press, 1998.
[17] Quinlan, J.R., “Learning with continuous classes”, In
Proceedings. of Australian Joint Conf. on Artificial Intelligence,
343-348, World Scientific, 1992, pp.343- 348.
[18] Quinlan, R.J., “C4.5: Programs for Machine Learning”,
Morgan Kaufman, 1993.
[19] Rousseeuw, P.J. and Leroy, A. M., “Robust Regression
and Outlier Detection”, Wiley, 1997, New York.

[20] Smola, A.J, Scholkopf , B., “A Tutorial on Support
Vector Regression”, NeuroCOLT2 Technical Report Series -
NC2-TR-1998-030, 1998.

[21] Sturge, H., “The choice of Class Interval”, Journal of
American Statistical Association, pp 65-66, 1926.

[22] Torgo, L. and Gama, J., “Regression Using
Classification Algorithms”, Journal of Intelligent Data
Analysis, Vol 1(4), pp. 275-292.

[23] Tsoumakas, G., Katakis, I. and Vlahavas, I.
“Effective Voting of Heterogeneous Classifiers”, In
Proceedings of the 15th European Conference on Machine
Learning, Italy, pp 465-476.
 [24] Weiss, S. and Indurkhya, N., “Rule-based Machine
Learning Methods for Functional Prediction”. In Journal of
Artificial Intelligence Research, Vol 3, 1995, pp. 383-403.

[25] Witten, I.H, and Frank, E., “Generating Accurate Rule
Sets Without Global Optimization”, Proceedings of the 15th
International Conference on Machine Learning, 1998, pp. 144-
151.
[26] Witten, I.H., and Frank E., J., “Data Mining: Practical
machine learning tools with Java implementations”, Morgan
Kaufmann, 1999, San Francisco.
[27] Wolpert, D., “Stacked Generalization”, Neural Networks,
No. 5, , 1992, pp. 241-259.

[28] Zhong, S., Khoshgoftaar, T.M., and Seliya, N.,
“Analyzing Software Measurement Data with Clustering
Techniques”, IEEE Intelligent Systems, Special issue on Data
and Information Cleaning and Preprocessing, Vol (2), 2004, pp.
20-27.

