
Visual Development of Defeasible Logic Rules for the Semantic Web

Efstratios Kontopoulos1, Nick Bassiliades2, Grigoris Antoniou3

1Department of Informatics, Aristotle University of Thessaloniki
GR-54124 Thessaloniki, Greece

Tel: ++302310998231, Fax: ++302310998418
skontopo@csd.auth.gr

2Department of Informatics, Aristotle University of Thessaloniki
GR-54124 Thessaloniki, Greece

Tel: ++302310997913, Fax: ++302310998419
nbassili@csd.auth.gr

3Institute of Computer Science, FO.R.T.H.
P.O. Box 1385, GR-71110, Heraklion, Greece
Tel: ++30 2810 391624, Fax: ++30 2810 391638

antoniou@ics.forth.gr

 2

Visual Development of Defeasible Logic Rules for the Semantic Web

Abstract
This chapter is concerned with the visualization of defeasible logic rules in the Semantic Web
domain. Logic plays an important role in the development of the Semantic Web and defeasible
reasoning seems to be a very suitable tool. However, it is too complex for an end-user, who often
needs graphical trace and explanation mechanisms for the derived conclusions. Directed graphs
can assist in this affair, by offering the notion of direction that appears to be extremely applicable
for the representation of rule attacks and superiorities in defeasible reasoning. Their applicability,
however, is balanced by the fact that it is difficult to associate data of a variety of types with the
nodes and the connections between the nodes in the graph. In this chapter we try to utilize
digraphs in the graphical representation of defeasible rules, by exploiting the expressiveness and
comprehensibility they offer, but also trying to leverage their major disadvantages. Finally, the
chapter briefly presents a tool that implements this representation methodology.

Keywords: Non-monotonic Reasoning, Defeasible Logic, Semantic Web, Visual
Representation, Information Visualization, Inference Systems

 3

INTRODUCTION
The Semantic Web (Berners-Lee, 2001) constitutes an effort to improve the current web, by
adding metadata to web pages and, thus, making the content of the Web accessible not only to
humans, as it is today, but to machines as well. The development of the Semantic Web proceeds
in layers, each layer being on top of other layers. This architecture imposes the substantial
evolvement of the previous layers, before a specific layer can commence getting developed. The
upcoming efforts towards the development of the Semantic Web will be targeted at the Logic
and Proof layers, which are believed to posses a key role in the eventual acceptance of the
Semantic Web on behalf of the users.
Defeasible reasoning (Nute, 1987), a member of the non-monotonic reasoning family, represents
a simple rule-based approach to reasoning not only with incomplete or changing but also with
conflicting information. Defeasible reasoning can represent facts, rules and priorities and
conflicts among rules. Nevertheless, defeasible logic is based on solid mathematical formulations
and is, thus, not fully comprehensible by end users, who often need graphical trace and
explanation mechanisms for the derived conclusions.
Directed graphs can assist in confronting this drawback. They are a powerful and flexible tool of
information visualization, offering a convenient and comprehensible way of representing
relationships between entities (Diestel, 2000). Their applicability, however, is balanced by the
fact that it is difficult to associate data of a variety of types with the nodes and the connections
between the nodes in the graph.
In this chapter we try to utilize digraphs in the graphical representation of defeasible logic rules,
by exploiting the expressiveness and comprehensibility they offer, but also trying to leverage
their major disadvantage, by proposing a representation approach that features two distinct node
types, for rules and atomic formulas, and four distinct connection types for each rule type in
defeasible logic and for superiority relationships. The chapter also briefly presents a tool that
implements this representation methodology.
The rest of the chapter is organized as follows: The next section presents the vision of the
Semantic Web, reviewing the most important technologies for its development. Then the
importance of Logic in the Semantic Web domain is analyzed. The following two sections
describe the key aspects of our approach, namely, the application of directed graphs in the
representation of logic rules in general and of defeasible logic rules in particular. Then a system
that implements this approach, called VDR-DEVICE, is presented and the chapter ends with the
conclusions and poses future research directions.

THE VISION OF THE SEMANTIC WEB
One of the most inspired definitions for the Semantic Web (SW) was given by the inventor of the
current Web - and visionary of the SW - Tim Berners-Lee (2001), according to which “the
Semantic Web is an extension of the current Web, in which information is given well-defined
meaning, better enabling computers and people to work in cooperation” (p. 35). In other words,
the Semantic Web is not a mere substitute but an important enhancement to the World Wide
Web (WWW) and its primary goal is to make the content of the Web accessible not only to
humans, as it is today, but to machines as well. This way, software agents, for example, will have
the capability to “understand” the meaning of the information available on the WWW and this
will result in a better level of cooperation among agents as well as between agents and human
users. The basic principle behind the SW initiative lies in organizing and inter-relating the

 4

available information, so that it can be utilized more efficiently by a variety of distinct Web
applications.
However, the SW has not yet acquired a concrete substance and still remains a vision to a great
extend. Nevertheless, a significant number of researchers and companies are working towards
this direction, developing technologies that will assist the SW initiative as well as applications
specifically suitable for the SW environment. These efforts are also backed by generous funding
from DARPA (Defense Advanced Research Projects Agency of the United States) and from the
EU (European Union).
The development of the SW is based on technologies that form a hierarchy of layers; each layer
is based on the layers and technologies below it. Every layer has to be widely approved by users,
companies and trust groups, before the next technologies in the hierarchy can be further
developed. One of the basic layers in this hierarchy deals with content representation, where
XML (eXtensible Markup Language) is the dominant standard, allowing the representation of
structured documents, using custom-defined vocabulary. However, although XML offers the
capability of representing virtually any kind of information, it does not offer any further
knowledge, regarding the semantic meaning of the information described. Thus, it is not clear to
the user what the nesting of tags, for example, means for each application. The need to represent
meaning along with the content led to RDF (Resource Description Framework), a statement
model with XML syntax. RDF allows representation of data and meta-data, a term that refers to
“data about data”. Meta-data are important for the SW initiative, since they also capture the
meaning (or semantics) of the data. RDF does not supply, however, tools for structuring and
organizing the data. The need for meta-data vocabularies was imperative and this was the role
played by the ontologies. Ontology languages take representation a step further, by allowing
expression of high-level semantics. RDF Schema and OWL (Web Ontology Language) are the
main ontology-building tools in the SW. Furthermore, the Logic layer, one of the top layers in
the SW technologies hierarchy, is based on the previous layers and offers the representational
capabilities of predicate logic as well as the possibility of correlating the data. The Logic layer is
accompanied by the Proof layer that describes the inference mechanisms, which utilize the
knowledge produced from the former layer. Finally, the Trust layer offers trust mechanisms that
allow the verification of the data exchanged in the SW.
The last layers of the SW hierarchy (i.e. the Logic, Proof and Trust layers) are not yet fully
developed and, naturally, there exist almost no tools that perform such functionalities. Future
attempts in the development of the SW will, nevertheless, be directed towards the evolution of
these layers as well, with a number of logic-based systems emerging to bridge the gap.

RDF – A Common Information Exchange Model in the Semantic Web
An important step towards augmenting the available information in the Web with semantic
content involves the design and implementation of a common information exchange model that
will be used by all the SW applications. The solution, as stated in the previous section as well,
lies in the Resource Description Framework (RDF), a generic model “for supporting resource
description, or metadata (data about data), for the Web” (Powers, 2003, p. 20).
The basic idea behind RDF is a model, comprised of a number of statements and connections
between these statements. Thus, the statement is the basic building block of an RDF document
and it consists of a resource-property-value triple:

• Resources are the objects we want to refer to or talk about. Every resource is uniquely
identified by a Uniform Resource Identifier (URI).

 5

• Properties are used to describe relations between resources, but, in practice, they are a
special kind of resources, being also identified by URIs.

• Values can either be resources or simply literals (strings).
An example of a statement that better illustrates the above is:
The apartment http://www.example.org/carlo_ex.rdf#ap01 has a property
http://www.example.org/carlo.rdf#pets whose value is “yes”.
This statement declares that pets are indeed allowed in a specific apartment with codename
“ap01”. Here “http://www.example.org/carlo_ex.rdf#ap01” is the resource (or
subject), “http://http://www.example.org/carlo.rdf#pets” is the property (or
predicate) and the value (or object) is “yes”.
There are three ways to represent an RDF statement: The first one is also the simplest one and
has to do with creating a subject-predicate-object triple from the statement. Thus, the statement
above would be represented by the triple:
(http://www.example.org/carlo_ex.rdf#ap01,
http://www.example.org/carlo.rdf#pets, “yes”). Note here that the resource and
property are uniquely identified by a URL (which is a kind of URI) and the value is simply a
string (but could as well be a URI).
The second way of representing an RDF statement is graph-based, as can be seen in Fig. 1. A
directed graph is utilized, with arcs directed from the resource to the value. Such graphs are more
often encountered with the name of semantic nets in the AI domain.

http:// www.example.org/carlo.rdf#pets

yes

http://www.example.org/carlo_ex.rdf#ap01

Fig. 1. Graph representation of an RDF statement

The third representation possibility, however, is probably the most important one, since it is
based on XML and, thus, allows the re-usability of the various tools available for XML
processing (syntactic interoperability). The XML fragment that expresses the above statement
can be seen in Fig. 2.

 <rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:carlo=”http://www.example.org/carlo.rdf”
 xmlns:carlo_ex =”http://www.example.org/carlo_ex.rdf”>
 <rdf:Description rdf:about=”&carlo_ex;ap01”>
 <carlo:pets> yes </carlo:pets>
 </rdf:Description>
<rdf:RDF>

Fig. 2. XML-based syntax of an RDF statement

Every statement is represented by an rdf:Description element. The subject of the statement
is being referred to in the rdf:about attribute, the predicate is used as a tag and the object is the
content of the tag.

 6

Finally, the important aspect of namespaces should be pointed out. Namespaces define a
mechanism for resolving name clashes if more than one document is imported. According to
namespaces, the names (actually URIs) of the elements in an XML/RDF document are defined
using a combination of a base URL, using a prefix that is declared with the command:
xmlns:prefix=”URL”, and a local name that is unique within the base URL. Τhis way the
same local name can be used freely in many RDF/RDF Schema documents, since the existence
of the prefix disambiguates things. The namespaces defined in an element can be used by that
element and its descendants.
In RDF, external namespaces do not only offer disambiguation, as in XML, but they are also
expected to be RDF documents defining resources, which are then used in the importing RDF
document. This mechanism allows the reuse of resources by other people who may decide to
insert additional features into these resources. The result is the emergence of large, distributed
collections of knowledge.
In the example above (Fig. 2), three namespaces are declared: rdf, carlo and carlo_ex. The
first one contains the necessary vocabulary for RDF statements, while the other two include
vocabulary specific for the domain of apartment renting.

Ontologies in the Semantic Web
The main knowledge representation tool in the SW is the ontology, which is simply a structured
representational formalism that shares a lot of common elements with the frames and the
semantic nets. The ontologies are mainly used in defining common vocabularies, used in the
exchange of information among SW applications.
However, ontologies also offer interoperability among the available information and the various
WWW applications like search engines, Web portals, intelligent agents and Web services. For
example, the major disadvantages of today’s search engines are their low precision and high
recall. If there existed the possibility to perform a search based on an ontology, then the input
keywords would be associated with the intended meaning. The search results would not only be
more accurate, but a number of results that would contain conceptual synonyms of the inserted
keyword would also be returned.
The main ontology languages in the SW today, as mentioned earlier in this chapter, are RDF
Schema and OWL. The former is a vocabulary description language for describing properties
and classes of RDF resources, while the latter is a richer vocabulary description language that
can also describe relations between classes, cardinality, equality etc. The system VDR-DEVICE,
described later in this chapter, utilizes the RDF Schema technology.

RDF Schema
Although RDF lets the user describe resources using a custom vocabulary, apparently the level
of expressivity it offers is not sufficient. RDF Schema, RDF’s “semantic extension”, equips users
with mechanisms for describing domains and correlations among resources, namely the allowed
vocabulary for resources and properties, i.e. resources types and property types.
Though there are significant differences between RDF Schema and conventional object-oriented
programming languages, the former is also based on classes and properties, similarly to the
latter. Therefore, classes are sets of resources, while members of classes are called instances. On
the other hand, users can also describe specific properties of class instances; properties impose a
relation between subject and object resources and are characterized by their domain (the class of

 7

resources that may appear as subjects in a triple with the property as predicate) and range (the
class of resources that may appear as values in a triple with the property as predicate).
Instances are associated to the corresponding classes by declaring their type, using a statement
like: carlo_ex:ap01 rdf:type carlo:apartment. This statement declares that instance
ap01 belongs to the class apartment. However, this is indirectly extracted by the fact that
rdf:type has rdfs:Class as range, which immediately results in apartment being a class,
according to the descriptional nature of the RDF semantics.
Naturally, the notions of hierarchy and inheritance are also applied in RDF Schema. However,
they are not only applied in the case of classes but in the case of properties as well. Thus, there
can be defined super- and subclasses of a specific class, but there can also exist super- and
subproperties of a specific property.
An example of all the above can be seen in Fig. 3. Two classes are described: class “house” and
its subclass “apartment”. Similarly, two properties are also described: “size”, which has class
“house” as its domain and “gardenSize”, which is a subproperty of “size” and, thus, inherits
from the latter the domain and range. Note here that, contrary to object-oriented programming,
properties are not part of a class description, but are “globally” visible in an RDF Schema
ontology. This not only imposes a different programming approach, but also offers flexibility in
extending ontologies.

 <rdfs:Class rdf:ID="house"/>

<rdfs:Class rdf:ID="apartment">
<rdfs:subClassOf rdf:resource="#house"/>

</rdfs:Class>

<rdf:Property rdf:ID="size">
<rdfs:domain rdf:resource="#house"/>
<rdfs:range rdf:resource="&xsd;integer"/>

</rdf:Property>

<rdf:Property rdf:ID="gardenSize">
<rdfs:subPropertyOf rdf:resource="#size"/>

</rdf:Property>

Fig. 3. Classes and Properties in RDF Schema

LOGIC IN THE SEMANTIC WEB
As stated in a previous section, the Logic and Proof layers of the Semantic Web architecture
constitute the current targets of most development efforts towards the SW vision. Contrary to
ontologies, logic can capture more complex semantic relationships between metadata and allow
processing of the latter in various useful ways.
Rules usually arise naturally from the business logic of applications. Uses of logic and/or rules
include the following:

• Logic (predicate logic) can capture some of the ontological knowledge expressed in
description logics (e.g. OWL). For example, the fact that class lecturer is a subclass of
faculty is represented as: lecturer(X) → faculty(X)

• Rules can be used to convert data and/or metadata documents from one format or type to
another.

 8

• Logic can be used to check the consistency of an ontology or a metadata document using
the declarations and constraints of the ontology.

• Rules can be used to formulate questions in order to retrieve resources that belong to
specified metadata terms or even to identify-classify unknown terms.

• Finally, intelligent Semantic Web agents can use logical rules for decision support and
action selection among a number of possibilities, in a non-deterministic way.

One of the most important advantages of using logic is that it is easy for an agent to provide
explanations to the user about its conclusions. Simply, the explanations are formed by the
sequence of inference steps that the agent's inference mechanism has followed. Explanations are
very important for the adoption of Semantic Web, because they increase the confidence of users
to agents' decisions.

Non-monotonic And Defeasible Reasoning
Non-monotonic reasoning (Antoniou, 1997) constitutes an approach that allows reasoning with
incomplete or changing information. More specifically, it provides mechanisms for retracting
conclusions that, in the presence of new information, turn out to be wrong and for deriving new,
alternative conclusions instead. Contrary to standard reasoning, which simply deals with
universal statements, non-monotonic reasoning offers a significantly higher level of
expressiveness.
Furthermore, defeasible reasoning (Nute, 1987), a member of the non-monotonic reasoning
family, represents a simple rule-based approach to reasoning not only with incomplete or
changing but also with conflicting information. When compared to mainstream non-monotonic
reasoning, the main advantages of defeasible reasoning are enhanced representational
capabilities coupled with low computational complexity.
Defeasible reasoning can represent facts, rules and priorities and conflicts among rules. Such
conflicts arise, among others, from rules with exceptions, which are a natural representation for
policies and business rules (Antoniou et al, 1999) and priority information is often available to
resolve conflicts among rules.

Conflicting Rules In The Semantic Web
Conflicting rules might be applied in the Semantic Web in the following cases:

Reasoning with Incomplete Information
In (Antoniou, 2002) a scenario is described, where business rules have to deal with incomplete
information: in the absence of certain information some assumptions have to be made that lead to
conclusions not supported by typical predicate logic. In many applications on the Web such
assumptions must be made because other players may not be able (e.g. due to communication
problems) or willing (e.g. because of privacy or security concerns) to provide information. This
is the classical case for the use of non-monotonic knowledge representation and reasoning
(Marek & Trusczynski, 1993).

Rules with Exceptions
As mentioned earlier, rules with exceptions are a natural way of representation for policies and
business rules. And priority information is often implicitly or explicitly available to resolve
conflicts among rules. Potential applications include security policies (Ashri et al, 2004),
business rules (Antoniou & Arief, 2002), e-contracting (Governatori, 2005), brokering (Antoniou
et al, 2005) and agent negotiations (Governatori et al, 2001).

 9

Default Inheritance in Ontologies
Default inheritance is a well-known feature of certain knowledge representation formalisms.
Thus it may play a role in ontology languages, which currently do not support this feature. In
(Grosof & Poon, 2003) some ideas are presented for possible uses of default inheritance in
ontologies. A natural way of representing default inheritance is rules with exceptions plus
priority information. Thus, non-monotonic rule systems can be utilized in ontology languages.

Ontology Merging
When ontologies from different authors and/or sources are merged, contradictions arise
naturally. Predicate logic based formalisms, including all current Semantic Web languages,
cannot cope with inconsistencies. If rule-based ontology languages are used (e.g. DLP (Grosof et
al, 2002)) and if rules are interpreted as defeasible (that is, they may be prevented from being
applied even if they can fire) then we arrive at non-monotonic rule systems. A skeptical
approach, as adopted by defeasible reasoning, is sensible because it does not allow for
contradictory conclusions to be drawn. Moreover, priorities may be used to resolve some
conflicts among rules, based on knowledge about the reliability of sources or on user input).
Thus, non-monotonic rule systems can support ontology integration.

LOGIC AND VISUAL REPRESENTATION
There exists a variety of systems that implement rule representation and visualization, although,
to the best of our knowledge, no system exists yet that can visually represent defeasible logic
rules.

WIN-PROLOG
WIN-PROLOG (Steel, 2005) is a well-known Prolog compiler system, developed by LPA (Logic
Programming Associates). It offers rule representation in the form of graphs as well as rule
execution tracing (Fig. 4). The graphs produced, however, feature an elementary level of detail
and, therefore, do not assist significantly in the visualization of the rule bases developed.

Fig. 4. Explanation trace, produced by WIN-PROLOG

VisiRule
LPA is also the developer of VisiRule, a graphical tool for delivering business rule and decision
support applications (Shalfield, 2005). All the user has to do is draw a flowchart that represents

 10

the decision logic and VisiRule will produce Flex code from the flowchart and compile it. The
system offers guidance during the construction process, constraining errors, based on the
semantic content of the emerging program. This reduces the potential for constructing invalid or
meaningless links, improving productivity and helping detect errors as early as possible within
the design process (Fig. 5).

Fig. 5. Rule graph, produced by VisiRule

KEE
Certain knowledge-based system development tools also feature rule and execution graph-
drawing. An example is KEE (Knowledge Engineering Environment) (Intellicorp, 1984) that
offers several execution control mechanisms. The main features of the software include: (a) a
knowledge base development tool, (b) utilities for the interface with the user and (c) graph
drawing tools for the knowledge base and execution. In this case, however, the visualizations
offer little or no interaction with the user and simply offer an alternative view of the knowledge
base (Fig. 6).

Fig. 6. Screenshot of KEE, illustrating the various tools of the system

Graphviz
Another example is Graphviz, an open-source graph visualization software with several main
graph layout programs. Its applications are not limited to drawing rule graphs, but can also
include other domains, like software engineering, database and web design, networking and
visual interfaces. As a general-purpose graph drawing utility, Graphviz can be applied in rule

 11

graph drawing, since it offers variation in graph node types, but does not feature variety in the
connection types in the graph and is, therefore, unsuitable for the representation of defeasible
rules (Fig. 7).

Fig. 7. A simple graph, produced with Graphviz

Spectacle
Another system that represents knowledge in a graphical context is Spectacle, one of
Aidministrator’s core products (Aidministrator is a software provider in the market of
information and content management). As stated by Fluit et al (2003), Spectacle “facilitates the
creation of information presentations that meet the needs of end users”. One of Spectacle’s key
components is the Cluster Map, used for visualizing ontological data. Actually, the Cluster Map
is used to visualize RDFS-based lightweight ontologies that describe the domain through a set of
classes and their hierarchical relationships (Fig. 8). With Spectacle, users can efficiently perform
analysis, search and navigation, although the system’s functionality is restricted to lightweight
ontologies only.

Fig. 8. Screenshot of a Spectacle cluster map

CPL
CPL (Conceptual Programming Language), introduced by Hartley & Pfeifer (2000), constitutes
an effort to bridge the gap between Knowledge Representation (KR) and Programming
Languages (PL). CPL is a visual language for expressing procedural knowledge explicitly as
programs. The basic notion in CPL are Conceptual Graphs (CGs), which are connected
multilabeled bipartite oriented graphs and can express declarative and/or procedural knowledge,

 12

by defining object and action constructs (Fig. 9). Particularly, the addition of visual language
constructs (data-flow/flowchart) to Conceptual Programming allows the process of actions as
data-flow diagrams that convey the procedural nature of the knowledge within the
representation.

Fig. 9. A simple program, written in CPL

UTILIZING DIGRAPHS FOR RULE REPRESENTATION
Although defeasible reasoning features a significant degree of expressiveness and intuitiveness,
it is based on a solid mathematical formulation, which, in many cases, may seem too
complicated. So, end users might often consider the conclusion of a defeasible logic theory
incomprehensible and complex and, thus, a graphical trace and an explanation mechanism would
be very beneficial.
Directed graphs, or digraphs, as they are usually referred to, are a special case of graphs that
constitute a powerful and convenient way of representing relationships between entities. Usually
in a digraph, entities are represented as nodes and relationships as directed lines or arrows that
connect the nodes. Each arrow connects only two entities at a time and there can be no two (or
more) arrows that connect the same pair of nodes. The orientation of the arrows follows the flow
of information in the digraph. Diestel (2000) offers a thorough mathematical definition of
directed graphs as well as details on graph theory in general.
Digraphs offer a number of advantages to information visualization, with the most important of
them being:

• comprehensibility: the information that a digraph contains can be easily and accurately
understood by humans and

• expressiveness: although the appearance and structure of a digraph may seem simplistic,
its topology bears non-trivial information

There are, however, a couple of major disadvantages, not only of digraphs but of graphs in
general, as described in (Clarke, 1982):

• it is difficult to associate data of a variety of types with the nodes and with the
connections between the nodes in the graph

• as the size and complexity of the graph grows, it becomes more and more difficult to
search and modify the graph

On the other hand, in the case of graphical representation of logic rules, digraphs seem to be
extremely appropriate, since they offer a number of extra advantages:

 13

• explanation of derived conclusions: the series of inference steps in the graph can be easily
detected and retraced

• proof visualization and validation: by going backwards from the conclusion to the
triggering conditions, one can validate the truth of the inference result

• especially in the case of defeasible logic rules, the notion of direction can assist in
graphical representations of rule attacks, superiorities etc.

Therefore, in this chapter we attempt to exploit the expressiveness and comprehensibility of
directed graphs, as well as their suitability for rule representation, but also try to leverage the two
aforementioned disadvantages, by adopting a new, “enhanced” digraph approach. This
visualization scheme was implemented as part of the VDR-DEVICE system, which is a visual
integrated development environment for developing and using defeasible logic rule bases on top
of RDF ontologies (Bassiliades et al, 2005) for the Semantic Web and is also briefly presented in
this work.

Deductive Rules and Digraphs
In an attempt to leverage the first and most important disadvantage of graphs (inability to use a
variety of distinct entity types), the digraphs in our approach will contain two kinds of nodes,
similarly to the methodology followed by Jantzen (1989). The two node types will be:
• literals, represented by rectangles, which we call “literal boxes”
• rules, represented by circles

Thus, according to this principle, the following rule base:
p: if A then B
q: if B then ¬C

can be represented by the directed graph in Fig. 10.
Each literal box consists of two adjacent “atomic formula boxes”, with the upper one
representing a positive atomic formula and the lower one representing a negated atomic formula.
This way, the atomic formulas are depicted together clearly and separately, maintaining their
independence.

 p
A B

q
C

¬ ¬ ¬
Fig. 10. Digraph displaying a simple rule base

In the case of a rule body that consists of a conjunction of literals the representation is not
profoundly affected, as illustrated in Fig. 11.

r: if ¬A and B then C

r

A

C
B

¬

¬
¬

Fig. 11. Digraph featuring a conjunction

 14

As can be observed, digraphs, “enhanced” with the addition of distinct node types, offer a
significant level of expressiveness in representing rules. The next step is to use directed graphs in
the representation of defeasible logic rules, which are more demanding in representational
capabilities.

Defeasible Logics And Digraphs
A defeasible theory D (i.e. a knowledge base or a program in defeasible logic) consists of three
basic ingredients: a set of facts (F), a set of rules (R) and a superiority relationship (>).
Therefore, D can be represented by the triple (F, R, >).
In defeasible logic, there are three distinct types of rules: strict rules, defeasible rules and
defeaters. In our approach, each one of the three rule types will be mapped to one of three
distinct connection types (i.e. arrows), so that rules of different types can be represented clearly
and distinctively.
The first rule type in defeasible reasoning is strict rules, which are denoted by A → p and are
interpreted in the typical sense: whenever the premises are indisputable, then so is the
conclusion. An example of a strict rule is: “Penguins are birds”, which would become:
r1: penguin(X) → bird(X). Fig. 12 displays the corresponding digraph.

 r1
penguin bird

¬ ¬
Fig. 12. Digraph displaying a strict rule

Notice that in the rule graph we only represent the predicate and not the literal (i.e. predicate plus
all the arguments) because we are mainly interested in making clear to the reader the
interrelationships between the concepts (through the rules) and not the complete details of the
defeasible theory. The full representation schema is thoroughly described in a later section, with
the definition of class boxes, class patterns and slot patterns.
Contrary to strict rules, defeasible rules can be defeated by contrary evidence and are denoted by
A ⇒ p. Examples of defeasible rules are r2: bird(X) ⇒ flies(X), which reads as: “Birds
typically fly” and r3: penguin(X) ⇒ ¬flies(X), namely: “Penguins typically do not fly”.
Rules r2 and r3 would be mapped to the directed graph in Fig. 13.

r3

r2
flies
¬

¬
penguin

¬
bird

Fig. 13. Digraph displaying two defeasible rules

Defeaters, denoted by A ~> p, are rules that do not actively support conclusions, but can only
prevent some of them. In other words, they are used to defeat some defeasible conclusions by
producing evidence to the contrary. An example of such a defeater is:
r4: heavy(X) ~> ¬flies(X), which reads as: “Heavy things cannot fly”. This defeater can

 15

defeat the (defeasible) rule r2 mentioned above and it can be represented by the digraph in Fig.
14.

Finally, the superiority relationship among the rule set R is an acyclic relation > on R, that is, the
transitive closure of > is irreflexive. Superiority relationships are used, in order to resolve
conflicts among rules. For example, given the defeasible rules r2 and r3, no conclusive decision
can be made about whether a penguin can fly or not, because rules r2 and r3 contradict each
other. But if the superiority relationship r3 > r2 is introduced, then r3 overrides r2 and we can
indeed conclude that the penguin cannot fly. In this case rule r3 is called superior to r2 and r2
inferior to r3. In the case of superiority relationships a fourth connection type is introduced.
Thus, the aforementioned superiority relationship would be represented by Fig. 15.

r4
heavy

¬

flies

¬
Fig. 14. Digraph displaying a defeater

 r3 r2>>>>>>>>>>>>>>>

Fig. 15. Digraph displaying a superiority relationship

The set of rules mentioned in this section, namely rules r1, r2, r3 and r4, form a bigger directed
rule graph, which is depicted in Fig. 16.

¬
penguin

r1

¬

bird

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>r3 r2

¬

flies

r4
heavy

¬
Fig. 16. The digraph formed by the rules r1, r2, r3 and r4.

Finally, another important type of conflicting evidence in defeasible reasoning is the notion of
conflicting literals. In some applications, e.g. making an offer in a price negotiation setting,
literals are often considered to be conflicting and at most one of a certain set should be derived.
Consider the following three rules, which all produce the same literal type as a conclusion, and
the constraint that requires at most one of the literals to be true:

 16

r1: a(X) ⇒ p(X)

r2: b(X) ⇒ p(X)

r3: c(X) ⇒ p(X)

p(X),p(Y),X≠Y -> ⊥

The graph drawn by these rules is depicted in Fig. 17 and, as can be observed, all three rules
produce the same result type, which is included in a single literal truth box. Of course,
superiority relationships could still determine the priorities among the rules.

r2

r1

p

...

...

r3

¬
a

¬
c

¬
b

Fig. 17. Representation of conflicting literals as a digraph.

THE VDR-DEVICE SYSTEM
VDR-DEVICE is a visual, integrated development environment for developing and using
defeasible logic rule bases on top of RDF ontologies (Bassiliades et al, 2005). It consists of two
primary components:
1. DR-DEVICE, the reasoning system that performs the RDF processing and inference and

produces the results, and
2. DRREd (Defeasible Reasoning Rule Editor), the rule editor, which serves both as a rule

authoring tool and as a graphical shell for the core reasoning system.
Although the two subsystems utilize different technologies and were developed independently,
they intercommunicate efficiently, forming a flexible and powerful integrated environment.

The Reasoning System – Architecture And Functionality
The core reasoning system of VDR-DEVICE is DR-DEVICE (Bassiliades et al, 2004) and
consists of two primary components (Fig. 19): The RDF loader/translator and the rule
loader/translator. The user can either develop a rule base (program, written in the RuleML-like
syntax of VDR-DEVICE – see Fig. 18 for a fragment) with the help of the rule editor described
in the following sections, or he/she can load an already existing one, probably developed
manually. The rule base contains: (a) a set of rules, (b) the URL(s) of the RDF input
document(s), which is forwarded to the RDF loader, (c) the names of the derived classes to be
exported as results and (d) the name of the RDF output document.
The rule base is then submitted to the rule loader which transforms it into the native CLIPS-like
syntax through an XSLT stylesheet and the resulting program is then forwarded to the rule
translator, where the defeasible logic rules are compiled into a set of CLIPS production rules.
This is a two-step process: First, the defeasible logic rules are translated into sets of deductive,

 17

derived attribute and aggregate attribute rules of the basic deductive rule language, using the
translation scheme described in (Bassiliades et al, 2004). Then, all these deductive rules are
translated into CLIPS production rules according to the rule translation scheme in (Bassiliades &
Vlahavas, 2004). All compiled rule formats are also kept in local files (structured in project
workspaces), so that the next time they are needed they can be directly loaded, improving speed
considerably (running a compiled project is up to 10 times faster).

 <imp>
<_rlab ruleID="r1" ruletype="strictrule">

 <ind>r1</ind>
 </_rlab>
 <_head>
 <atom>
 <_opr>
 <rel>bird</rel>
 </_opr>
 <_slot name="name">
 <var>X</var>
 </_slot>
 </atom>
 </_head>
 <_body>
 <atom>
 <_opr>
 <rel>penguin</rel>
 </_opr>
 <_slot name="name">
 <var>X</var>
 </_slot>
 </atom>
 </_body>
</imp>

Fig. 18. A strict rule, written in the RuleML-compatible language of DR-DEVICE (this fragment displays rule r1 of

section “Defeasible Logics And Digraphs”)

RDF triple
Loader

RDF triple
Translator

Local Disk

Input RDF
document URI

ARP

RuleML/DR-DEVICE
Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents RDF

Extractor

Results - Objects CLIPS Rules

Logic Program

Loader

Xalan
XSLT

Processor

Local Disk

RuleML
documents

RuleML document

RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

DRREd USER

Fig. 19. The VDR-DEVICE system architecture

 18

Meanwhile, the RDF loader downloads the input RDF documents, including their schemas, and
translates RDF descriptions into CLIPS objects, according to the RDF-to-object translation
scheme in (Bassiliades & Vlahavas, 2004), which is briefly described below.
The inference engine of CLIPS performs the reasoning by running the production rules and
generates the objects that constitute the result of the initial rule program. The compilation phase
guarantees correctness of the reasoning process according to the operational semantics of
defeasible logic. Finally, the result-objects are exported to the user as an RDF/XML document
through the RDF extractor. The RDF document includes the instances of the exported derived
classes, which have been proved.

Rule Editor – Design And Functionality
VDR-DEVICE is equipped with DRREd, a visual rule editor that aims at enhancing user-
friendliness and efficiency during the development of VDR-DEVICE RuleML documents. Key
features of the software include: (a) functional flexibility - program utilities can be triggered via
a variety of overhead menu actions, keyboard shortcuts or popup menus, (b) improved
development speed - rule bases can be developed in just a few steps and (c) powerful safety
mechanisms – the correct syntax is ensured and the user is protected from syntactic or RDF
Schema related semantic errors.

Fig. 20. The graphical rule editor main window

The main window of the program (Fig. 20) is composed of two major parts: a) the upper part
includes the menu bar, which contains the program menus, and the toolbar that includes icons,
representing the most common utilities of the rule editor, and b) the central and more “bulky”
part is the primary frame of the main window and is in turn divided in two panels:
The left panel displays the rule base in XML tree-like format. The user can navigate through the
tree and can add to or remove elements from the tree, obeying DTD constraints. Furthermore, the
operations allowed on each element depend on the element's meaning within the rule tree.

 19

The right panel shows a table, which contains the attributes that correspond to the selected tree
node in the left panel. The user can also perform editing functions on the attributes, by altering
the value for each attribute in the panel that appears in the bottom-right of the main window,
below the attributes table. The values that the user can insert depend on the chosen attribute.
The development of a rule base using VDR-DEVICE is a process that depends heavily on the
context, i.e. the node being edited. Some examples follow:
• When a new element is added to the tree, all its mandatory sub-elements are also added. In

cases, where there are multiple alternative sub-elements, none is added. The user is responsible
to manually add one of them, by right-clicking on the parent element and choosing a sub-
element from the pop-up menu that appears (Fig. 20).

• The atom element is treated in a specific manner, since it can be either negated or not. The
wrapping/unwrapping of an atom element within a neg element is performed via a toggle
button on the overhead toolbar.

• The function names in a fun_call element are partially constrained by the list of CLIPS
built-in function. However, the user can still use a user-defined function, which is
unconstrained.

• Rule IDs uniquely represent a rule within the rule base; therefore, they are collected in a set
and they are used to prohibit the user from entering duplicate rule IDs and to constrain the
values of IDREF attributes (e.g. superior).

Fig. 21. The namespace dialog window (NDW)

An important component of the editor is the namespace dialog window (NDW, see Fig. 21),
where the user can determine which RDF/XML namespaces will be used by the rule base.
Actually, namespaces are treated as addresses of input RDF Schema ontologies that contain the
vocabulary for the input RDF documents, over which the rules will be run. The namespaces that
have been manually selected by the user to be included in the system are analyzed in order to
extract all the allowed class and property names for the rule base being developed. These names
are then used throughout the authoring phase of the RuleML rule base, constraining the
corresponding allowed names that can be applied and narrowing the possibility for errors on
behalf of the user. Namespaces can be manually entered by the user, through the NDW.
Furthermore, the system shows up in the NDW the namespaces contained in the input RDF
documents (indicated by the rdf_import attribute of the rulebase root element). Notice that

 20

it is up to the user to include them or not as ontologies into the system. Furthermore, the system
shows up only namespaces that actually correspond to RDF documents, i.e. it downloads them
and finds out if they parse to triples. The user can also manually "discover" more namespaces, by
pressing the "…" button next to each namespace entry. The system then downloads the
namespace documents contained within this document and repeats the above namespace
discovery procedure. When it discovers a new namespace, not already contained in the NDW, it
shows it up (unchecked).
Finally, users can examine all the exported results via an Internet Explorer window, launched by
the system (Fig. 22). They can also examine the execution trace of compilation and running, both
at run-time and also after the whole process has been terminated (Fig. 23).

Fig. 22. The Trace window

Fig. 23. The Results window

 21

DRREd’s Digraph Module
DRREd is equipped with a module that allows the creation of a directed rule graph from the
defeasible rule base developed by the editor. This way, users are offered an extra means of
visualizing the rule base, besides XML-tree format and, thus, possess a better aspect of the rule
base displayed and the inference results produced. This section describes thoroughly the steps
towards the generation of the derived graph.

Collecting the Base and Derived Classes
The RDF Schema documents contained in the namespace dialog window are being parsed, using
the ARP parser of Jena (McBride, 2001). The names of the classes found are collected in the
base class vector (CVb), which already contains rdfs:Resource, the superclass of all RDF
user classes. Therefore, the CVb vector is constructed as follows:
rdfs:Resource ∈ CVb ∧ (∀C (C rdf:type rdfs:Class) → C ∈ CVb)
where (X Y Z) represents an RDF triple found in the RDF Schema documents.
Except from the base class vector, there also exists the derived class vector (CVd), which
contains the names of the derived classes, i.e. the classes which lie at rule heads (conclusions).
CVd is initially empty and is dynamically extended every time a new class name appears inside
the rel element of the atom in a rule head. This vector is mainly used for loosely suggesting
possible values for the rel elements in the rule head, but not constraining them, since rule heads
can either introduce new derived classes or refer to already existing ones.
The union of the above two vectors results in CVf, which is the full class vector (CVf = CVb ∪
CVd) and it is used for constraining the allowed class names, when editing the contents of the
rel element inside atom elements of the rule body.

Elements of the Rule Graph
For each class that belongs to the full class vector CVf, a class box is constructed, which,
apparently, is simply a container. The class boxes are initially empty and are dynamically
populated with one or more class patterns. For each atom element inside a rule head or body, a
new class pattern is created and is inserted into (or, in a wider point of view, associated with) the
class box, whose name matches the class name that appears inside the rel element of the
specific atom. In practice, class patterns express conditions on instances of the specific class.
Nevertheless, a class box could indeed remain empty, in the case when a base class is included in
the loaded RDF Schema document(s), but is not being used in any rule during the development
of the rule base. However, it is obvious that this does not apply for derived classes, since the
latter are dynamically detected and added to/removed from the full class vector, as mentioned in
the previous section. Empty class boxes still appear in the rule graph, but naturally play a limited
role.
Visually, class patterns appear as literal boxes, whose design was thoroughly described in a
previous section of this chapter (see “Deductive Rules and Digraphs”). Similarly to class boxes,
class patterns are empty, when they are initially created and are soon populated with one or more
slot patterns. For each _slot element inside an atom, a slot pattern is created that consists of a
slot name (contained inside the corresponding attribute) and, optionally, a variable and a list of
value constraints. The variable is used in order for the slot value to be unified, with the latter
having to satisfy the list of constraints. In other words, slot patterns represent conditions on slots

 22

(or class properties). Each of the slot pattern “ingredients” is being retrieved from the - direct
and indirect - children of the _slot element in the XML tree representation of the rule base.
Since RuleML atoms are actually atomic formulas (i.e. they correspond to queries over RDF
resources of a certain class with certain property values), the truth value associated with each
returned class instance will be either positive or negative. This justifies the mapping of class
patterns to literal boxes.
An example of all the above can be seen in Fig. 24 and Fig. 25. The figures illustrate a class box
that contains three class patterns applied on the person class and a code fragment matching the
third class pattern, written in the RuleML-like syntax of VDR-DEVICE.

 person

¬

name(X |)

¬

sex(| “M”)

sex(| “F”)
age(X | X>18)

¬

Fig. 24. A class box example

 <atom>
<_opr>
<rel href="person"/>

</_opr>
<_slot name="sex">
<ind>"F"</ind>

</_slot>
<_slot name="age">
<_and>
<var>x</var>
<function_call name=">">
<var>x</var>
<ind>18</ind>

</function_call>
</_and>

</_slot>
</atom>

Fig. 25. A code fragment for the third class pattern of Fig. 24

The first two class patterns contain one slot pattern each, while the third one contains two slot
patterns. As can be observed, the argument list of each slot pattern is divided into two parts,
separated by ”|”; on the left all the variables are placed and on the right all the corresponding

 23

expressions and conditions, regarding the variables on the left. In the case of constant values,
only the right-hand side is utilized; thus, the second class pattern of the box in Fig. 24, for
example, refers to all the male persons. This way the content of the slot arguments is clearly
depicted and easily comprehended.
Besides class boxes and their “ingredients” (class patterns, slot patterns), a number of additional
graph elements exists: circles that represent rules and arrows that connect the nodes in the graph.
The graphical representation of rules in the digraph, using circles, was described in section
“Deductive Rules and Digraphs”. The circles in the graph include the rule name, which is equal
to the value of the ruleID attribute in the _rlab element of the corresponding rule. As for the
arrows in the graph, there exist four types of them: three for the rule type and one for the
superiority relationship, as explained in section “Defeasible Logics And Digraphs”. The rule type
is equal to the value of the ruletype attribute inside the _rlab element of the respective rule
and can only take three distinct values (strictrule, defeasiblerule, defeater). As for
the superiority relationship, it is represented as attribute (superior attribute) inside the superior
rule element.

Building the Rule Graph
After having collected all the necessary graph elements and having populated all the class boxes
with the appropriate class and slot patterns, three new vectors are created:
• The base class boxes vector CBb that contains the class boxes corresponding to base

classes.
• The derived class boxes vector CBd that contains the class boxes corresponding to derived

classes.
• The vector R that includes all the rules of the rule base.

An important matter arises at this point, regarding the placement of each element in the graph;
namely, a plan has to be drawn, concerning the location of the elements in the graph drawing
panel of VDR-DEVICE. For this affair, a variation of the rule stratification algorithm found in
(Ullman, 1988) was implemented. The algorithm aims at giving a left-to-right orientation to the
flow of information in the graph; i.e. the arcs in the digraph are directed from left to right,
making the derived graph less complex, more comprehensible and easily readable. The rule
stratification algorithm implemented is displayed in Fig. 26.

 1.Assign all class boxes contained in CBb to stratum 1
2.Assign all rules in R, whose bodies contain only
class patterns belonging to a base class box, to
stratum 2
3.Remove rules applied in STEP 2 from R
4.i = 3
WHILE R.size > 0 {

5.Assign the class boxes contained in CBd that
contain class patterns that act as heads for
rules in stratum i - 1 to stratum i
6.All rules in R with bodies in stratum i are
assigned to stratum i + 1

 7.Remove rules applied in previous STEP from R
 8.i = i + 1 }

Fig. 26. The rule stratification algorithm

 24

An example that could better illustrate the functionality of the algorithm is adopted from
(Antoniou & van Harmelen, 2004, pp. 161-165). The example deals with apartment renting; a
number of available apartments reside in an RDF document along with the properties of each
apartment and the potential renter expresses his/her requirements in defeasible logic, regarding
the apartment he/she wishes to rent. A defeasible rule base that contains the requirements of an
imaginary renter is included in the example. The classes and the rules included in the rule base
are displayed in Table 1.

Table 1. Base classes, derived classes and rules included in the rule base of the example

Base Classes carlo:apartment

Derived Classes

acceptable
offer

cheapest
largest

largestGarden

Rules

r1 - r12
find_cheapest
find_largest

find_largestGarden

Six strata are needed to display all the rules. Table 2 shows the stratum assignments, according to
the algorithm.

Table 2. Stratum assignments for the classes and the rules in the example

stratum 1 carlo:apartment

stratum 2 r1 to r8

stratum 3 acceptable
offer

stratum 4
r9

find_cheapest
find_largest

find_largestGarden

stratum 5
cheapest
largest

largestGarden

stratum 6
r10
r11
r12

In our approach each stratum is considered as a column in the graph drawing panel of the system.
Thus, the first stratum is mapped to the first column on the left, the second stratum to the column
on the right of the first one and so on. Nodes in one column are never connected with nodes in
the same column. Note also that no two nodes of the same type are ever connected with an
arrow. As a result, the digraphs produced by our approach can be considered a type of bipartite
graphs.
Obviously, the number of strata/columns can be too big to fit the screen. In this case the user can
traverse the graph, using the scroll bars located on the edges of the panel. Furthermore, similarly
to the XML-tree format of the rule base, in the digraph there is also the possibility to collapse or

 25

expand certain parts of it. This way, a twofold advantage is offered: (a) the complexity of the
digraph is minimized, since only a limited number of graph parts are visible at a time and (b) the
level of comprehensibility on behalf of the user is raised, since he/she does not have to focus on
the whole graph, but only a part of it.
The two aspects of the rule base, namely the XML-tree and the directed graph are interrelated,
meaning that traversal and alterations in one will also be depicted in the other. So, if for example
the user focuses on a specific element in the tree and then switches to the digraph view, the
corresponding element in the digraph will also be selected and the data relevant to it displayed.
As mentioned in a previous section, the VDR-DEVICE system has a CLIPS-like syntax and a
RuleML-compliant one. Fig. 27 illustrates the first four rules of the above example expressed in
the former syntax (the latter syntax can be found in APPENDIX A). Fig. 28 displays the same
rules in the typical defeasible syntax.

 (defeasiblerule r1
 (carlo:apartment (carlo:name ?x))
 =>
 (acceptable (apartment ?x))
)

(defeasiblerule r2
 (declare (superior r1))
 (carlo:apartment (carlo:name ?x)
 (carlo:bedrooms ?y & :(< ?y 2)))
 =>
 (not (acceptable (apartment ?x)))
)

(defeasiblerule r3
 (declare (superior r1))
 (carlo:apartment (carlo:name ?x)
 (carlo:size ?y & :(< ?y 45)))
 =>
 (not (acceptable (apartment ?x)))
)

(defeasiblerule r4
 (declare (superior r1))
 (carlo:apartment (carlo:name ?x)
 (carlo:pets "no"))
 =>
 (not (acceptable (apartment ?x)))
)

Fig. 27. Rules r1-r4 expressed in the CLIPS-like syntax of VDR-DEVICE

 r1 : ⇒ acceptable(X)
r2 : bedrooms(X, Y), Y < 2 ⇒ ¬acceptable(X)
r3 : size(X, Y), Y < 45 ⇒ ¬acceptable(X)
r4 : ¬pets(X) ⇒ ¬acceptable(X)

Fig. 28. Rules r1-r4 expressed in defeasible syntax

Fig. 29 displays the output of the VDR-DEVICE rule graph drawing module, when a portion of
the rule base of the example in (Antoniou & van Harmelen, 2004, pp. 161-165) is loaded. For
reasons of simplicity, only the first four rules are applied (rules r1-r4) and there exist only one
base and one derived class. The total number of strata in this case is three (i.e. three columns).

 26

Fig. 29. The rule graph drawing module of DRREd

CONCLUSIONS AND FUTURE WORK
This chapter presented the utilization of directed graphs (or digraphs) in the representation of
defeasible logic rules, an affair where digraphs proved to be extremely suitable. It is, however,
difficult to associate data of a variety of types with the nodes and with the connections between
the nodes in the graph and this is probably the major disadvantage of graphs in information
visualization.
In our approach we attempted to apply the use of digraphs in the representation of defeasible
logic rules, exploiting the advantages they offer (comprehensibility, expressiveness), but also
trying to leverage their primary disadvantage. We adopted a novel “enhanced” digraph approach
that features two types of nodes (one for rules and one for literals) and four connection types
(one for each of the three distinct rule types in defeasible reasoning and a fourth for the
representation of superiority relationships). It was observed that these enhanced directed graphs
offer a significant level of expressiveness in representing defeasible logic rules.
A system that implements this digraph approach was briefly described. The system is called
VDR-DEVICE and is a visual, integrated development environment for developing and using
defeasible logic rule bases on top of RDF ontologies. VDR-DEVICE consists of two
subcomponents: DR-DEVICE, the reasoning system that performs the inference and produces the
results and DRREd, the rule editor, which serves both as a rule authoring tool and as a graphical
shell for DR-DEVICE. DRREd’s graph drawing module that allows the creation of a directed
rule graph from the defeasible rule base developed by the editor was also demonstrated. The
steps towards the creation of a digraph from a rule base include:

1. collecting the classes, meaning that all the base classes and all the derived class are
detected and collected in a vector,

2. building the nodes and connection types of the rule graph, according to the information
collected,

3. generating the rule graph, using a stratification algorithm to determine the location of the
graph elements.

In the future, we plan to delve deeper into the proof layer of the Semantic Web architecture by
enhancing further the rule representation utility demonstrated with rule execution tracing,

 27

explanation, proof exchange in an XML or RDF format, proof visualization and validation, etc.
These facilities would be useful for increasing the trust of users for the Semantic Web agents and
for automating proof exchange and trust among agents in the Semantic Web.

REFERENCES
Antoniou, G. (1997). Nonmonotonic Reasoning. MIT Press.

Antoniou, G. (2002). Nonmonotonic Rule Systems on Top of Ontology Layers. Proc. 1st Int.
Semantic Web Conference (pp. 394-398). LNCS 2342. Springer-Verlag.

Antoniou, G., & Arief, M. (2002). Executable Declarative Business Rules and their Use in
Electronic Commerce. Proc. ACM Symposium on Applied Computing (pp. 6-10). ACM Press.

Antoniou, G., Billington, D., & Maher, M.J. (1999). On the Analysis of Regulations using
Defeasible Rules. Proc. 32nd Hawaii Int. Conference on Systems Science, 7 pages (no page
numbers). IEEE Press.

Antoniou, G., & Harmelen, F. van. (2004). A Semantic Web Primer. MIT Press.

Antoniou, G., Skylogiannis, T., Bikakis, A., & Bassiliades, N. (2005). DR-BROKERING – A
Defeasible Logic-Based System for Semantic Brokering. Proc. IEEE Int. Conference on E-
Technology, E-Commerce and E-Service. 414-417. IEEE Computer Society.

Ashri, R., Payne, T., Marvin, D., Surridge, M., & Taylor, S. (2004). Towards a Semantic Web
Security Infrastructure. Proc. Semantic Web Services 2004 Spring Symposium Series. Stanford
University, Stanford California.

Bassiliades, N., Antoniou, G., & Vlahavas, I. (2004). A Defeasible Logic Reasoner for the
Semantic Web, Proc. RuleML 2004 (pp. 49-64). Springer-Verlag, LNCS 3323. Hiroshima,
Japan.

Bassiliades, N., Kontopoulos, E. & Antoniou, G. (2005). A Visual Environment for Developing
Defeasible Rule Bases for the Semantic Web. Proc. International Conference on Rules and Rule
Markup Languages for the Semantic Web (RuleML-2005) (pp. 172-186). A. Adi, S. Stoutenburg,
S. Tabet (Ed.). Springer-Verlag. LNCS 3791. Galway, Ireland.

Bassiliades, N., & Vlahavas, I. (2004). R-DEVICE: A Deductive RDF Rule Language. Proc.
RuleML 2004 (pp. 65-80). Springer-Verlag. LNCS 3323. Hiroshima, Japan.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American,
284(5), 34-43.

Clarke, D. (1982). An Augmented Directed Graph Base for Application Development. Proc. 20th
annual Southeast regional conference (pp. 155-159). ACM Press. Knoxville, Tennessee, USA.

Diestel, R. (2000). Graph Theory (Graduate Texts in Mathematics), 2nd ed. Springer.

Fluit, C., Sabou, M. & Harmelen, F. van. (2003). Ontology-Based Information Visualization. In
V. Geroimenko and C. Chen (Ed.) Visualizing the Semantic Web (pp. 36-48). Springer-Verlag.

Governatori, G. (2005). Representing business contracts in RuleML, International Journal of
Cooperative Information Systems, 14(2-3):181-216.

 28

Governatori, G., Dumas, M., Hofstede, A. ter & Oaks P. (2001). A formal approach to protocols
and strategies for (legal) negotiation, Proc. 8th International Conference of Artificial Intelligence
and Law (pp. 168-177). ACM Press.

Graphviz - Graph Visualization Software, Retrieved April 23, 2006, from
http://www.graphviz.org.

Grosof, B.N., Gandhe, M.D., & Finin, T.W. (2002). SweetJess: Translating DAMLRuleML to
JESS. Proc. Int. Workshop on Rule Markup Languages for Business Rules on the Semantic Web.
Held at 1st Int. Semantic Web Conference.

Grosof, B. N. & Poon T. C. (2003). SweetDeal: representing agent contracts with exceptions
using XML rules, ontologies, and process descriptions. Proc. 12th Int. Conference on World
Wide Web (pp. 340-349). ACM Press.

Hartley, R. & Pfeiffer, H. (2000). Visual Representation of Procedural Knowledge. Proceedings
of the 2000 IEEE international Symposium on Visual Languages (Vl'00). VL. IEEE Computer
Society, Washington, DC, 63.

Jantzen, J. (1989). Inference Planning Using Digraphs and Boolean Arrays. Proc. International
Conference on APL (pp. 200-204). ACM Press.

Kehler, T.P., & Clemenson G.D. KEE the knowledge engineering environment for industry.
Systems and Software, 3(1):212-- 224, January 1984.

Marek, V.W., & Truszczynski, M. (1993). Nonmonotonic Logics; Context Dependent Reasoning.
Springer-Verlag.

McBride, B. (2001). Jena: Implementing the RDF Model and Syntax Specification. Proc. 2nd
Int. Workshop on the Semantic Web.

Nute, D. (1987). Defeasible Reasoning. Proc. 20th Int. Conference on Systems Science (pp. 470-
477). IEEE Press.

Powers, S. (2003). Practical RDF. Beijing. Cambridge: O’Reilly.

Shalfield, R. (2005). VisiRule User Guide. Retrieved March 10, 2006, from
http://www.lpa.co.uk/ftp/4600/vsr_ref.pdf

Steel, B. D. (2005). WIN-PROLOG Technical Reference. Retrieved April 23, 2006, from
http://www.lpa.co.uk/ftp/4600/win_ref.pdf

Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems Vol 1. Computer
Science Press.

 29

APPENDIX A
Rules r1 to r4 expressed in the RuleML-compliant syntax of VDR-DEVICE:
<imp>
 <_rlab ruleID="r1" ruletype="defeasiblerule">
 <ind href="http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo-
rbase.ruleml#r1">r1</ind>
 </_rlab>
 <_head>
 <atom>
 <_opr>
 <rel href="acceptable"/>
 </_opr>
 <_slot name="apartment">
 <var>x</var>
 </_slot>
 </atom>
 </_head>
 <_body>
 <atom>
 <_opr>
 <rel href="carlo:apartment"/>
 </_opr>
 <_slot name="carlo:name">
 <var>x</var>
 </_slot>
 </atom>
 </_body>
 </imp>
 <imp>
 <_rlab ruleID="r2" ruletype="defeasiblerule" superior="r1">
 <ind href="http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo-
rbase.ruleml#r2">r2</ind>
 </_rlab>
 <_head>
 <neg>
 <atom>
 <_opr>
 <rel href="acceptable"/>
 </_opr>
 <_slot name="apartment">
 <var>x</var>
 </_slot>
 </atom>
 </neg>
 </_head>
 <_body>
 <atom>
 <_opr>
 <rel href="carlo:apartment"/>
 </_opr>
 <_slot name="carlo:name">
 <var>x</var>
 </_slot>
 <_slot name="carlo:bedrooms">
 <_and>
 <var>y</var>
 <function_call name="<">
 <var>y</var>
 <ind>2</ind>
 </function_call>

 30

 </_and>
 </_slot>
 </atom>
 </_body>
 </imp>
 <imp>
 <_rlab ruleID="r3" ruletype="defeasiblerule" superior="r1">
 <ind href="http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo-
rbase.ruleml#r3">r3</ind>
 </_rlab>
 <_head>
 <neg>
 <atom>
 <_opr>
 <rel href="acceptable"/>
 </_opr>
 <_slot name="apartment">
 <var>x</var>
 </_slot>
 </atom>
 </neg>
 </_head>
 <_body>
 <atom>
 <_opr>
 <rel href="carlo:apartment"/>
 </_opr>
 <_slot name="carlo:name">
 <var>x</var>
 </_slot>
 <_slot name="carlo:size">
 <_and>
 <var>y</var>
 <function_call name="<">
 <var>y</var>
 <ind>45</ind>
 </function_call>
 </_and>
 </_slot>
 </atom>
 </_body>
 </imp>
 <imp>
 <_rlab ruleID="r4" ruletype="defeasiblerule" superior="r1">
 <ind href="http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo-
rbase.ruleml#r4">r4</ind>
 </_rlab>
 <_head>
 <neg>
 <atom>
 <_opr>
 <rel href="acceptable"/>
 </_opr>
 <_slot name="apartment">
 <var>x</var>
 </_slot>
 </atom>
 </neg>
 </_head>
 <_body>
 <atom>
 <_opr>
 <rel href="carlo:apartment"/>

 31

 </_opr>
 <_slot name="carlo:name">
 <var>x</var>
 </_slot>
 <_slot name="carlo:pets">
 <ind>"no"</ind>
 </_slot>
 </atom>
 </_body>
 </imp>

