Softwar e Defect Prediction Using Regression via Classification

Bibi S., Tsoumakas G., Stamelos I., Vlahavas |
Department of Informatics, Aristotle UniversityTdfessaloniki,54124 Thessaloniki, Greece
{sbibi,greg,stamelos,vlahavas}@csd.auth.gr

Abstract be comprehensible, but not very useful, becausegive
no clue about the actual number of faults.

In this paper we app|y a machine |earning approach These issues led us to the proposal of a diffedtata
to the problem of estimating the number of defeatied =~ Mining approach, called Regression via Classificati
Regression via Classification (RvC). RvC initially (RVC) [22], that benefits from the advantages aatdrs
automatically discretizes the number of defects iat ~ for the disadvantages of both regression and Gizestson
number of fault classes, then learns a model thediipts ~ @pproaches. RvC involves the discretization oftérget
the fault class of a software system. Finally, RvC variable into a finite number of intervals, the iietion of
transforms the class output of the model back imto @ classification model for predicting such intesvaind
numetric prediction_ This approach includes uncmi the transformation of the model's prEdiCtionS badk
in the models because apart from a certain numifer o specific numerical estimates.
faults, it also outputs an associated interval afues, To our knowledge, RvC has not been applied for
within which this estimate lies, with a certain fidence. ~ software fault prediction in the past, despite thany
To evaluate this approach we perform a Comparative benefits that it offers. It is a method that coessd
experimental study of the effectiveness of seveaghine ~ uncertainty, produces comprehensible results and is
learning algorithms in a software dataset. The dat@s reasonable alternative to regression problemsnbatl a
collected by Pekka Forselious and involves appbcet logical explanation. Additionally the method perfar all

maintained by a bank of Finland. of the three tasks of defect prediction, estimates
particular number, estimates a fault class and estgg
1. Introduction potential causes of faults.

In order to evaluate RvC in terms of its
prediction accuracy, we make a comparative evalnaif
several classification algorithms for the implenagioin

fof the RvC framework with classical regression
algorithms used in past approaches and other ctdtes-
thedt regression algorithms from the field of Machine
Learning such as support vector machines and model
trees. For the evaluation of all these approacidstaset
was used that involves maintenance data from bank
applications [14]. It contains data about the s
defects of each application. The results comingnftbe
application of RvC methods show that both regressio
and classification accuracy of the models is coitipet
to those of regression models and in most cases RvC
f outperforms them.
The rest of this paper is organized as follows. fiévet
section presents an overview of the related work. |
faults. Section 3, we present the RvC framework along with

Several data mining methods have been proposed fopletails concerning the implementation of thi_s r.“d“f“”
defect analysis in the past [5], [9], [15], [28]tHew of the problem of software defect prediction. The

them manage to deal successfully with all of thevab des?rlgtltonthof otlhte daraset a;nd ;h? Iear?mg d?gg‘g
issues. Regression models estimates are difficult ¢ appiied fo he data sets are found in section €l

interpret and also provide the exact number of téaul presents the evalqat'ion results a[ong With thegeted
which is too risky, especially in the beginningaoproject softV\ra(rje fa;]ult pred|ct|o(;1 models._dFmaII]Y, "f] Seﬁtﬁ, we
when too little information is available. On théet hand conclude the paper and present ideas tor futuré.wor
classification models that predict possible faglis can

Although there is diversity in the definition of
software quality, it is widely accepted that a pobjwith
many defects lacks quality. Knowing the causes o
possible defects as well as identifying generatvsmie
process areas that may need attention from
initialization of a project could save money, timed
work. The possibility of early estimating the pdtah
faultiness of software could help on planning, collihg
and executing software development activities.

A low cost method for defect analysis is learnirmri
past mistakes to prevent future ones. Today, tbaigt
several data sets that could be mined in orderstmoder
useful knowledge regarding defects [7], [14]. Usthgs
knowledge one should ideally be able to: a) Idgnti
potential fault-prone software, b) Estimate the cffje
number of faults, and c) Discover the possible eausf

2. Related work



The earliest studies in fault prediction focused on
establishing relationships between software conifylex
usually measured in lines of code, and defects.elid
known metrics introduced during 70s is Halsteal&oty
[6] and McCabe’s cyclomatic complexity [13]. Theuat
drawback of complexity metrics is that they ind&at
software size as the only predictor of faults. Efiere in
80s and afterwards research has tried to relatevae
complexity to sets of different metrics, deriving
multivariate regression models [12], [9], [15]. Reggion
models on the other hand presented the disadvanfage
providing results difficult to interpret that igremt causal
effects. In the 90s classification models were &efbo
solve this problem. Clustering [28], logistic reggmn
[4], [8] and Bayesian nets [5] are applied for the
estimation of fault-proneness. Most of the abougliss
estimate potential fault proneness of software aorepts
without providing particular fault numbers.

In the same decade due to the large number ofratsea
in this field several studies compared differentttrods
such as regression techniqgues and
techniques but each time the most accurate metaoedy
according to the context of the study. Principal
component analysis, discriminant analysis, logistic
regression, logical classification models, layereniral
networks, and holographic networks are appliedli],[
while  MARS regression method and classification
methods such as rules, CART and Bayesian netwaeks a
compared in [15]. Fenton and O’Neil [5] provided a
critical review of literature and suggested a tleéoal
framework based on Bayesian networks that couldesol
the problems identified. They argued that compjexit
metrics should not be the only predictor of defettisy
pointed out that statistical methodologies should/ p
attention on the data quality and the evaluatiothoee
and finally they stressed that it is importantderitify the
relationship between faults and failures.

As mentioned in [5] clearly all of the problems
described cannot be solved easily, however moddfiag
complexities of software development using new
probabilistic techniques presents a positive wayéod.

number of independent or input variables x1, x2,xn.,

If y takes real values, then the learning task afed
regression, while if y takes discrete values thémndalled
classification. Traditionally, Machine Learning easch
has focused on the classification task. It woulkrefore

be very interesting to be able to solve regresgioblems
taking advantage of the many machine learning
algorithms and methodologies that exist for clasasifon.
This requires a mapping of regression problems into
classification problems and back, which has beeentty
studied by some researchers [22], [24].

The whole process of Regression via Classification
(RvC) comprises two important stages: a) The
discretization of the numeric target variable irder to
learn a classification model, b) the reverse praces
transforming the class output of the model intaienaric
prediction.

Three methods for discretization are equal-interval
binning, equal-frequency binning and K-means
clustering. The first one divides the range of ealof a
numerical attribute into a predetermined numbeeaial

classificationintervals. The second one divides the range ofesinto

a predetermined number of intervals that containakq
number of instances. The k-means clustering alyaorit
starts by randomly selecting k values as centerthef
ranges. It then assigns all values to the clostshase
centers and calculates the new centers as the ofi¢ha
values of these ranges. This process is repeatiidhe
same values are assigned to each of the k rangesin
consecutive iterations.

Once the discretization process has been completed,
any classification algorithm can be used for modgthe
data. The next step is to make numeric predictfoms
the classification model that is produced. This ailod
predicts a number of classes which correspond to
numerical intervals of the original target variablénere
remains the problem of transforming this class to a
specific number, in order to assess the regressiam of
the RvC framework. A choice for this number shdodda
statistic of centrality that summarizes the valoéshe
training instances within each interval.

In this study we propose the use of Regression via3.1 Our RvC implementation on the problem of

Classification for modeling uncertainty in softwatefect
prediction. Using this method we will attempt tolv&o
several of the problems mentioned in literaturehsas,
interpretability of the results, use of size as thdy
predictor, combination of results with expert opimi

3. Regression via Classification

softwar e defect prediction.

In this study in order to determine the actual peaters
of the discretization process of the RvC framewavk,
decided to use a wrapper approach [11].

The wrapper approach evaluates the different
configurations of an approach by performing cross-
validation and selects the configuration with thestb

Supervised Machine Learning considers the problemaccuracy. Similar to that approach, we run the

of approximating a function that gives the value aof
dependent or target variable y, based on the valties

discretization process using all three methods and
experiment with the number of classes in the rahge
1+3.3log(n). The upper bound of the number of @sass



was proposed in [21] however, this is just a diatib Apptype: Application Type

proposal for the number of classes, that doestaia Dbms: Database system
into account any knowledge about the domain andsten Tpms: Transaction Processing
to propose a rather large number of classes. Her th : management system
reason we used it as an upper bound in the wrapper | Risk Factors rl: Number of users
approach. Values of risk r2: Configuration

factors range r3: Change management

In total our implementation evaluates 3*(1+3.3l9g(n

. . ; S from 1 to 5. :
2)=9.9log(n) different configurations of the distization 1= least risk r4: Structural flexibility
k . ~ east risky r5: Documentation quality
process using 10-fold cross-validation [10]. Thefdld situation :
lidati i he d . b ) r6: People dependence
cross-validation process splits the data into nma q 5= most risky 17 Shutdown constraints
disjoint parts and uses 9 of t'hese p'ar.ts for 1mgn’th§ situation r8: Online transaction processing
RvC framework and 1 for testing. This is done 10es, integration
each time using a different part of data for tegtifhe r9: Batch processing integration
training data are used initially to discretize tfeilts r10: Capacity flexibility
(using one of the configurations) and then to train Quantitative F.P (function points)
classification algorithm. The learned model is then | variables Pcobol (% of code in cobol)
applied to the test data. For the transformationthef Ptelon (% of code in telon)
output of the classification model back to a numeri Peasy ((% of code in easy)
estimate we use the median of the values in eaehval, T (recovery capability)
as it is usually a more robust centrality meashem tthe Ageend (total months maintained)
mean. So, for each test instance we calculateltbelate Disksp (disk space used)

Avetrans (average transactions/ 24 |h)
Cpu (cpu usage)

Pjcl (% of code in jcl)

Appdef (number of defects) target
variable

difference of the number of faults in this instamgth the
median value of the predicted class interval. TWerage
of these differences for all test instances is lhean
Absolute Error performance metric for numeric
prediction. The configuration with the lowest awg®a
Mean Absolute Error over all the 10 folds of thess-
validation is selected as the configuration to use.

4.2 Learning algorithms

We used the WEKA machine learning library [26] as
the source of algorithms for experimentation. Far RvC

) ) ) framework we used the following classification
We firstly describe here the data set that was used algorithms as implemented in WEKA with default

the experiments. We then present the learning itthgos parameters unless otherwise stated:

4. Data sets and lear ning algorithms

that were used for RvC and ordinary regressionhis t « IBk: the k nearest neighbor algorithm [1].
data set. « JRip: the RIPPER rule learning algorithm [3].
» PART: the PART rule learning algorithm [25].
4.1 Pekka data set « J48: the C4.5 decision tree learning algorithsi.[1
* SMO: the sequential minimal optimization algomith
The data set used in this study is the Pekka ddta s for training a support vector classifier using RBF
that comes from a big commercial bank in Finlandiciv kernels [16].

began to collect development and maintenance data a we will further analyze PART, RIPPER and C4.5
early as 1985 until 1995. The data were collectgd b a|gorithms as the results of these algorithms ezsemted
Pekka Forselious and are presented in [14]. Fren280 in section 4.

projects of the database, a subset of 67 applitaticas C4.5 outputs a decision tree, while the other two
presented in [14] and used in the evaluation. ThePART and RIPPER) output a set of classificatiolesu
variables of the data set used in our analysip@gented  Each rule has a body, which consists of one or more
in table 1. Target of the study is, based on ewgsti conditions under which the rule will fire, and aable
knowledge of historical data, to provide a préditt  which consists of the predicted class of faults. s\&»
model for the number of faults that will appearidgrthe  present two quantitative measures of the rule'sityua)

maintenance of software applications. support, which is the is the ratio between the remuf
. records that satisfy the rule body and the totahlver of
Table 1: Variables of Pekka data set. records in the database, and b) confidence, wisiche

ratio between the number of database records #hiafys

Classification Borg:Business organization type
variables Morg: Internal business unit




both the rule body and head and the number of dscor Table2: Mean absoluteerror of RvC and regression

that satisfy just the rule body. approaches

We must note here that RIPPER and PART belong to
the separate-and-conquer family of rule learning Pekka data set
algorithms. These algorithms learn one rule, reminee SMO 6,69
examples that this rule covers and proceed withthe RIPPER 7,15
rule. Any remaining uncovered examples, are haniied O PART 7,70
a default rule that fires without any conditionsdan & C4.5 8,53

IBk 7,88

predicts the most frequent class among the renginin

. SMOreg 7,07
examples. Therefore the support and confidenceach e Linear 796
rule is reported based on the subset of the exantpé '

; . o S REPTree 7,72
remained for that rule. This also implies that thkes are ‘@ M5P regression tree | 7,71
presented in the order that they are discoveratidanng @ M5P model tree 7,28
execution they are considered in this order. o IBK 8,27
For ordinary regression we used the following « MLP 7,22
algorithms as implemented in WEKA with default
parameters unless otherwise stated: Table 2 shows the average Mean Absolute Errorlof al
Linear: A least median squared linear regressionthe approaches on the Pekka dataset. We firstligenot
algorithm [19]. that RvC actually manages to get better regressicor
e MLP: an algorithm for training a multi-layer than the standard regression approaches. Indedihwit
perceptron [2]. the top three performers we find two RvC approaches
e Reg-IBk: the k nearest neighbor algorithm [1], gsin (SMO, RIPPER) and only one regression approach
cross-validation to select the best k value. (SMOreg). The best average performance is obtained

e SMOreg: the sequential minimal optimization With RvC and the SMO algorithm, while the SMOreg
a|gorithm of [20] for Support vector regressionngﬁi aIgorlthm for regression Is the second best. R@b@tl
RBE kernels. good performance is also obtained by the symbolic

e MS5P: an algorithm for generating M5 model trees algorithms (RIPPER, C4.5 and PART) that produce
[17], [26]. This algorithm is used twice, one foret ~ comprehensible models. Another thing that mustdiedh

production of a model tree and one for the progucti 1S the fact that RvC achieves improved performance
of a regression tree. overall than regression approaches, even thouge a

o REPTree: a fast regression tree leamer that use$0ugh estimation of the actual numbers. o
information variance reduction and reduced-error  1able 3 shows the accuracy of the RvC classificatio
pruning [26]. algorithms, the mean number of classes in t_he 3 fof

the cross-validation and the percentage of timasehch

of the three methods (M1:equal-width, M2: equal-

frequency, M3:k-means) was used for discretizing th

] ) ) ) number of defects. We first notice that the mosteaate
In this section we first present the evaluatioruliss  5igorithms are SMO and PART and this has certainly

and then the classification models that were e#dthic  contributed to the corresponding low regressionreof

from the data set will be presented and discusskd. RVC. However, RvC with RIPPER managed to achieve
performance of the approaches was measured by theifoy, regression error even though the classification

average Mean Absolute Error (MAE) for the 10 folifs  4ccyracy of RIPPER was relatively low. This shohatt
the cross-validation process. The MAE functiogiigen apart from the classification accuracy, the actual
1&, . . discretization of defects into intervals is alsopartant
by: MAE = Ezll Pi—Eil for the regression error.
i=

Wh is th ber of i i th ) Initially, the RvC and regression algorithms haeer

h erelfn |s|t € ngm erdo mst;::nces:jnt gteslPsest, applied to the whole data set (67 projects). Tisulte

the actua ."%‘”t”“m er and E is the predicted one. when considering the whole data set pointed out the
In addition, for RvC we calculated the average

lassificati f the alaorith hich project with ID 55, which presented 163 defects,aas
classification accuracy o the ag_ont ms which ides outlier. Almost all classification methods creadault
the percentage of projects for which the correglt felass class with that project as a single member white kst
has been successfully estimated, the average nuofiber

fault ¢l d th f1 h 3 of the projects were classified into another cléssrder
ault classes and the percentage of times that efitie to create meaningful models whose results could be
discretization methods was used.

exploited the models were recreated omitting thaept
with ID =55.

5. Results and discussion



Table 3. Accuracy, mean number of classes and
per centage of each discretization method

PEKKA
Acc | Av.C M1 M2 M3
SMO 0,94 | 2,00 1,00 | 0,00 | 0,00
PART 0,72 | 4,40 0,60 | 0,10 | 0,30
IBk 0,69 | 2,40 0,40 | 0,50 | 0,10
C4.5 0,67 | 3,90 0,60 | 0,10 | 0,30
RIPPER | 0,46 | 5,40 0,40 | 0,60 | 0,00

size of a software application, and as the sizeaof
software project grows so does its complexity. \Bafe
complexity is widely accepted as the primary- caoke
defects. An interesting rule is the one indicatgd®ART
decision list that application that are destineddeposit
units tend to appear a large number of faults. &vlyb
this can be explained by the fact that the requargsfor
applications for these units are relatively demagdind
strict as a single fault could cause loss of mortesen
small defects that otherwise would be ignored iohsu
applications are recorded and fixed. Also the apgilbns
that have low CPU usage seem to be less fault prone
Another rule that can be confirmed intuitively ietone

Table 4 presents the rule sets that were produged b that supports that application with equal or lésnt40

RvC with the

RIPPER and PART algorithms months of maintenance tend to present many faalts.

accompanied with a point estimate in brackets andSurprise to us was that only rl, r5 and r6 (numbfer
confidence and support values. In the results @ th Users, documentation quality and people dependence)
RIPPER approach function points and CPU usagehare t appeared from the risk factors.

sole predictors of defects. In the results of PART of
rules the type of the organization and the unitvitich
the application is destined play important role tire
estimation. The decision tree of Figure 1 has tpliitsg
nodes. The number of function points is the splitti
criterion for both nodes. For each suggested dhss

median number of the class is indicated as the most

probable fault number of the class as a point ed&m
(PE) along with support and confidence values.

Table4: Rulelist produced by RvC with PART and
JRIP on the Pekka data set.

JRIP list of rules
Body Head (C) (8
F.P <986 9.5< D <59 (20) 875 12.12
cpu > 292 25<D <95 (5) 60.0 15.15
FP>671 25<D<95(5) 80.0 7.58
0< D <0.5 (0) 39.5 65.15
PART list of rules
Body Head (C) (8
F.P <939 and
morg = 0< D <8.43 (1) 92.31 19.7
ACCOUNT
Fb'sr; SSRQE?I'IEL 0< D <8.43 (1) 85.71 212
morg=PAYMENT | o p <43 (1) 85.71 10.6
and r1=5
oy feigs 0< D <8.43 (1) 85.86 21.4
r5=1 0= D <843 (1) 63.26 548
morg= deposit 50.57< D <59 (53) 100.0 3.03
Ageend < 40 8.4<D <16.86 (11) | 66.67 4.55
16.86< D <25.29
(01 74.55 3.39

A project variable that appears often in the resaft
the three classification methods is Function Poifilss is
reasonable, as function points is a metric indieatif the

(1 = Defects <29

S=02.4%
C=86 3%
PE=2
29 < Defects< 59 0 = Defects <29
PE= 39 5=4.5% PE=2 5=3.03%
C=100% C=100%

Figure 1: Decision tree C4.5for Pekka data set.

One could argue that the predicted fault classes of
RvC are large and therefore contain fuzzy infororati
This argument can be confronted with the fact RaC
even when two few fault classes are consideredesuisc
comparable and even regression error from
traditional regression models when considering the
median value of a class as a point estimate. Thexe
though several advantages by that type of predictio
e It can provide a better understanding of software

defects by automatically dividing their numerical

values into significant intervals.

e Apart from a numerical estimate of faults, it also
outputs an associated interval of values, withirictvh
this estimate lies, with a certain confidence. Tés
it reduces the level of uncertainty associated yuith
a point estimate, and provides more knowledge
concerning the defects to the end user.

lower



It allows the production of comprehensible moddls o
software defects that are easily interpretableroyjept

managers and other non-experts in data mining6

technology.

6. Conclusions and Future wor k

In this paper the framework of Regression via
Classification (RvC) was applied to the problentanflt
prediction. Our motivation was to exploit the adcteayes
of classification algorithms in order to solve thein
drawbacks of regression algorithms, such as the
incomprehensibility of the produced models and rthei
inability to provide a good point estimate of faulRvC
provides a complete framework for defect prediction
producing as an output a fault class into whichateal
fault number may fall in, along with a particularosh
probable fault number within this class. The
representation of the fault knowledge can be inftnm
of rules and decision trees which are among thet mos
expressive and human readable representations fo
learned hypotheses.

In general RvC as a data mining method offers a
convenient way to solve problems that are not exeth
purely logically but rather probabilistically. Saftre
fault estimation is one of these problems: we atesnre
of the factors that affect directly the existendefaults
and we expect a support from statistical methodsotot
out the underlying relationships that appear iftfdata.
Some of the results of the application of RvC téghe
were expected and confirmed by intuition like the
influence of a software application size on thes&xice
of faults. The success of the method is that iviokes a
framework for discovering potential causes of fadkat
are not profound like the one that implies that
applications for deposit organizations are fauttrg.

In addition, we must stress the very good resultRwC
in terms of regression error. Despite the fact fRaC
outputs the median of an entire interval as itsnpoi
estimate of faults, it manages to outperform mdshe
regression approaches in predictive accuracy.

In the future we intend to apply the proposed
methodology to other software data sets [7] invaivi
other software quality attributes in addition tdesds. We
will also experiment with methods that combine efiéint
classification algorithms such as Stacking [27] and
Effective Voting [23] for the purpose of increasitige
predictive performance of RvC.

7. References

[1] Aha, D., Kibler, D.W., and Albert, M.K., “Instece-based
learning algorithms”Machine Learning Vol. 6, 1991, pp. 37-
[2] Bishop, C.M.,“Neural Networks for Pattern Recognition”
Oxford University Press, 1995.
[3] Cohen, W.W., “Fast Effective Rule Inductionn
Proceedings of the 12th International ConferenceMuarchine
Learning Morgan Kaufmann, 1995, pp. 115-123.
[4] Emam, K.E, Melo, W., Machado, J.C., “The Préidic of
Faulty Classes Using Object-Oriented Design Metridsurnal
of Systems and Softwakél. 56, 2001, pp. 63-75.
[5] Fenton, N., Neil, M., “A Critique of Software d¥ect
Prediction Models”, IEEE Transactions on Software
Engineering Vol 25(5), 1999, pp.675-689.
[6] Halstead, M.H,“Elements of Software ScienceElsevier,
North-Holland,1975.
[7] International Software Benchmarking Standardsoup,
http://www.isbsg.org.
[8] Kamiya, T., Kusumoto, S., Inoue, K., “Predictiof Fault-
proneness at Early Phase in Object-Oriented Dewsdof’, In
Proceedings of the 2nd International Symposium dije&-
Oriented Real-Time Distributed ComputinEEE Computer
ociety,1999, pp. 253-258.
9] Khoshgoftaar, T.M., Seliya, M., “Tree-Based Bdire
Quality Estimation Models For Fault Prediction”, In
Proceedings of the "B IEEE International Conference on
Software Metrics2002, pp. 203-215
[10] Kohavi, R., “A Study of Cross-Validation and8tstrap for
Accuracy Estimation and Model Selection™, Pnoceedings of
the 14th International Joint Conference on Artiici
Intelligence 1995, pp. 1137-1145
[11] Kohavi, R,"Wrappers for Performance Enhancement and
Oblivious Decision Graphs” PhD Thesis. Department of
Computer Science, 1995, Stanford University.
[12] Lanubile, F., Lonigro, A., Visaggio, G., “Compng
models for identifying fault-prone software compotss, In
Proceedings of the 7th International Conference Switware
Engineering and Knowledge Engineerjii§®95, pp.312-319.
[13] McCabe, T.J, “A Complexity Measure,”|IEEE
Transactions on Software Engineeringol. 2 (4), 1976, pp.
308-320.
[14] Maxwell, K., “Applied Statistics for Software Managers”
Prentice-Hall, 2002.
[15] Neumann, R., Bibi, S., “Building fault predioh models
from abstract cognitive complexity metrics- anatyggi and
interpreting fault related influencesin Proceedings of the
International Workshop on Software Measurement/ ety
2004, pp. 575-587.
[16] Platt, J.;'Fast Training of Support Vector Machines using
Sequential Minimal Optimization” In Advances in Kernel
Methods - Support Vector Learning, (Eds) B. Schpfko C.
Burges, and A. Smola, MIT Press, 1998.
[17] Quinlan, J.R., “Learning with continuous claesj In
Proceedings. of Australian Joint Conf. on Artificiatelligence
343-348, World Scientific, 1992, pp.343- 348.
[18] Quinlan, R.J., C4.5: Programs for Machine Learnihg
Morgan Kaufman, 1993.
[19] Rousseeuw, P.J. and Leroy, A. MRobust Regression
and Outlier Detection; Wiley, 1997, New York.



[20] Smola, A.J, Scholkopf , B*A Tutorial on Support
Vector Regression”NeuroCOLT2 Technical Report Series -
NC2-TR-1998-030, 1998.

[21] Sturge, H., “The choice of Class Intervalqurnal of
American Statistical Associatiopp 65-66, 1926.

[22] Torgo, L. and Gama, J., “Regression Using
Classification Algorithms”, Journal of Intelligent Data
Analysis Vol 1(4), pp. 275-292.

[23] Tsoumakas, G., Katakis, |I. and Vlahavas, |.
“Effective  Voting of Heterogeneous Classifiers”, In
Proceedings of the 15th European Conference on Mach
Learning Italy, pp 465-476.

[24] Weiss, S. and Indurkhya, N., “Rule-badddchine
Learning Methods for Functional Predictionfh Journal of
Artificial Intelligence ResearchVol 3, 1995, pp. 383-403.

[25] Witten, I.H, and Frank, E., “Generating Acatg Rule
Sets Without Global Optimization'Proceedings of the 15th
International Conference on Machine Learnid®98, pp. 144-
151.

[26] Witten, I.H., and Frank E., J:Data Mining: Practical
machine learning tools with Java implementatian#organ
Kaufmann, 1999, San Francisco.

[27] Wolpert, D., “Stacked GeneralizatioriNleural Networks
No. 5, , 1992, pp. 241-259.

[28] zhong, S., Khoshgoftaar, T.M., and Seliya,, N.
“Analyzing Software Measurement Data with Clustgrin
Techniques”,IEEE Intelligent SystemsSpecial issue on Data
and Information Cleaning and Preprocessing, Val 2204, pp.
20-27.



