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Abstract 
 

In this paper we apply a machine learning approach 
to the problem of estimating the number of defects called 
Regression via Classification (RvC). RvC initially 
automatically discretizes the number of defects into a 
number of fault classes, then learns a model that predicts 
the fault class of a software system. Finally, RvC 
transforms the class output of the model back into a 
numeric prediction. This approach includes uncertainty 
in the models because apart from a certain number of 
faults, it also outputs an associated interval of values, 
within which this estimate lies, with a certain confidence. 
To evaluate this approach we perform a comparative 
experimental study of the effectiveness of several machine 
learning algorithms in a software dataset. The data was 
collected by Pekka Forselious and involves applications 
maintained by a bank of Finland. 
 
1. Introduction 
 

Although there is diversity in the definition of 
software quality, it is widely accepted that a project with 
many defects lacks quality. Knowing the causes of 
possible defects as well as identifying general software 
process areas that may need attention from the 
initialization of a project could save money, time and 
work. The possibility of early estimating the potential 
faultiness of software could help on planning, controlling 
and executing software development activities. 

A low cost method for defect analysis is learning from 
past mistakes to prevent future ones. Today, there exist 
several data sets that could be mined in order to discover 
useful knowledge regarding defects [7], [14]. Using this 
knowledge one should ideally be able to: a) Identify 
potential fault-prone software, b) Estimate the specific 
number of faults, and c) Discover the possible causes of 
faults.  

Several data mining methods have been proposed for 
defect analysis in the past [5], [9], [15], [28] but few of 
them manage to deal successfully with all of the above 
issues. Regression models estimates are difficult to 
interpret and also provide the exact number of faults 
which is too risky, especially in the beginning of a project 
when too little information is available. On the other hand 
classification models that predict possible faultiness can 

be comprehensible, but not very useful, because they give 
no clue about the actual number of faults. 

These issues led us to the proposal of a different data 
mining approach, called Regression via Classification 
(RvC) [22], that benefits from the advantages and caters 
for the disadvantages of both regression and classification 
approaches. RvC involves the discretization of the target 
variable into a finite number of intervals, the induction of 
a classification model for predicting such intervals and 
the transformation of the model's predictions back into 
specific numerical estimates.  

To our knowledge, RvC has not been applied for 
software fault prediction in the past, despite the many 
benefits that it offers. It is a method that considers 
uncertainty, produces comprehensible results and is a 
reasonable alternative to regression problems that need a 
logical explanation. Additionally the method performs all 
of the three tasks of defect prediction, estimates a 
particular number, estimates a fault class and suggests 
potential causes of faults. 

 In order to evaluate RvC in terms of its 
prediction accuracy, we make a comparative evaluation of 
several classification algorithms for the implementation 
of the RvC framework with classical regression 
algorithms used in past approaches and other state-of-the-
art regression algorithms from the field of Machine 
Learning such as support vector machines and model 
trees. For the evaluation of all these approaches a data set 
was used that involves maintenance data from bank 
applications [14]. It contains data about the size and 
defects of each application. The results coming from the 
application of RvC methods show that both regression 
and classification accuracy of the models is competitive 
to those of regression models and in most cases RvC 
outperforms them. 

The rest of this paper is organized as follows. The next 
section presents an overview of the related work. In 
Section 3, we present the RvC framework along with 
details concerning the implementation of this method for 
the problem of software defect prediction. The 
description of the dataset and the learning algorithms 
applied to the data sets are found in section 4. Section 5 
presents the evaluation results along with the extracted 
software fault prediction models. Finally, in Section 6, we 
conclude the paper and present ideas for future work. 
 
2. Related work 



 
The earliest studies in fault prediction focused on 

establishing relationships between software complexity, 
usually measured in lines of code, and defects. Widely 
known metrics introduced during 70s is Halstead’s theory 
[6] and McCabe’s cyclomatic complexity [13]. The usual 
drawback of complexity metrics is that they indicate 
software size as the only predictor of faults. Therefore in 
80s and afterwards research has tried to relate software 
complexity to sets of different metrics, deriving 
multivariate regression models [12], [9], [15]. Regression 
models on the other hand presented the disadvantage of 
providing results difficult to interpret that ignored causal 
effects. In the 90s classification models were adopted to 
solve this problem. Clustering [28], logistic regression 
[4], [8] and Bayesian nets [5] are applied for the 
estimation of fault-proneness. Most of the above studies 
estimate potential fault proneness of software components 
without providing particular fault numbers. 

In the same decade due to the large number of research 
in this field several studies compared different methods 
such as regression techniques and classification 
techniques but each time the most accurate method varied 
according to the context of the study. Principal 
component analysis, discriminant analysis, logistic 
regression, logical classification models, layered neural 
networks, and holographic networks are applied in [12], 
while MARS regression method and classification 
methods such as rules, CART and Bayesian networks are 
compared in [15]. Fenton and O’Neil [5] provided a 
critical review of literature and suggested a theoretical 
framework based on Bayesian networks that could solve 
the problems identified. They argued that complexity 
metrics should not be the only predictor of defects, they 
pointed out that statistical methodologies should pay 
attention on the data quality and the evaluation method 
and finally they stressed that it is important to identify the 
relationship between faults and failures. 

As mentioned in [5] clearly all of the problems 
described cannot be solved easily, however modeling the 
complexities of software development using new 
probabilistic techniques presents a positive way forward. 
In this study we propose the use of Regression via 
Classification for modeling uncertainty in software defect 
prediction. Using this method we will attempt to solve 
several of the problems mentioned in literature such as, 
interpretability of the results, use of size as the only 
predictor, combination of results with expert opinion. 

 
3. Regression via Classification 
 

Supervised Machine Learning considers the problem 
of approximating a function that gives the value of a 
dependent or target variable y, based on the values of a 

number of independent or input variables x1, x2, …, xn. 
If y takes real values, then the learning task is called 
regression, while if y takes discrete values then it is called 
classification. Traditionally, Machine Learning research 
has focused on the classification task. It would therefore 
be very interesting to be able to solve regression problems 
taking advantage of the many machine learning 
algorithms and methodologies that exist for classification. 
This requires a mapping of regression problems into 
classification problems and back, which has been recently 
studied by some researchers [22], [24]. 

The whole process of Regression via Classification 
(RvC) comprises two important stages: a) The 
discretization of the numeric target variable in order to 
learn a classification model, b) the reverse process of 
transforming the class output of the model into a numeric 
prediction.  

Three methods for discretization are equal-interval 
binning, equal-frequency binning and K-means 
clustering. The first one divides the range of values of a 
numerical attribute into a predetermined number of equal 
intervals. The second one divides the range of values into 
a predetermined number of intervals that contain equal 
number of instances. The k-means clustering algorithm 
starts by randomly selecting k values as centers of the 
ranges. It then assigns all values to the closest of these 
centers and calculates the new centers as the mean of the 
values of these ranges. This process is repeated until the 
same values are assigned to each of the k ranges in two 
consecutive iterations. 

Once the discretization process has been completed, 
any classification algorithm can be used for modeling the 
data. The next step is to make numeric predictions from 
the classification model that is produced. This model 
predicts a number of classes which correspond to 
numerical intervals of the original target variable. There 
remains the problem of transforming this class to a 
specific number, in order to assess the regression error of 
the RvC framework. A choice for this number should be a 
statistic of centrality that summarizes the values of the 
training instances within each interval. 
 
3.1 Our RvC implementation on the problem of 
software defect prediction. 
 
In this study in order to determine the actual parameters 
of the discretization process of the RvC framework, we 
decided to use a wrapper approach [11].  

The wrapper approach evaluates the different 
configurations of an approach by performing cross-
validation and selects the configuration with the best 
accuracy. Similar to that approach, we run the 
discretization process using all three methods and 
experiment with the number of classes in the range 2 to 
1+3.3log(n). The upper bound of the number of classes 



was proposed in [21] however, this is just a statistical 
proposal for the number of classes,  that does not take 
into account any knowledge about the domain and tends 
to propose a rather large number of classes. For this 
reason we used it as an upper bound in the wrapper 
approach. 

In total our implementation evaluates 3*(1+3.3log(n)-
2)=9.9log(n) different configurations of the discretization 
process using 10-fold cross-validation [10]. The 10-fold 
cross-validation process splits the data into 10-equal 
disjoint parts and uses 9 of these parts for training the 
RvC framework and 1 for testing. This is done 10 times, 
each time using a different part of data for testing. The 
training data are used initially to discretize the faults 
(using one of the configurations) and then to train a 
classification algorithm. The learned model is then 
applied to the test data. For the transformation of the 
output of the classification model back to a numeric 
estimate we use the median of the values in each interval, 
as it is usually a more robust centrality measure than the 
mean. So, for each test instance we calculate the absolute 
difference of the number of faults in this instance with the 
median value of the predicted class interval. The average 
of these differences for all test instances is the Mean 
Absolute Error performance metric for numeric 
prediction. The configuration with the lowest average 
Mean Absolute Error over all the 10 folds of the cross-
validation is selected as the configuration to use. 
 
4. Data sets and learning algorithms 
 

We firstly describe here the data set that was used in 
the experiments. We then present the learning algorithms 
that were used for RvC and ordinary regression on this 
data set. 
 
4.1 Pekka data set 
 

The data set used in this study is the Pekka data set 
that comes from a big commercial bank in Finland, which 
began to collect development and maintenance data as 
early as 1985 until 1995. The data were collected by 
Pekka Forselious and are presented in [14]. From the 250 
projects of the database, a subset of 67 applications was 
presented in [14] and used in the evaluation. The 
variables of the data set used in our analysis are presented 
in table 1. Target of the study is, based on existing 
knowledge of  historical data, to provide a prediction 
model for the number of faults that will appear during the 
maintenance of software applications. 

 
Table 1: Variables of Pekka data set. 

 
Borg:Business organization type  Classification 

variables  Morg: Internal business unit 

Apptype: Application Type 
Dbms: Database system 

 

Tpms: Transaction Processing 
management system 
r1: Number of users 
r2: Configuration  
r3: Change management  
r4: Structural flexibility 
r5: Documentation quality 
r6: People dependence 
r7: Shutdown constraints 
r8: Online transaction processing 
integration 
r9: Batch processing integration 

Risk Factors  
Values of risk 
factors range  
from 1 to 5.  
1= least risky 
situation 
5= most risky 
situation 

r10: Capacity flexibility 
F.P (function points) 
Pcobol (% of code in cobol)  
Ptelon (% of code in telon) 
Peasy ((% of code in easy) 
T (recovery capability) 

Quantitative 
variables  

Ageend (total months maintained) 
 Disksp (disk space used) 
 Avetrans (average transactions/ 24 h) 
 Cpu (cpu usage) 
 Pjcl (% of code in jcl) 
 Appdef  (number of defects) target 

variable 
 
4.2 Learning algorithms 
 

We used the WEKA machine learning library [26] as 
the source of algorithms for experimentation. For the RvC 
framework we used the following classification 
algorithms as implemented in WEKA with default 
parameters unless otherwise stated: 

• IBk: the k nearest neighbor algorithm [1]. 
• JRip: the RIPPER rule learning algorithm [3]. 
• PART: the PART rule learning algorithm [25]. 
• J48: the C4.5 decision tree learning algorithm [18]. 
• SMO: the sequential minimal optimization algorithm 

for training a support vector classifier using RBF 
kernels [16]. 

We will further analyze PART, RIPPER and C4.5 
algorithms as the results of these algorithms are presented 
in section 4.  

C4.5 outputs a decision tree, while the other two 
(PART and RIPPER) output a set of classification rules. 
Each rule has a body, which consists of one or more 
conditions under which the rule will fire, and a head 
which consists of the predicted class of faults. We also 
present two quantitative measures of the rule's quality: a) 
support, which is the is the ratio between the number of 
records that satisfy the rule body and the total number of 
records in the database, and b) confidence, which is the 
ratio between the number of database records that satisfy 



both the rule body and head and the number of records 
that satisfy just the rule body.  

We must note here that RIPPER and PART belong to 
the separate-and-conquer family of rule learning 
algorithms. These algorithms learn one rule, remove the 
examples that this rule covers and proceed with the next 
rule. Any remaining uncovered examples, are handled by 
a default rule that fires without any conditions and 
predicts the most frequent class among the remaining 
examples. Therefore the support and confidence of each 
rule is reported based on the subset of the examples that 
remained for that rule. This also implies that the rules are 
presented in the order that they are discovered, and during 
execution they are considered in this order. 

For ordinary regression we used the following 
algorithms as implemented in WEKA with default 
parameters unless otherwise stated: 
Linear: A least median squared linear regression 
algorithm [19]. 
• MLP: an algorithm for training a multi-layer 

perceptron [2]. 
• Reg-IBk: the k nearest neighbor algorithm [1], using 

cross-validation to select the best k value. 
• SMOreg: the sequential minimal optimization 

algorithm of [20] for support vector regression using 
RBF kernels. 

• M5P: an algorithm for generating M5 model trees 
[17], [26]. This algorithm is used twice, one for the 
production of a model tree and one for the production 
of a regression tree. 

• REPTree: a fast regression tree learner that uses 
information variance reduction and reduced-error 
pruning [26]. 

 
5. Results and discussion 
 

In this section we first present the evaluation results 
and then the classification models that were extracted 
from the data set will be presented and discussed. The 
performance of the approaches was measured by their 
average Mean Absolute Error (MAE) for the 10 folds of 
the cross-validation process.  The MAE function is given 

by:                          ∑
=

−=
n

i

EiPi
n

MAE
1

||
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Where n is the number of instances in the test set, P is 
the actual fault number and E is the predicted one. 

In addition, for RvC we calculated the average 
classification accuracy of the algorithms which provides 
the percentage of projects for which the correct fault class 
has been successfully estimated, the average number of 
fault classes and the percentage of times that each of the 3 
discretization methods was used. 
 

Table 2: Mean absolute error of RvC and regression 
approaches 

 
 Pekka data set 

SMO 6,69 
RIPPER 7,15 
PART 7,70 
C4.5 8,53 

R
v
C
 

IBk 7,88 
SMOreg 7,07 
Linear 7,96 

REPTree 7,72 
M5P regression tree 7,71 
M5P model tree 7,28 
IBk 8,27 

R
e
g
re
s
s
io
n
 

MLP 7,22 

 
Table 2 shows the average Mean Absolute Error of all 

the approaches on the Pekka dataset. We firstly notice 
that RvC actually manages to get better regression error 
than the standard regression approaches. Indeed within 
the top three performers we find two RvC approaches 
(SMO, RIPPER) and only one regression approach 
(SMOreg). The best average performance is obtained 
with RvC and the SMO algorithm, while the SMOreg 
algorithm for regression is the second best. Relatively 
good performance is also obtained by the symbolic 
algorithms (RIPPER, C4.5 and PART) that produce 
comprehensible models. Another thing that must be noted 
is the fact that RvC achieves improved performance 
overall than regression approaches, even though it uses a 
rough estimation of the actual numbers.  

Table 3 shows the accuracy of the RvC classification 
algorithms, the mean number of classes in the 10 folds of 
the cross-validation and the percentage of times that each 
of the three methods (M1:equal-width, M2: equal-
frequency, M3:k-means) was used for discretizing the 
number of defects. We first notice that the most accurate 
algorithms are SMO and PART and this has certainly 
contributed to the corresponding low regression error of 
RvC. However, RvC with RIPPER managed to achieve 
low regression error even though the classification 
accuracy of RIPPER was relatively low. This shows that 
apart from the classification accuracy, the actual 
discretization of defects into intervals is also important 
for the regression error. 

Initially, the RvC and regression algorithms have been 
applied to the whole data set (67 projects). The results 
when considering the whole data set pointed out the 
project with ID 55, which presented 163 defects, as an 
outlier. Almost all classification methods created a fault 
class with that project as a single member while the rest 
of the projects were classified into another class. In order 
to create meaningful models whose results could be 
exploited the models were recreated omitting the project 
with ID =55. 



 
Table 3: Accuracy, mean number of classes and 
percentage of each discretization method 
 

   PEKKA 

 Acc Av. C M1 M2 M3 

SMO 0,94 2,00 1,00 0,00 0,00 

PART 0,72 4,40 0,60 0,10 0,30 

IBk 0,69 2,40 0,40 0,50 0,10 

C4.5 0,67 3,90 0,60 0,10 0,30 

RIPPER 0,46 5,40 0,40 0,60 0,00 

 
Table 4 presents the rule sets that were produced by 

RvC with the RIPPER and PART algorithms 
accompanied with a point estimate in brackets and 
confidence and support values. In the results of the 
RIPPER approach function points and CPU usage are the 
sole predictors of defects. In the results of PART list of 
rules the type of the organization and the unit in which 
the application is destined play important role in the 
estimation. The decision tree of Figure 1 has two splitting 
nodes. The number of function points is the splitting 
criterion for both nodes. For each suggested class the 
median number of the class is indicated as the most 
probable fault number of the class as a point estimate 
(PE) along with support and confidence values. 

 
Table 4:  Rule list produced by RvC with PART and 

JRIP on the Pekka data set. 
  
JRIP list of rules  
Body Head (C)     (S) 
F.P ≤ 986 9.5< D ≤59 (20) 87.5  12.12 
cpu ≥ 292 2.5< D ≤9.5 (5)  60.0  15.15 
F.P ≥ 671 2.5< D ≤9.5 (5) 80.0    7.58 
 0≤ D ≤0.5 (0) 39.5  65.15 
PART list of rules 
Body Head (C)     (S) 
F.P ≤ 939 and  
morg = 
ACCOUNT 

0≤ D ≤8.43 (1) 92.31  19.7 

F.P ≤ 939 and 
 borg = RETAIL 

0≤ D ≤8.43 (1)  85.71  21.2 

morg= PAYMENT  
and r1=5  

0≤ D ≤8.43 (1) 85.71  10.6 

cpu ≤ 506 
and r6=2  

0≤ D ≤8.43 (1) 85.86  21.4 

r5=1  0≤ D ≤8.43 (1) 63.26  5.48 
morg= deposit  50.57< D ≤59 (53) 100.0  3.03 
Ageend ≤ 40  8.4<D ≤16.86 (11)  66.67  4.55 

 
16.86< D ≤25.29 
(20) 

74.55  3.39 

 
A project variable that appears often in the results of 

the three classification methods is Function Points. This is 
reasonable, as function points is a metric indicative of the 

size of a software application, and as the size of a 
software project grows so does its complexity. Software 
complexity is widely accepted as the primary- cause of 
defects. An interesting rule is the one indicated by PART 
decision list that application that are destined for deposit 
units tend to appear a large number of faults. Probably 
this can be explained by the fact that the requirements for 
applications for these units are relatively demanding and 
strict as a single fault could cause loss of money. Even 
small defects that otherwise would be ignored in such 
applications are recorded and fixed. Also the applications 
that have low CPU usage seem to be less fault prone. 
Another rule that can be confirmed intuitively is the one 
that supports that application with equal or less than 40 
months of maintenance tend to present many faults. A 
surprise to us was that only r1, r5 and r6 (number of 
users, documentation quality and people dependence) 
appeared from the risk factors.  
 

 
 

Figure 1: Decision tree C4.5 for Pekka data set. 
 

One could argue that the predicted fault classes of 
RvC are large and therefore contain fuzzy information. 
This argument can be confronted with the fact that RvC 
even when two few fault classes are considered succeeds 
comparable and even lower regression error from 
traditional regression models when considering the 
median value of a class as a point estimate. There are 
though several advantages by that type of prediction:  
• It can provide a better understanding of software 

defects by automatically dividing their numerical 
values into significant intervals. 

• Apart from a numerical estimate of faults, it also 
outputs an associated interval of values, within which 
this estimate lies, with a certain confidence. This way 
it reduces the level of uncertainty associated with just 
a point estimate, and provides more knowledge 
concerning the defects to the end user. 

PE= 2 

PE= 39 PE= 2 



• It allows the production of comprehensible models of 
software defects that are easily interpretable by project 
managers and other non-experts in data mining 
technology. 

 
6. Conclusions and Future work 
 

In this paper the framework of Regression via 
Classification (RvC) was applied to the problem of fault 
prediction. Our motivation was to exploit the advantages 
of classification algorithms in order to solve the main 
drawbacks of regression algorithms, such as the 
incomprehensibility of the produced models and their 
inability to provide a good point estimate of faults. RvC 
provides a complete framework for defect prediction 
producing as an output a fault class into which the actual 
fault number may fall in, along with a particular most 
probable fault number within this class. The 
representation of the fault knowledge can be in the form 
of rules and decision trees which are among the most 
expressive and human readable representations for 
learned hypotheses. 

In general RvC as a data mining method offers a 
convenient way to solve problems that are not explained 
purely logically but rather probabilistically. Software 
fault estimation is one of these problems: we are not sure 
of the factors that affect directly the existence of faults 
and we expect a support from statistical methods to point 
out the underlying relationships that appear in fault data. 
Some of the results of the application of RvC technique 
were expected and confirmed by intuition like the 
influence of a software application size on the existence 
of faults. The success of the method is that it provides a 
framework for discovering potential causes of faults that 
are not profound like the one that implies that 
applications for deposit organizations are fault-prone.  
In addition, we must stress the very good results of RvC 
in terms of regression error. Despite the fact that RvC 
outputs the median of an entire interval as its point 
estimate of faults, it manages to outperform most of the 
regression approaches in predictive accuracy.  

In the future we intend to apply the proposed 
methodology to other software data sets [7] involving 
other software quality attributes in addition to defects. We 
will also experiment with methods that combine different 
classification algorithms such as Stacking [27] and 
Effective Voting [23] for the purpose of increasing the 
predictive performance of RvC. 
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