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ABSTRACT
In this paper we present the passenger demand prediction
model of BusGrid. BusGrid is a novel information system
for the improvement of productivity and customer service
in public transport bus services. BusGrid receives and pro-
cesses real time data from the automated vehicle location
(AVL) and the automated passenger counting (APC) sen-
sors installed on a bus fleet and assists their operator on
the improvement of bus schedules and the design of new bus
routes and stops based on the expected demand. For the
prediction of passenger demand in any bus stop, the raw
sensor data were pre-processed and several different feature
sets were extracted and tested as predictors of passenger
demand. The pre-processed data were used for the super-
vised learning of a regression model that predicts people
demand for any given bus stop and route. Experimental re-
sults show that the proposed approach achieved significant
improvements over the baseline approaches. Knowledge rep-
resentation, through the proposed feature set, played a key
role on the ability of the prediction model to generalize well
beyond its training set, to new bus stops and routes.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous
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1. INTRODUCTION
Today, Public Transportation organisations play a signif-

icant role in the every day quality of life and provide their
services to an ever increasing number of people. Along this,
there is a need for improving the productivity and quality
of these services. However, strictly improving a bus route
productivity can have detrimental effects on the quality of
service. Passengers need more buses with enough space to
have a comfortable and safe travel to their destination. On
the other hand, Public Transportation Companies have to
discover optimized bus schedules, so that during operation
no bus will be relatively empty or exceed a desired min-
imum number of passengers, leading to unprofitable lines
and significant financial losses. As an example, uninformed
or empirical bus scheduling can lead to overcrowded buses
(low quality of service) followed by empty ones (low produc-
tivity). BusGrid produces solutions that tackle this trade-off
by consistently optimizing schedules to consistently achieve
a relatively stable average number of on board passengers.

Specifically, BusGrid is an integrated information system
for productivity and customer service improvement in the
Public Transportation Companies which receives real time
data from installed sensors on the vehicles of Public Trans-
portation Companies in order to:

• Calculate quality of service key performance indexes
(KPIs) and improve bus line’s productivity

• Analyse and produce useful information which will as-
sist the prediction of critical factors (such as bus de-
mand in each bus stop)

• Actively support the decision process of bus routes im-
provement and optimal response to passenger demand

In this paper we present the prediction models along with
their corresponding feature sets that constitute the Bus-
Grid’s subsystem Prediction of Demand. Prediction of De-
mand has the goal of predicting the actual count of pas-
sengers, who, given a specific time and place, will board
an arriving bus that reaches their desired destination. This
work also concerns the generalization of the proposed model,
when it comes to predict boarding passengers in a new route
or bus stop.

The main contributions of this work are to:



1. Present the data flow from the the automated vehicle
location (AVL) and the automated passenger count-
ing (APC) systems, their pre-processing and database
storage process.

2. Propose and describe two feature sets for bus passenger
demand prediction.

3. Propose novel features to encode the possible passen-
gers direction when boarding a specific vehicle.

4. Evaluate selected Machine Learning (ML) algorithms
to learn a generalized model capable of approaching
the real passenger demand, both on existing and un-
known bus stops.

5. Provide experimental results on predicting demand,
both for known routes and bus stops as also in newly
introduced bus stops and directions, demonstrating
the efficiency of the proposed methods and feature sets
with respect to the bus demand prediction.

Finally, the results presented in this paper support the hy-
pothesis that we can quite accurately estimate the passenger
demand for arbitrary bus stops.

The rest of the paper is organized as follows: In section 2 a
description of the integrated information system BusGrid is
presented. Furthermore, BusGrid subsystems and its main
work flow are described. In section 3, we present the pro-
posed method for predicting bus passenger demand, from
data acquisition and pre-processing, to feature extraction
and learning. Section 4 presents the experimental setup and
the results obtained from applying the proposed method to
real AVL and APC data. In section 5 we discuss our work
in the context of the related literature, while in section 6
we conclude to the main outcomes and contributions of our
work and propose future research directions.

2. THE BUSGRID INFORMATION SYSTEM
BusGrid is an integrated system with a two-fold goal of

improving both quality of service and productivity of bus
routes. Specifically, the system comprises five modules (see
Figure 1). In the first module (E1 - left portion of Figure
1) the sensors installed on a vehicle gather a series of data
from the AVL and APC systems and other installed sensors
such as the engine ignition on/of, door sensors etc. Using
the bus’s wireless communication system (e.g. GSM), a uni-
fied data-frame containing the sensor data, is sent to the
database server in real-time.

Next, a data layer is created by preprocessing the raw
data of the database (E3). This stage includes data cleaning
and possible regularizations and aggregations of data (e.g
creating a per-day view of the data). The data-layer created,
forms the data-sets used by the modules that calculate the
KPIs of the bus routes and the ML modules. The KPIs (see
E4 - the boxes on the left side - in Figure 1) are calculated
directly from the raw data.

The Machine Learning modules are used for the predic-
tion of critical KPIs such as passenger demand and for the
adaptation of the system in various cases. The first Machine
Learning module (Prediction of Demand) estimates the de-
mand for each specific bus route at each bus stop. It uses
examples of temporal and geospatial data, combined with
the historical data from the APC sensors, for the super-
vised learning of a regression model which predicts people

demand for a specific bus stop, bus and period of time. The
average waiting time module produces a KPI based on the
actual average waiting time weighted by the passenger de-
mand (number of people waiting) so that waiting time is
expressed in man-hours.

Finally, the RL-BUS module uses Reinforcement Learn-
ing methods to dynamically create adaptive bus schedules
optimized for bus productivity and quality of service. It
is a semi-supervised model learning a scheduling policy for
dispatching buses on the correct time to achieve optimal
bus productivity with respect to the average bus fullness
and waiting time (quality of service indicators). The KPIs
calculation modules and the Machine Learning modules are
developed as software libraries, appropriately separating the
interface tier of the system (GUI) from its business logic.

3. THE PREDICTION MODEL
This section presents the proposed method for predicting

bus passenger demand, from data acquisition and feature
extraction to learning the prediction model.

3.1 Data Acquisition and Preprocessing
BusGrid receives raw data from the AVL and APC sen-

sors installed in a bus fleet. A new data record is obtained
every time the buses’ doors close, following that passenger
counting starts each time the doors get a signal to open.
We further assume that each terminal bus stop is also the
initial bus stop of the returning route, and we consider that
the bus will continue with its returning route or a new one.
Consequently, we consider that the incoming passengers of
the terminal stop belong to the returning route since their
actual destination is one of bus stops belonging in the re-
turning route. Special cases such as ”off-duty” buses trans-
ferring just personnel or travelling to a service station were
also considered and handled appropriately.

The raw sensor data, are stored in a database table and
consists of the following fields:

• count id,

• date and time of the counting,

• the id of the bus stop,

• the id of the current route,

• the line number that this route serves,

• the number of passengers who got on the bus,

• the number of passengers who got off the bus.

The database also contains secondary tables with infor-
mation about each bus stop and route, such as the latitude
and longitude coordinates of each bus stop.

Next, the pre-processing methods of BusGrid, use these
raw data to:

• process and correct false entries and noisy data, which
come from the AVL units

• enrich the dataset with data that are not provided by
the AVL and APC systems, such as weather informa-
tion

• transform and extract of new features, so that the new
features will be appropriately formulated for the learn-
ing methods



Figure 1: The BusGrid information system

• save / retrieve these preprocessed data to / from the
database, so that the final dataset and its features are
directly available to any other BusGrid subsystem

Concerning data enrichment we retrieve weather data in
order that our model accounts also for the weather condi-
tions that may affect the actual passenger demand. The
forecast.io1 website provides a free to use API. Using that,
BusGrid retrieves weather features, such as the Apparent
Temperature and Weather Summary, which encodes the gen-
eral outlook of the day (eg. sunny, clear, cloudy and windy,
cloudy etc.). The weather API output is a JSON string.
We implemented a method which retrieves and parses this
JSON string and aggregates the weather data in an hourly
base. Finally, the hourly weather data are stored in a sepa-
rate table in the database and merged on demand with the
final feature set produced from the AVL and APC data.

3.2 Feature Selection and Extraction
A significant part of our work was to construct and eval-

uate suitable features for passenger demand prediction for
buses able to efficiently represent bus stops and routes not
present in the training dataset, that is how the regression
model will be able to generalize well with respect to its in-
put representation.

Features like route number or bus line can not be included
in such a feature set. Since these features are qualitative and
codified with arbitrary numbers which contain no quantita-
tive relation in them, e.g. line numbers 13 and 14 may serve
very different bus stops (geospatially distant). Such quali-
tative features could be used only for predictions in existing
routes. BusGrid prediction model should be able to ap-
proach passenger demand on a specific location, even if the
location refers to a yet, not-existing bus stop.

Consequently, the bus stop id feature was replaced with
the actual geographic coordinates (latitude and longitude).
The bus route code (line id) was replaced by the lambda and
beta coefficients of a linear regression model describing the
direction of the route following the current bus stop. The
lambda coefficient represents the slope of the fitted line and
beta represents the constant term. The feature set also in-
cludes the latitude and longitude coordinates of the terminal
bus stop.

In a second version of the feature set we replace the lambda
and beta features representing route direction with the mean
latitude and longitude of the remaining bus stops. Remain-

1http://www.forecast.io

ing stops are the following stops of the current route, from
the current bus stop to the terminal one.

The summary feature from the weather data was trans-
formed to five ordinal features, Cloudy, Foggy, Breezy, Rainy
and Windy. The new features have values from 0 to 3 ac-
cording to the intensity of the weather condition they de-
scribe. For example, a Windy value of 0 means no Wind at
all, 1 means barely windy, etc. A value of zero to all of these
features represents a clear weather outlook.

The date and time features are included in the raw data
and are very important for an accurate demand prediction
model. However, a naive quantitative representation of the
date and time features would wrongly return a maximum
distance between dates such as 2015-01-01 and 2014-12-31.
In order to correctly represent periodicity we extract only
the number of day in a week (Sunday = 0, Monday = 1, ...
, Saturday = 6) and the minute in day (01:12 is 60 +12 =
72nd minute of the day) and represent them in polar coor-
dinates using their sine (1) and cosine (2). The pair of sine
and cosine values of the transformed date and time features,
represents them correctly as points on a circle, so that close
days are also close in terms of distance.

weekday sin = sin(sum of day ∗ 360/7 ∗ π/180) (1)

weekday cos = cos(sum of day ∗ 360/7 ∗ π/180) (2)

Following the same pattern, minutes were also represented
using the trigonometric transformations, formulated for the
number of minutes in a day.

The features mentioned above form the final feature sets.
We define the Route Regression feature set (RRf), which
contains:

• lambda and beta,

• current stop ’s latitude and longitude,

• last stop’s latitude and longitude,

• the sine and cosine of the weekday,

• the sine and cosine of the minute of the day,

• the temperature and

• the ordinal factors Cloudy, Foggy, Breezy, Windy and
Rainy.

Moreover, we define a second feature set, Round Mean
feature set (RMf), which contains all the above features,



Table 1: Prediction Model Root Mean Square Error (RMSE)

(a) Unknown/New Routes and Stops test set

Model RMSE
1 Random Forest with Route Regression 6.82
2 Random Forest with Route Mean 6.83
3 Mean Model 7.31
4 Bagging with Route Regression 7.37
5 Bagging with Route Mean 7.39
6 Median Model 7.81
7 1-NN with Route Mean 11.03
8 1-NN with Route Regression 11.41

(b) Known Routes and Stops test set

Model RMSE
1 Random Forest with Route Mean 7.04
2 Random Forest with Route Regression 7.07
3 Bagging with Route Mean 7.53
4 Bagging with Route Regression 7.53
5 Mean Model 8.45
6 Median Model 8.77
7 1-NN with Route Mean 9.19
8 1-NN with Route Regression 9.19

but instead of lambda and beta, it uses the mean latitude
and longitude of the bus stops following the current one to
represent the direction of the bus.

algorithm number of trees feature set
Random Forest 200 RRf
Random Forest 500 RRf
Random Forest 1000 RRf
Random Forest 200 RMf
Random Forest 500 RMf
Random Forest 1000 RMf
Bagging 200 RRf
Bagging 500 RRf
Bagging 1000 RRf
Bagging 200 RMf
Bagging 500 RMf
Bagging 1000 RMf

Table 2: Models and parameters tested in the ex-
periments.

3.3 Learning and Evaluation
The purpose of the proposed prediction model is to es-

timate the actual passenger demand, given a specific time
and place. The model will provide useful guidance in real
world bus route scheduling. These predictions will also be
used internally by the BusGrid RL-bus system, to design and
evaluate new bus stops or new routes that were not present
in the original dataset. The prediction model will also be
useful for the evaluation and improvement of existing route
and bus stops.

Extensive experimentation on regression methods and pa-
rameter tuning lead to the use of the Random Forest ensem-
ble method [3], as well as the Bagging of regression trees [2].
Some of the results obtained are presented and discussed in
Section 4. The feature sets formed and presented above, are
being used as predictors in the selected models. Both learn-
ing algorithms showed promising results (see section 4) and
are used in the last version of BusGrid for the passenger de-
mand prediction models. The produced models using each
of the two final feature and their parameters are presented
in Table 2.

The target variable of the regression models is always the
number of boarding passengers. Furthermore, all features
used in the training and testing process of the prediction
model are appropriately scaled.

4. EXPERIMENTAL RESULTS
In this section we present the experimental procedure, and

discuss the results demonstrating the models performance
using the two proposed feature sets RRf and RMf, for various
parameters and settings (see Table 2).

The experimental procedure involves the training, testing
and evaluating of the regression methods mentioned in the
previous section. Our experimental data consist of 53,450
records, which were obtained from 4 vehicles that had the
AVL and APC systems installed on. The AVL and APC sys-
tems of the bus fleet were created, developed and installed
by Link Technologies2, a private company that specializes
in telemetry applications and O.A.S.Th. the Public Trans-
portation Company of the city of Thessaloniki and its ex-
tended urban area. O.A.S.Th operates more than 600 buses
in 76 routes that carry over 150 million passengers annually.

The models were trained and tested using the two final
feature sets, as well as also the training and testing sets
for the prediction of previously unseen bus stops or routes.
Each dataset is split in 2 smaller datasets, the training set,
which is a random 70% of the initial dataset, and the testing
set, which is the rest 30% of the initial dataset. We used the
training sets to train the selected models, random forest and
bagging with regression trees. The test set was used to test
the predictions of our models in other data, by comparing
the actual values with the predicted ones. The performance
of each model is evaluated using the Root Mean Squared
Error metric (RMSE) .

A second round of experiments included the training of
the same models presented in Table 2, but testing them on
new routes and bus stops, not present in the training set.
To produce these training and testing sets, special care was
given on the selection of the test data so that it contained
not only new routes but also new bus stops, not present in
the training set.

Our proposed models are tested against three baseline
models. The Mean Model and Median Models always return
the mean and median values respectively of the trainset’s
boarding passengers count. A third more complex baseline
model uses a 1NN regression model finding for each instance
of the testing set, the closest example in the training set
using the Euclidean Distance based on all the quantitative
features. The more complex 1NN baseline model was used
with both feature sets RRf and RMf.

For the implementation of the methods and the exper-

2photos of the installed APC sensors, by Link Technologies:
http://j.mp/BusGridSensors
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Figure 2: Percentage of test set examples correctly estimated for varying levels of absolute prediction devia-
tion thresholds.

iments we used the R statistical software3. The model’s
parameters are detailed in the rest of this section.

The evaluation of the models is depicted in the tables
and plots above (see Table 1 and Figure 2). Due to space
limitations we present only the models that demonstrated
the best results.

Table 1(b) shows the RMSE of the examined models in
known routes and bus stops. The random forest models
using 200 trees performed best among all models trained and
also achieved a marginally smaller error than the bagging
models using the same number of trees. In both cases no
significant improvement was found with more trees, and in
some cases, models with more trees could overfit the training
set. Trained models tested in known bus stops and routes,
exhibit different performance pattern when tested in new
bus stops and routes. For the models tested in known stops
and routes, random forest achieves the lowest RMSE, with
200 trees and using the mean stop’s latitude and longitude
to represent bus direction (RMf feature set).

On the other hand, models tested in new -unseen- routes
and stops (see Table 1(a)) give better results, when they
use the lambda and beta features instead of the mean stop’s
latitude and longitude. Still, Random Forests and Bagging
perform best when trained using 200 trees as in the previous
experiment, with Random Forests achieving again the lowest
root mean squared error. It is important to note that the
1-NN baseline models demonstrate the worse performance
in this case.

Moreover, for the model with the best results, Random
Forests, we examined the importance of the features as these
are calculated from the method itself.

The feature importance estimations are shown in Table 3.
We can observe two distinct groups of features based on their
importance. The current bus stop’s latitude and longitude,
the terminal’s latitude and longitude, the proposed lambda
and beta features representing bus direction and finally the
sine and cosine of the current minute of the day can be
considered as the most important features, while the rest of
them have smaller importance values, but their contribution
as predictors is significant.

3http://cran.r-project.org

Feature %Inc MSE IncNodePurity
currentStopLatitude 51.62 279053.47
currentStopLongitude 50.36 213814.18
lambda 26.51 118222.56
beta 25.41 116149.09
endingStopLatitude 21.28 67875.20
endingStopLongitude 18.16 47138.76
apparentTemperature 9.42 285690.77
Cloudy 0.78 48501.02
Foggy 0.15 9541.096
Breezy 0.10 5964.09
Windy 2.03 13834.59
Rain 0.52 12682.73
weekdayAsSine 2.47 79054.63
weekdayAsCosine 2.94 91472.24
minuteindayAsSine 28.48 316633.48
minuteindayAsCosine 25.39 323634.34

Table 3: Feature importance as computed from the
random forest model using feature set RRf. A larger
value of Increased MSE indicates an important fea-
ture.

To examine the accuracy of the models for different levels
of allowed error (deviation) we use two REC curves [1] de-
picting the number of test set examples correctly estimated
(accuracy) for varying levels of allowed Mean Absolute Error
(MAE) (see Figure 2). The random forest models perform
best and significantly better from the baseline models in the
full range of deviations up to a MAE value of ∼ 2 people.

We can conclude that the proposed feature sets combined
with the ensemble learning methods used, demonstrated sig-
nificantly better results compared to our baseline models.

5. RELATED WORK
In [7] a passenger demand prediction model developed

specifically for bus networks is presented. This work takes
a time-series forecasting approach presenting a weighted en-
semble prediction model from two Poisson models and an
ARIMA model which successfully predict bus demand for
a short-time period of P-minutes. The prediction model as



it formulated as a time-series one is applied only to spe-
cific bus-routes present in the historical data, whereas the
prediction model proposed here allows for a highly accu-
rate generalized prediction to unseen bus stops and routes.
Moreover our model does not make any assumption regard-
ing the distribution of the data (non-parametric) which can
be especially important when dealing with concept-drift.

In [6] an interactive multiple model (IMM) is proposed,
which comprises three time series, namely the weekly, daily,
and 15 min time series. The filter algorithm-based model
proposed predicts short-term passenger demand in contrast
to our approach which can be used for an indefinite predic-
tion horizon. This work formulates the prediction problem
as a time-series forecasting one. In our work the three dis-
tinct time series representing periodicity, are incorporated
as features controlling this way for the effect of time on the
model’s output.

In [4] a prediction system is presented as a part of a greater
project that can be used in real-time transit information ex-
traction. Similary to our work, it uses data retrieved via
the APC and AVL systems that are installed on buses. The
modelling system consists of two separate algorithms, which
are based on the Kalman filter method. The first one uses
the last three-day historical data of the current bus, as well
as the running time of the previous bus at instant k to es-
timate the bus running time on a particular link at instant
k+1. The second algorithm uses the last three-day historical
passenger arrival rates on a specific bus stop to predict the
current passenger arrival rate, in contrast to our work that
predicts the actual number of incoming passengers based on
a variety of features including weather data. Furthermore,
the cited work can be applied only on previously known bus
stops and routes.

In [5] a framework for real-time demand-responsive bus
dispatching control is presented, which along with other
methods, includes one for Short-term passenger demand fore-
casting. The study is oriented toward passenger trip genera-
tion. The cited method, as in [6], formulates the forecasting
problem as a time-series forecasting one, uses ITS technology
(such as APC systems) to retrieve the passenger volume in
each bus stop and employs a simple exponential smoothing
technique for the short-term passenger demand prediction.
Our proposed model can be applied in not yet existing bus
stops and directions. Moreover, the use of weather data and
the variety of the features that constitute our proposed fea-
ture sets, enable a long-term passenger demand forecasting
with significant accuracy.

6. CONCLUSIONS AND FUTURE WORK
This paper examined a way of improving the productivity

and customer service quality in the public transport bus ser-
vices. We presented BusGrid, an information system which
uses Machine Learning methods to estimate productivity
and QoS KPI indexes. We also proposed two feature sets
of important predictors for an accurate passenger demand
predictions.

Results showed significant benefit from using the proposed
models over the baseline ones, producing accurate predic-
tions for the passenger demand, both on existing bus stops
and not yet existing ones.

Future work includes further experimentation on Machine
Learning regression methods that will further improve the
accuracy of passenger demand prediction. A study on the

concept-drift characteristics of the domain will further help
to produce more trend-invariant predictions. Finally, the
models will be evaluated further when used by the RL-bus
subsystem to create simulated passenger demand scenarios
and learn the appropriate bus schedules that achieve both a
better route productivity and quality of service.
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