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Abstract Active learning is an iterative supervised learn-
ing task where learning algorithms can actively query an
oracle, i.e. a human annotator that understands the nature
of the problem, to obtain the ground truth. The motivation
behind this approach is to allow the learner to interactively
choose the data it will learn from, which can lead to signifi-
cantly less annotation cost, faster training and improved per-
formance. Active learning is appropriate for machine learn-
ing applications where labeled data is costly to obtain but
unlabeled data is abundant. Most importantly, it permits a
learning model to evolve and adapt to new data unlike con-
ventional supervised learning. Although active learning has
been widely considered for single-label learning, applica-
tions to multi-label learning have been more limited. In this
work, we present the general framework to apply active learn-
ing to multi-label data, discussing the key issues that need
to be considered in pool-based multi-label active learning
and how existing solutions in the literature deal with each of
these issues. We further propose a novel aggregation method
for evaluating which instances are to be annotated. Exten-
sive experiments on thirteen multi-label data sets with dif-

Everton Alvares Cherman
University of Sao Paulo, Institute of Mathematics and Computer Sci-
ences, Sao Carlos - SP, Brazils
E-mail: echerman@icmc.usp.br

Yannis Papanikolaou
Aristotle University of Thessaloniki, Department of Informatics,
54124 Thessaloniki, Greece
E-mail: ypapanik@csd.auth.gr

Grigorios Tsoumakas
Aristotle University of Thessaloniki, Department of Informatics,
54124 Thessaloniki, Greece
E-mail: greg@csd.auth.gr

Maria Carolina Monard
University of Sao Paulo, Institute of Mathematics and Computer Sci-
ences, Sao Carlos - SP, Brazils
E-mail: mcmonard@icmc.usp.br

ferent characteristics and under two different applications
settings (transductive, inductive) convey a consistent advan-
tage of our proposed approach against the rest of the ap-
proaches and, most importantly, against passive supervised
learning and reveal interesting aspects related mainly to the
properties of the data sets, and secondarily to the application
settings.

Keywords Supervised learning, multi-label learning, active
learning, pool-based strategies, knowledge discovery

1 Introduction

Most of present-day applications involve operation in dy-
namically and drastically ever-changing environments. In
such settings, systems that have the ability to adapt to the
new conditions and evolve can have a decisive advantage
over static and monolithic structures. More specifically, in
the area of knowledge discovery and supervised learning,
models that have the ability to continually take advantage of
new data as they become available, can have a significant
edge over conventional static approaches.

Active learning is a characteristic paradigm of such a
dynamic approach, with the ability of constructing learn-
ing models that will be able to fully adapt to new data. As
opposed to conventional supervised learning, it allows the
model, in other words the classifier, to interactively ask for
supervision from an oracle (most usually a human). The mo-
tivation is two-fold: first, when dealing with learning tasks
from domains with few labeled and abundant unlabeled data,
this approach can effectively bypass the expensive task of la-
beling, since the classifier, based on some strategy, will only
request manual annotation for a few characteristic instances.
Second, this approach allows for classifiers that receive data
in a stream-like fashion and dynamically choose which of
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this new data should be annotated to be used for their train-
ing (Zliobaite et al, 2011).

Furthermore, evolving predictive systems usually oper-
ate in domains where data is received in real time, contin-
uously and changing over time. In such settings, it is often
unfeasible to store data and it is critical to constantly update
the model with the new training data. Obtaining such data
though, can often be costly. Active learning is a technology
for making the best of an annotation budget in such cases.

There has been a substantial body of work regarding ac-
tive learning for single-label classification in the literature
(McCallumzy and Nigamy, 1998; Tong and Koller, 2001;
Settles, 2010). However, this is not the case for multi-label
learning, where each object can be associated with multiple
labels simultaneously (Tsoumakas et al, 2012).

In this work, we present the general framework for ap-
plying active learning to multi-label tasks, studying the main
aspects of an active learning model and discussing the key
issues that need to be taken into account in such a configu-
ration. We focus on the pool-based active learning scenario
(Settles, 2010), in which all unlabeled data are first eval-
uated and choices for which instances to be annotated are
made subsequently by the model. Such an approach is suit-
able for a large number of real-world problems, such as text
classification, image classification and retrieval, video clas-
sification, speech recognition and cancer diagnosis (Settles,
2010; Zhang et al, 2014; Ye et al, 2015; Huang et al, 2015).
Given that in a stream-based scenario new data arrive most
often in batches that can be essentially treated with pool-
based approaches, it is reasonable to assume that our work
is, with minor adjustments, applicable to stream-based ac-
tive learning as well.

An earlier and significantly shorter version of this work,
has been previously presented in Cherman et al (2016). We
here extend this line of work, by substantially extending our
experiments: we consider thirteen data sets instead of two
in the previous paper, we employ two additional algorithms
and consider also transductive inference apart from induc-
tive inference for experiments that use the remaining exam-
ples in the query pool for testing,

Furthermore, in this work we propose a novel aggrega-
tion function that evaluates examples to be picked for active
labeling. This approach considers the scores and the rank-
ing of labels delivered by a given algorithm to assess if an
example is to be picked for active labeling. The motivation
behind this approach, is to try identifying the certainty of the
algorithm in differentiating positive and negative labels for
a given example. Our results show a consistent advantage
of our proposed method with respect to passive supervised
learning and to the rest of the methods as well.

To summarize, the contributions of this work are as fol-
lows:

– we present the key issues that have to be considered
when applying active learning on multi-label data and
we thoroughly describe the existing approaches regard-
ing these issues in the literature (Section 2)

– we propose a novel aggregation method regarding the
evaluation and subsequent choice of the unlabeled in-
stances to be manually annotated (Section 2.4).

– we conduct extensive experiments on thirteen multi-label
data sets, with two multi-label algorithms and for both
inductive and transductive inference, studying the per-
formance and behavior of the different methods and ap-
proaches on a variety of conditions and comparing them
with conventional passive supervised learning (Section
3).

2 Active Learning for Multi-label Data

In this section, we first briefly present the concepts of active
learning and multi-label learning and then focus on the key
issues that need to be considered when attempting to apply
active learning on multi-label data.

2.1 Active Learning

In conventional supervised learning, the learner is passively
given a set of labeled data points to be trained on. Active
learning on the other hand, permits the learner to interac-
tively request supervision, or labeling in other words, for
the data points of its own choice.

There are mainly three active learning approaches (Set-
tles, 2010; Aggarwal et al, 2014)

1. membership query synthesis;
2. stream-based;
3. pool-based.

In the first case, the learner may query any unlabeled in-
stance in the input space. That also includes queries gener-
ated by the learner de novo (synthesis). In the second setting,
data points are made available continuously in a stream-like
fashion, and therefore decisions about whether an unlabeled
instance should or not be labeled are made individually or
in small batches. The pool-based scenario assumes that a
pool of unlabeled data is made available from the onset of
training. All instances from this unlabeled pool are evalu-
ated before selecting which of them are to be labeled.

2.2 Multi-Label Learning

Unlike single-label or multi-class learning, multi-label learn-
ing concerns supervised learning tasks in which there exist
multiple target variables and a subset of them can be as-
signed to an instance simultaneously. Formally, let D be a
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training set composed of N examples Ei = (xi,Yi), i = 1..N.
Each example Ei is associated with a feature vector xi =

(xi1,xi2, . . . ,xiM) described by M features X j, j = 1..M, and
a subset of labels Yi ⊆ L, where L = {y1,y2, . . . ,yq} is the set
of q labels. A multi-label learning task consists of generating
a classifier H, which given an unlabeled instance E = (x,?),
is capable of accurately predicting its subset of labels Y , i.e.,
H(E)→ Y .

In the general setting, a multi-label learning model can
produce a ranking of labels, relevance scores or marginal
probabilities per label, or even the full joint probability dis-
tribution of labels per instance.

Multi-label learning methods are divided into two broad
classes, algorithm adaptation and problem transformation
methods (Tsoumakas et al, 2009). Methods in the first cate-
gory extend specific single-label learning algorithms to deal
with multi-label data directly. Methods in the second cate-
gory transform a multi-label problem into one or more single-
label problems in which any traditional single-label learning
algorithms can be applied. Binary Relevance (BR), is one of
the most widely employed problem transformation methods,
that proceeds by decomposing the multi-label problem into
q binary single-label problems, one for each label in L.

2.3 Manual Annotation

A first key issue concerning an active learning system re-
lates to the manual annotation of the instances selected by
the learner. Most often, instances are annotated in batches,
e.g. ground truth acquisition for the ImageCLEF 2011 photo
annotation and concept-based retrieval tasks was achieved
via crowd-sourcing in batches of 10 and 24 images (Nowak
et al, 2011). An annotator can accomplish this task either
instance-wise (for each instance the annotator determines
the relevancy to each label) or label-wise (for each label the
annotator determines relevancy to each instance)1.

Let us consider a request for the annotation of n instances
with q labels. Let co be the average cost of understanding
an instance, cl be the average cost of understanding a label
and clo be the average cost of deciding whether an instance
should be annotated with a particular label or not. Setting
aside the cognitive and psychological aspects of the anno-
tation process, such as our short-term memory capacity, a
rough estimate of the total cost of instance-wise annotation
will be given by:

n[co +q(cl + clo)] = nco +nqcl +nqclo

Similarly, a rough estimate of the total cost of label-wise
annotation will be:

q[cl +n(co + clo)] = qcl +nqco +nqclo

1 Instance-wise and label-wise annotation have been called global
and local labeling respectively in (Esuli and Sebastiani, 2009)

Assuming that the cost of label-wise annotation is smaller
than that of instance-wise annotation, we have:

qcl +nqco +nqclo < nco +nqcl +nqclo
qcl +nqco < nco +nqcl
n(q−1)co < q(n−1)cl

co <
q(n−1)
n(q−1)cl ≈ qn

nq cl = cl key

In other words, the choice of the annotation approach,
largely depends on the instance and label understanding costs.

2.4 Evaluation of Unlabeled Instances

The most fundamental part of an active learning algorithm
concerns the way it evaluates the informativeness of unla-
beled instances. In a multi-label setting, the evaluation func-
tion (query) comprises two important parts:

1. a scoring function to evaluate instance-label pairs; and
2. an aggregating function to aggregate these scores.

Algorithm 1 shows the general procedure for a batch-
size = t, i.e., t examples are annotated in each round. The
evaluation function query calculates the evidence value of
each example Ei ⊂Du and returns the t most informative in-
stances, according to the evidence value used. In each round,
these t examples will be labeled by the oracle and included
in the set Dl of labeled examples.

input : Dl : labeled pool; Du: unlabeled pool; Ei: multi-label
example;
L: set of labels; Yi: subset of labels associated to Ei; t:

batch size;
R: number of rounds; F : multi-label learner; Oracle:

the annotator;
for r = 1,2, ..,R do

H← F(Dl)
{Ei}t

i=1← query(H,L,Du, t)
{Yi}t

i=1← Oracle({Ei}t
i=1)

Dl ← Dl ∪{(Ei,Yi)}t
i=1

Du← Du−{Ei}t
i=1

end
Algorithm 1: Multi-label active learning procedure for the
instance-wise annotation approach.

Algorithm 2 shows the query function of a multi-label
active learning procedure. The scoring function considers
instance-label pairs (Ei,y j) and evaluates the participation
(ei, j) of label y j in instance Ei. It returns an evidence value
ei, j for all instances Ei ⊂ Du and for each label y j ∈ L =

{y1,y2, ...,yq}. The aggregating function considers the q evi-
dence values ei,1,ei,2, ...,ei,q of each instance Ei given by the
scoring function, and combines these values into a unique
evidence value ei.

The following three families of measures have been pro-
posed in the literature for evaluating instance-label pairs (scor-
ing):
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input : Du: unlabeled pool; L: set of labels; H: multi-label
classifier

output: The t instances with higher evidences

for Ei ∈ Du do
for y j ∈ L do

ei, j ← scoring(Du,H,Ei,y j)
end
ei← aggregating(ei,1,ei,2, ...,ei,q)

end
query← best(e1,e2, ...., t,Du)

Algorithm 2: The query function

1. Confidence-based score (Brinker, 2006; Esuli and Se-
bastiani, 2009; Singh et al, 2010). The distance of the
confidence of the prediction from the average value is
used. The nature of this value depends on the bias of
learner. It could be a margin-based value (distance from
the hyper-plane), a probability-based value (distance from
0.5) or other. The value returned by this approach repre-
sents how far an example is from the boundary decision
threshold between positive and negatives examples. We
are interested in examples that minimize this score. In
the following, we will denote this method as conf .

2. Ranking-based score (Singh et al, 2010). This strategy
works like a normalization approach for the values ob-
tained from the confidence-based strategy. The confi-
dences given by the classifier are used to rank the un-
labeled examples for each label. We are interested in
examples that maximize this score. This score will be
represented by rank in the rest of the paper.

3. Disagreement-based score (Hung and Lin, 2011; Yang
et al, 2009). Unlike the other approaches, this strategy
uses two base classifiers and measures the difference be-
tween their predictions. We are interested in maximiz-
ing this score. The intuitive idea is to query the exam-
ples that most disagree in their classifications and could
be most informative. In the literature, there have been
proposed three ways to combine confidence values from
two base classifiers:
i. The Maximum Margin Reduction (MMR) criterion

uses a major classifier which outputs confidence val-
ues and an auxiliary classifier that outputs decisions
(positive/negative). The auxiliary classifier is used to
determine how conflicting the predictions are.

ii. The Hamming Loss Reduction (HLR) approach con-
siders a more strict disagreement using the decisions
output by both classifiers to decide if there is dis-
agreement or agreement between each label predic-
tion of an example.

iii. The soft Hamming Loss Reduction (SHLR) method
tries to make a balance between MMR and HLR through
a function that defines the influence of each approach
in the final score.

In the experiments, we don‘t consider the disagreement-
based strategies, due to the inferior results that were ob-
tained in previous work (Cherman et al, 2016). After having
obtained the instance-label scores, there are two main aggre-
gation strategies for combining the instance-label scores to
an overall instance score:

1. averaging of the instance-label scores across all labels
(avg). Thus, given the q instance-label scores ei, j of in-
stance Ei, the overall instance-label score of instance Ei
is given by:

ei = aggregatingavg({ei, j}q
j=1) =

∑
q
j=1 ei, j

q

2. considering the optimal (minimum or maximum) of the
instance-label scores (min/max), given by:

ei = aggregatingmin/max({ei, j}q
j=1) = min/max({ei, j}q

j=1)

Note that for HLR, only the average aggregation strategy
makes sense, as taking the maximum would lead to a value
of 1 for almost all unlabeled instances and would not help in
discriminating among them.

We here propose a new aggregation strategy which we
will denote as dev.

3. dev is based on the differences (deviations) between the
values of evidence ei, j of each instance. The motiva-
tion behind this strategy is that an instance that contains
small differences in the values between the evidences
of the labels predicted as positive and the evidence of
the labels predicted as negative indicate uncertainty in
the prediction of the instance, which makes it a potential
candidate for oracle active labeling. Equation 1 defines
the dev strategy.

aggregatingdev({ei, j}q
j=1) = ei = avgpos({ei, j}q

j=1))−

f irstneg({ei, j}q
j=1)

(1)

where the avgpos function returns the average value of the
labels evidences classified as positive and the f irstneg func-
tion returns the evidence value of the label closest to being
classified as positive but is actually classified as negative.

Thus, the lower the value of the aggregatingdev function,
the higher the instance’s priority to be selected for oracle ac-
tive labeling. We should note that this strategy is appropri-
ate when applied directly to the raw score produced from the
given classifier (in the rest we denote this approach as score)
and therefore is not applicable to confidence or ranking-
based scoring strategies that manipulate the raw scores. To
illustrate how the methods proceed, Tables 1 - 6 depict some
characteristic examples of each of the scoring and aggrega-
tion methods.
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Table 1 Illustrative example of the evaluation method conf . In this
example, the threshold 0.5 is used to process the raw values of score to
obtain the confidence values.

raw score scoringconf
f (y1) f (y2) f (y3) ei,1 ei,2 ei,3

E1 0,70 0,30 0,31 0,20 0,20 0,19
E2 0,35 0,42 0,60 0,15 0,08 0,10
E3 0,45 0,51 0,80 ⇒ 0,05 0,01 0,30
E4 0,48 0,52 0,80 0,02 0,02 0,30
E5 0,20 0,30 0,49 0,30 0,20 0,01

Table 2 Illustrative example of the evaluation method score. In this
case, the actual values of score are used as the evaluation function.

raw score scoringscore
f (y1) f (y2) f (y3) ei,1 ei,2 ei,3

E1 0,70 0,30 0,31 0,70 0,30 0,31
E2 0,35 0,42 0,60 0,35 0,42 0,60
E3 0,45 0,51 0,80 ⇒ 0,45 0,51 0,80
E4 0,48 0,52 0,80 0,48 0,52 0,80
E5 0,20 0,30 0,49 0,20 0,30 0,49

Table 3 Illustrative example of the evaluation method rank. The
threshold 0.5 and uniform distribution of labels (without imbalance)
are considered.

raw score scoringrank
f (y1) f (y2) f (y3) ei,1 ei,2 ei,3

E1 0,70 0,30 0,31 0,5 1,5 1,5
E2 0,35 0,42 0,60 2,5 0,5 0,5
E3 0,45 0,51 0,80 ⇒ 1,5 0,5 2,5
E4 0,48 0,52 0,80 0,5 1,5 2,5
E5 0,20 0,30 0,49 3,5 1,5 0,5

Table 4 Illustrative example of the evaluation method conf with appli-
cation of avg and MIN aggregation functions. Bold objects would be
those selected for oracle labeling.

raw score scoringconf aggregating
f (y1) f (y2) f (y3) ei,1 ei,2 ei,3 AVG MIN

E1 0,70 0,30 0,31 0,20 0,20 0,19 0,20 0,19
E2 0,35 0,42 0,60 0,15 0,08 0,10 0,11 0,08
E3 0,45 0,51 0,80 ⇒ 0,05 0,01 0,30 ⇒ 0,12 0,01
E4 0,48 0,52 0,80 0,02 0,02 0,30 0,11 0,02
E5 0,20 0,30 0,49 0,30 0,20 0,01 0,17 0,01

Table 5 Illustrative example of the score evaluation method with ap-
plication of avg, MIN and dev aggregation functions. For dev, only the
evidence with the highest score value was considered positive. Bold
objects would be those selected for oracle labeling.

raw score scoringscore aggregating
f (y1) f (y2) f (y3) ei,1 ei,2 ei,3 AVG MIN dev

E1 0,70 0,30 0,31 0,70 0,30 0,31 0,44 0,30 0,39
E2 0,35 0,42 0,60 0,35 0,42 0,60 0,46 0,35 0,18
E3 0,45 0,51 0,80 ⇒ 0,45 0,51 0,80 ⇒ 0,59 0,45 0,29
E4 0,48 0,52 0,80 0,48 0,52 0,80 0,60 0,48 0,28
E5 0,20 0,30 0,49 0,20 0,30 0,49 0,33 0,20 0,19

Table 6 Illustrative example of the evaluation method rank with appli-
cation of aggregation functions avg and MIN. Bold objects would be
those selected for oracle labeling.

raw score scoringrank aggregating
f (y1) f (y2) f (y3) ei,1 ei,2 ei,3 AVG MIN

E1 0,70 0,30 0,31 0,5 1,5 1,5 1,17 0,50
E2 0,35 0,42 0,60 2,5 0,5 0,5 1,17 0,50
E3 0,45 0,51 0,80 ⇒ 1,5 0,5 2,5 ⇒ 1,50 0,50
E4 0,48 0,52 0,80 0,5 1,5 2,5 1,50 0,50
E5 0,20 0,30 0,49 3,5 2,5 3,5 1,83 0,50

2.5 Experimental Protocol

Besides the multi-label active learning strategies themselves,
the way that they are evaluated is another important issue to
consider. Some aspects to be considered are the size of the
initial labeled pool, the batch’s size, the set of examples used
as testing, the sampling strategy and also the evaluation ap-
proach. Next, these aspects are described with references to
previous work in the literature.

Regarding the initial labeled pool, different papers built
it in different ways. In (Singh et al, 2010), the examples are
chosen to have at least one example positive and one nega-
tive for each label. In (Yang et al, 2009), 100 to 500 exam-
ples were selected randomly to compose the initial labeled
pool. In (Esuli and Sebastiani, 2009), the first 100 chrono-
logically examples were selected. In (Brinker, 2006), the au-
thor choose randomly 10 examples to compose the initial
labeled pool. Gao et al (2016) randomly sample 5% of the
instances from the unlabeled pool as initial training labeled
data.

The batch size defines how many examples are queried
in each round of active learning. In (Singh et al, 2010; Brinker,
2006), only one example was queried per round. Esuli and
Sebastiani (2009) chose 50 examples in each round, while
Yang et al (2009) performed experiments with both 50 and
20 examples. Finally, Gao et al (2016) perform five fold
cross-validation to choose for each data set the batch size
taking values between five and ten instances per round.

There are basically two different ways to define the test
set. The first one is to consider a totally separated test set.
This was followed by Esuli and Sebastiani (2009) and though
not explicitly mentioned, it seems to have also been followed
by Brinker (2006). The second way is to use the remaining
examples in the unlabeled pool for testing. This approach
was used by Singh et al (2010), Yang et al (2009) and Gao
et al (2016).

It is worth noting that the quality of the model assessed
using this second approach holds for examples in the unla-
beled pool, and does not necessarily hold for new unlabeled
data. Although there is a lack of discussion about this topic
in the active learning literature, the decision of which eval-
uation approach to use depends on the application’s nature.
Most learning applications are interested in building a gen-



6 Everton Cherman et al.

eral model from a training set of examples to predict future
new examples, e.g., this kind of application uses inductive
inference algorithms to make its predictions. An experimen-
tal protocol using a separate test set is the correct evaluation
approach for the performance assessment in the inductive
inference setting. The remaining evaluation approach is bi-
ased by the active learner and hence the evaluation on these
remaining examples will not be representative of the actual
distribution of new unseen examples, which is the case for
inductive inference.

However, there are active learning applications that want
to predict labels of an a priori known specific set of exam-
ples. For example, in a real world personal image annota-
tion scenario, the user would like to annotate some images
of his/her collection and after few rounds of active learn-
ing, the system would annotate the remaining image in the
collection (Singh et al, 2010). For such an application, the
learning assessment should use the remaining examples in
the query pool.

The learning curve is the most common evaluation ap-
proach used to assess active learning techniques. A learn-
ing curve plots the evaluation measure considered as a func-
tion of the number of new instance queries that are labeled
and added to Dl . Thus, given the learning curves of two ac-
tive learning algorithms, the algorithm which dominates the
other for more or all the points along the learning curve is
better than the other. Besides the learning curve, Singh et al
(2010), Yang et al (2009) and Esuli and Sebastiani (2009)
also used the value of the evaluation measure in the end of
some specific number of rounds to assess the active learning
techniques.

3 Experiments

We here describe the experiments performed, presenting the
data sets, evaluation measures, experimental setup and the
relevant results. The active learning algorithms described in
Section 2.4, as well as the active learning evaluation frame-
work, were implemented under Mulan2 (Tsoumakas et al,
2011), a Java package for multi-label learning based on Weka3.
Our implementation is publicly available at http://www.
labic.icmc.usp.br/pub/mcmonard/Implementations/

Multilabel/active-learning.zip.

3.1 Data sets

We employed thirteen data sets from different domains. Specif-
ically, bibtex, cal500, corel16k, corel5k, emotions, enron,

2 http://mulan.sourceforge.net
3 http://www.cs.waikato.ac.nz/ml/weka

medical, scene, tmc2007 and yeast were obtained from Mu-
lan’s website4, while llog and slashdot were obtained from
Meka’s website5. Finally, ohsumed is a widely used data set
that is a subset of the MEDLINE database from years 1987-
1991, with a labelset of the 23 Medical Subject Headings
(MeSH) tags of cardiovascular diseases group.

In Table 7, we show the data sets statistics, with In-
stances denoting the number of total instances, Features the
number of features and #Dist the number of distinct label
sets. Similarly, |L| stands for the number of labels, Cardi-
nality for the average number of labels of the examples in
D, Density for the the average number of labels of the ex-
amples in D divided by |L| while Min, Med and Max refer to
the minimum, average and maximum label frequencies re-
spectively. Finally, the first and third quartiles of the label
distributions are represented by 1Q and 3Q.

3.2 Evaluation Measures

For the evaluation of the multi-label classification models,
we employed three measures in total, Micro-F, Macro-F and
Ranking Loss. The first two measures essentially consist two
different averaging schemes of the F-measure, which is used
for single-label classification. Specifically, the F-measure is
defined as

F-measure =
2TP

2TP +FP +FN
(2)

with TP denoting the true positives, FP the false positives and
FN the false negatives. The F-measure combines both the
Precision and Recall measures, being the harmonic mean
of them and obtains values between zero and one, with F-
measure = 1 signifying a perfect classification.

The Micro-F and Macro-F measures are defined as the
micro- and macro- averages of the F-measure respectively:

Micro-F =

2×
|L|
∑

l=1
t pl

2×
|L|
∑

l=1
t pl +

|L|
∑

l=1
f pl +

|L|
∑

l=1
f nl

(3)

Macro-F =
1
|L|

|L|

∑
l=1

2× t pl

2× t pl + f pl + f nl
(4)

We note that, by definition, Micro-F typically favors fre-
quent labels while Macro-F is more influenced by rare la-
bels.

4 http://mulan.sourceforge.net/datasets.html
5 http://meka.sourceforge.net/
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Table 7 Statistics of the data sets used throughout the experiments.

Labels
Name Domain Instances Features #Dist |L| Cardinality Density Min 1Q Med 3Q Max

bibtex text 7395 1836 2856 159 2.402 0.015 51 61 82 129 1042
cal500 music 502 68 502 174 26.044 0.150 5 15 39 109 444

corel16k image 13811 500 4937 161 2.867 0.018 25 67 115 264 3170
corel5k image 5000 499 3175 374 3.522 0.009 1 6 15 39 1120

emotions music 593 72 27 6 1.869 0.311 148 166 170 185 264
enron text 1702 1001 753 53 5.31 0.064 1 13 26 107 913
llog text 1460 1004 304 75 1.18 0.02 1 4 11 22 171

medical text 978 1449 94 45 1.245 0.028 1 2 8 34 266
ohsumed text 13929 1002 1147 23 1.663 0.007 135 386 712 1220 3952

scene image 2407 294 15 6 1.074 0.179 364 404 429 432 533
slashdot text 3782 1079 156 22 1.18 0.05 0 26 179 250 584
tmc2007 text 28596 500 1341 22 2.158 0.098 403 548 1483 2914 16918

yeast biology 2417 103 198 14 4.237 0.303 34 324 659 953 1816

Finally, Ranking Loss expresses the number of times
that irrelevant labels are ranked higher than relevant labels
and is defined as:

Ranking-Loss =
1
N

N

∑
d=1

1
|Yd ||Yd |

|{(ya,yb) : rd(ya)> rd(yb),

(ya,yb) ∈ Yd×Yd}|
(5)

In the experiments, we consider the respective learning
curves for each of the above measures and use the Final
Value (FV) (Yang et al, 2009) and the Area Under the Learn-
ing Curve (AULC) (Settles and Craven, 2008). Specifically,
FV represents a measure’s value for the last iteration of the
learning curve for each active learning method, while AULC
is calculated by summing over all points of the learning
curve, since we are using a discrete curve and all points are
equally spaced in the x-axis (the number of iterations) for all
learning curves.

3.3 Setup

As mentioned earlier, the multi-label active learning algo-
rithms are instantiated with two functions:

1. a scoring function to evaluate object-label pairs; and
2. an aggregating function to aggregate these scores.

Three strategies were considered for the scoring func-
tion:

– Confidence-based score (conf )
– raw score (score)
– Ranking-based score (rank)

For the aggregation function, two strategies were con-
sidered:

– Average (avg)
– Deviation (dev)

The other strategies were not considered since they ex-
hibited inferior results in (Cherman et al, 2016). In Table 8,
we present the combinations of the scoring and aggregating
functions employed throughout our experiments.

scoring function aggregation function

conf avg
rank avg
score avg
score dev

Table 8 Different combinations of multi-label active learning strate-
gies considered in this work.

With respect to the multi-label learning algorithms used
throughout the experiments, we employed both an induc-
tive and a transductive algorithm. Specifically, the inductive
algorithm, Binary Relevance with Linear SVMs as binary
classifiers (BR SVMs), is used in experiments with the sepa-
rated protocol. Regarding the remaining protocol, we chose
to employ a multi-label classification algorithm with trans-
ductive inference, LPBHN with RCut. Even if both algo-
rithms could be used for the remaining protocol, a transduc-
tive algorithm is better suited with the nature of that proto-
col, which calls for transductive inference.

BR SVMs were implemented based on the LIBLINEAR
library6. This implementation is optimized to handle effi-
ciently and effectively sparse data, a crucial feature for ac-
tive learning experiments due to the time cost involved in
training a large number of models: we need to train one
model for each label and for each iteration of the active
learning procedure. In addition, the library can output nor-
malized values of probability for the predictive confidence.
In our experiments, we kept all parameters for the SVMs at
default values, setting C = 1, e = 0.01 and employing the
L2-loss SVC dual solver.

LPBHN was proposed by Rossi et al (2013). The al-
gorithm is based on graphs and more specifically on the

6 http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Gaussian Fields and Harmonic Functions (GFHF) algorithm
and is optimized for sparse data. Since the algorithm origi-
nally outputs a ranking of labels for each new instance to be
predicted, we employed the RCut ranking strategy (Yang,
2001), in order to apply a threshold. This method proceeds
by choosing the t first labels of the ranking, with t being the
closest integer to the training data set’s cardinality (average
number of labels of the examples). Table 9 presents the ac-
tive learning settings used in our experiments and presented
in this work.

Table 9 Active learning settings used in experiments.

Experimental protocol
separated remaining
BR SVMs LPBHN + RCut

random
conf avg —
rank avg —

score avg
score dev

All experiments were performed using 10-fold cross val-
idation. In the transductive context, where the remaining
protocol is used, the independent test partitions of each of
the ten folds are discarded, since the remaining examples
of the query set are used to evaluate the predictive perfor-
mance.

Finally, the initial labeled pool of examples was built by
randomly choosing examples until having Nini× q positive
single labels, i.e.. until Nini×q≥∑

|Dl |
i=1 Yi, where Nini is user-

defined. This strategy allows for fairer comparison across
the data sets. We used Nini = 1,5 in order to evaluate the
influence of different sizes of the initial labeled pool.

3.4 Results

In this section we present the results of our experiments. We
show the learning curves and the results in terms of Micro-
F and Macro-F (for the separated protocol) and Ranking
Loss (for the remaining protocol) for all data sets, using
the FV and the AULC measures. The random method rep-
resents the baseline (passive learning) strategy and the score
dev method refers to our proposed approach, while the rest
of the methods refer to the ones previously proposed in the
literature.

3.4.1 Experiments with the Separated Test Protocol -
Inductive Inference

Figure 1 present the learning curves for the algorithms con-
sidered in this work using the bibtex data set. The learning

curves for the rest of the data sets are presented in an on-line
appendix7.

From the plots, we can easily observe that our proposed
method score dev is consistently outperforming conventional
supervised learning (random) for all four considered scenar-
ios. The score avg method shows also a steady advantage
compared to random in all scenarios, except for Nini = 1 and
for the Micro-F measure, in which case it performs worse
than all other methods. The other active learning methods
show mixed results, not being able to exhibit a steady ad-
vantage compared to the random method in any scenario.

Table 10 shows the results for all data sets and the sep-
arated protocol, in terms of Micro-f and Macro-F. As we
can see, several of the active learning methods have FV val-
ues equal to or greater than those presented by the random
method. The conf avg method, however, is inferior to ran-
dom for Nini = 1 for both evaluation measures (Micro-F /
Macro-F) and for Nini = 5 for Micro-F. The other active
learning methods have average ranking values higher than
the one for random in all cases.

An important aspect to be evaluated in an active learn-
ing method is its consistency in outperforming the random
method, since, unlike the evaluation of standard learning al-
gorithms, one does not have the data labeled beforehand,
and the purpose of active learning is to obtain good labeled
examples. Thus, it is not possible to predict the effective-
ness of various active learning methods beforehand in a way
similar to the one followed for standard supervised learning
algorithms. Thus, in an effort to measure the stability of the
active learning method, the better or equal to random value
is displayed in the last line of Table 10. This value refers
to the percentage of data set where the active method was
greater than or equal to the random method.

score dev presents the best stability values considering
Micro-F as the evaluation measure. This method obtained
results better than or equal to random for 100% and 92% of
the data sets for Nini = 1 and Nini = 5, respectively. score
dev, along with rank avg and conf avg, also presented the
best stability value for Macro-F and Nini = 5, with 92% of
cases better than or equal to random. In the scenario with
Macro-F and Nini = 1, rank avg and score avg presented the
best stability values with 92%, followed by the score dev
method with 85%.

In summary, conf avg did not perform in a satisfying
manner regarding stability for any scenario; The rank avg
method showed the best stability value in 2/4 out of scenar-
ios, the score avg method also had the best stability value
in 2/4 out of scenarios and the score dev method, our pro-
posed method, exhibited the best result for 3/4 out of the
cases, that is, presented the best stability ratio.

7 https://www.dropbox.com/s/cxyf27wzp9xzlxr/

appendix.pdf?dl=0
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Fig. 1 Learning curves for BR-SVMS and the separated protocol on bibtex. The left plots are for Nini = 1 while the ones in the right are for
Nini = 5.

Figure 2 presents the average ranking plotted against the
FV measure of each Friedman test with a Nemenyi post
hoc test with a significance level of 95% to identify statisti-
cally significant differences between the methods (Demšar,
2006).

Although there are consistent differences between the
active learning methods and the baseline random, no active
method showed improvement with a statistically significant
difference compared to the random method. The only differ-
ence observed is between score dev and conf avg for Nini = 1
and Micro-F1, which again indicates the difficulty of conf
avg in obtaining satisfying results.

In Table 11, we present the results for AULC as the eval-
uation method.

rank avg, score avg and score dev show better average
rankings than random for all setups and evaluation mea-
sures, whereas conf avg has worse average ranking than ran-
dom for Micro-F for both Nini parameter choices.

Regarding stability (equal or better than random), we
observe a similar behavior to the one for the FV measure.
For Nini = 1, the score dev method was the only one to be
better or equal to random in all data sets, for both Micro-F
and Macro-F. For the scenario with Nini = 5 and Micro-F,
the score dev method showed the best stability (85%). The
score avg method was higher for the scenario with Nini = 5
and Macro-F, where it was better than or equal to the ran-
dom method in 92% of the data sets. The other three methods
showed a stability of 85%.

Figure 3 shows the average ranking plotted for the AULC
measure of each method. Again, no active method showed
improvement with statistically significant difference in re-
lation to random. Significant differences considering AULC
as evaluation measure were found only between score dev
and conf avg in terms of Micro-F for Nini = 1 / and be-
tween score avg and conf avg in terms of Macro-F again
for Nini = 1.
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Table 10 FV represents the performance value for the last iteration of the learning curve for each active learning method. The values in parentheses
refer to the ranking of the method. Experimental protocol: separated.

Nini = 1

Micro-F Macro-F
random conf avg rank avg score avg score dev random conf avg rank avg score avg score dev

#1 bibtex .15 (2.5) .10 (5.0) .15 (2.5) .13 (4.0) .18 (1.0) .02 (3.0) .02 (3.0) .02 (3.0) .02 (3.0) .02 (3.0)
#2 cal500 .34 (4.5) .34 (4.5) .36 (2.0) .36 (2.0) .36 (2.0) .20 (3.0) .19 (5.0) .21 (1.0) .20 (3.0) .20 (3.0)
#3 corel16k .03 (4.0) .02 (5.0) .04 (2.0) .04 (2.0) .04 (2.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0)
#4 corel5k .04 (3.0) .03 (5.0) .04 (3.0) .05 (1.0) .04 (3.0) .31 (3.0) .31 (3.0) .31 (3.0) .31 (3.0) .31 (3.0)
#5 emotions .58 (4.0) .60 (3.0) .61 (2.0) .57 (5.0) .64 (1.0) .54 (4.0) .56 (3.0) .58 (2.0) .53 (5.0) .61 (1.0)
#6 enron .47 (4.0) .40 (5.0) .48 (3.0) .52 (1.0) .49 (2.0) .26 (3.0) .25 (4.5) .27 (1.5) .27 (1.5) .25 (4.5)
#7 llog .03 (2.0) .03 (2.0) .02 (4.0) .01 (5.0) .03 (2.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0)
#8 medical .55 (5.0) .57 (4.0) .60 (2.5) .61 (1.0) .60 (2.5) .56 (5.0) .58 (2.5) .58 (2.5) .60 (1.0) .57 (4.0)
#9 ohsumed .12 (4.0) .11 (5.0) .15 (2.5) .24 (1.0) .15 (2.5) .04 (3.5) .03 (5.0) .05 (2.0) .08 (1.0) .04 (3.5)
#10 scene .55 (4.0) .43 (5.0) .58 (1.0) .57 (2.5) .57 (2.5) .54 (4.0) .39 (5.0) .58 (1.5) .57 (3.0) .58 (1.5)
#11 slashdot .09 (4.0) .23 (1.0) .12 (3.0) .06 (5.0) .16 (2.0) .18 (4.5) .21 (1.0) .19 (3.0) .18 (4.5) .20 (2.0)
#12 tmc2007 .51 (3.0) .47 (5.0) .50 (4.0) .56 (1.5) .56 (1.5) .19 (2.5) .13 (5.0) .18 (4.0) .31 (1.0) .19 (2.5)
#13 yeast .58 (3.0) .56 (5.0) .60 (1.0) .58 (3.0) .58 (3.0) .32 (3.0) .28 (5.0) .33 (2.0) .34 (1.0) .30 (4.0)

avg
3.6 4.2 2.5 2.6 2.1 3.4 3.7 2.4 2.5 2.9ranking

better/equal
— 38% 85% 69% 100% — 54% 92% 92% 85%random

Nini = 5

Micro-F Macro-F
random conf avg rank avg score avg score dev random conf avg rank avg score avg score dev

#1 bibtex .19 (3.5) .20 (2.0) .19 (3.5) .18 (5.0) .21 (1.0) .03 (4.0) .04 (1.5) .03 (4.0) .03 (4.0) .04 (1.5)
#2 cal500 .34 (4.0) .33 (5.0) .35 (3.0) .36 (1.5) .36 (1.5) .19 (4.5) .19 (4.5) .20 (2.0) .20 (2.0) .20 (2.0)
#3 corel16k .06 (3.0) .05 (5.0) .06 (3.0) .07 (1.0) .06 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0)
#4 corel5k .08 (3.5) .08 (3.5) .08 (3.5) .09 (1.0) .08 (3.5) .32 (3.0) .32 (3.0) .32 (3.0) .32 (3.0) .32 (3.0)
#5 emotions .59 (4.0) .62 (2.0) .58 (5.0) .60 (3.0) .64 (1.0) .54 (5.0) .60 (2.0) .55 (4.0) .57 (3.0) .62 (1.0)
#6 enron .49 (4.0) .48 (5.0) .51 (2.5) .53 (1.0) .51 (2.5) .28 (3.0) .28 (3.0) .28 (3.0) .29 (1.0) .27 (5.0)
#7 llog .06 (3.5) .07 (2.0) .06 (3.5) .04 (5.0) .09 (1.0) .39 (3.5) .39 (3.5) .39 (3.5) .39 (3.5) .40 (1.0)
#8 medical .68 (5.0) .70 (3.0) .69 (4.0) .72 (1.5) .72 (1.5) .63 (4.0) .64 (2.0) .63 (4.0) .65 (1.0) .63 (4.0)
#9 ohsumed .19 (2.0) .15 (4.5) .15 (4.5) .23 (1.0) .18 (3.0) .06 (2.5) .05 (4.5) .05 (4.5) .08 (1.0) .06 (2.5)
#10 scene .57 (4.0) .49 (5.0) .60 (2.0) .61 (1.0) .58 (3.0) .56 (4.0) .47 (5.0) .61 (1.5) .61 (1.5) .59 (3.0)
#11 slashdot .19 (4.0) .26 (2.0) .23 (3.0) .12 (5.0) .28 (1.0) .22 (4.0) .23 (2.0) .23 (2.0) .20 (5.0) .23 (2.0)
#12 tmc2007 .54 (3.5) .53 (5.0) .56 (1.5) .56 (1.5) .54 (3.5) .22 (4.0) .19 (5.0) .24 (2.0) .28 (1.0) .23 (3.0)
#13 yeast .59 (4.0) .59 (4.0) .60 (1.5) .60 (1.5) .59 (4.0) .31 (4.5) .32 (3.0) .34 (1.5) .34 (1.5) .31 (4.5)

avg
3.7 3.7 3.1 2.2 2.3 3.8 3.2 2.9 2.3 2.7ranking

better/equal
— 54% 85% 77% 92% — 77% 92% 92% 92%random

CD

1 2 3 4 5

score dev
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score avg

(a) Nini = 1 / Micro-F
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CD

1 2 3 4 5

score avg
score dev

random
conf avg
rank avg

(c) Nini = 5 / Micro-F
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Fig. 2 Friedman ranking with Nemenyi post-test for the BR SVMs and FV measure. Experimental protocol: separated.

3.4.2 Experiments with the Remaining Test Protocol -
Transductive Inference

The experiments performed using the remaining protocol
simulate applications that are intended to annotate exam-

ples in the context of transductive inference, i.e. applica-
tions in which the test data is observed a priori. Inductive
inference methods, such as BR-SVMs method, could also
be used in this context. However, inductive inference is in-
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Table 11 AULC values for each active learning method using the separated experimental protocol. The values in parentheses refer to the ranking
position of the method.

Nini = 1

Micro-F Macro-F
random conf avg rank avg score avg score dev random conf avg rank avg score avg score dev

#1 bibtex .14 (2.5) .12 (4.5) .14 (2.5) .12 (4.5) .17 (1.0) .02 (3.0) .02 (3.0) .02 (3.0) .02 (3.0) .02 (3.0)
#2 cal500 .35 (5.0) .36 (3.0) .36 (3.0) .37 (1.0) .36 (3.0) .20 (4.5) .20 (4.5) .21 (2.0) .21 (2.0) .21 (2.0)
#3 corel16k .03 (2.5) .02 (5.0) .03 (2.5) .03 (2.5) .03 (2.5) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0)
#4 corel5k .03 (4.0) .03 (4.0) .04 (1.5) .04 (1.5) .03 (4.0) .31 (3.0) .31 (3.0) .31 (3.0) .31 (3.0) .31 (3.0)
#5 emotions .54 (3.5) .54 (3.5) .57 (1.5) .52 (5.0) .57 (1.5) .49 (3.0) .47 (4.5) .52 (1.5) .47 (4.5) .52 (1.5)
#6 enron .43 (4.0) .32 (5.0) .45 (2.0) .49 (1.0) .44 (3.0) .25 (3.0) .23 (5.0) .25 (3.0) .26 (1.0) .25 (3.0)
#7 llog .03 (3.0) .04 (1.5) .02 (4.5) .02 (4.5) .04 (1.5) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0)
#8 medical .47 (4.0) .45 (5.0) .51 (2.5) .53 (1.0) .51 (2.5) .54 (4.5) .54 (4.5) .56 (2.0) .57 (1.0) .55 (3.0)
#9 ohsumed .09 (4.0) .07 (5.0) .10 (3.0) .17 (1.0) .14 (2.0) .03 (4.0) .02 (5.0) .04 (2.5) .05 (1.0) .04 (2.5)
#10 scene .46 (3.5) .38 (5.0) .48 (2.0) .49 (1.0) .46 (3.5) .44 (3.5) .34 (5.0) .47 (1.0) .46 (2.0) .44 (3.5)
#11 slashdot .06 (4.0) .18 (1.0) .07 (3.0) .05 (5.0) .13 (2.0) .18 (4.0) .20 (1.0) .18 (4.0) .18 (4.0) .19 (2.0)
#12 tmc2007 .46 (3.0) .42 (5.0) .43 (4.0) .50 (1.5) .50 (1.5) .15 (2.5) .11 (5.0) .13 (4.0) .23 (1.0) .15 (2.5)
#13 yeast .56 (3.5) .53 (5.0) .58 (1.0) .56 (3.5) .57 (2.0) .29 (3.5) .26 (5.0) .30 (2.0) .31 (1.0) .29 (3.5)

avg
3.4 4.0 2.6 2.3 2.7 3.3 3.2 3.0 2.5 3.0ranking

better/equal
— 38% 85% 69% 100% — 54% 92% 92% 100%random

Nini = 5

Micro-F Macro-F
random conf avg rank avg score avg score dev random conf avg rank avg score avg score dev

#1 bibtex .19 (3.0) .19 (3.0) .19 (3.0) .18 (5.0) .20 (1.0) .03 (3.5) .04 (1.0) .03 (3.5) .03 (3.5) .03 (3.5)
#2 cal500 .34 (4.5) .34 (4.5) .35 (2.5) .36 (1.0) .35 (2.5) .19 (4.5) .19 (4.5) .20 (2.0) .20 (2.0) .20 (2.0)
#3 corel16k .06 (2.5) .05 (5.0) .06 (2.5) .06 (2.5) .06 (2.5) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0)
#4 corel5k .08 (3.0) .08 (3.0) .08 (3.0) .08 (3.0) .08 (3.0) .32 (3.0) .32 (3.0) .32 (3.0) .32 (3.0) .32 (3.0)
#5 emotions .56 (3.5) .57 (1.5) .55 (5.0) .56 (3.5) .57 (1.5) .52 (3.5) .54 (2.0) .51 (5.0) .52 (3.5) .55 (1.0)
#6 enron .48 (4.5) .48 (4.5) .49 (2.5) .51 (1.0) .49 (2.5) .27 (3.5) .27 (3.5) .27 (3.5) .28 (1.0) .27 (3.5)
#7 llog .06 (3.0) .06 (3.0) .06 (3.0) .05 (5.0) .07 (1.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0)
#8 medical .67 (4.5) .68 (2.5) .67 (4.5) .69 (1.0) .68 (2.5) .62 (3.5) .62 (3.5) .62 (3.5) .63 (1.0) .62 (3.5)
#9 ohsumed .15 (3.0) .12 (5.0) .13 (4.0) .18 (1.0) .16 (2.0) .05 (3.5) .05 (3.5) .05 (3.5) .06 (1.0) .05 (3.5)
#10 scene .53 (3.0) .46 (5.0) .55 (1.5) .55 (1.5) .52 (4.0) .52 (3.0) .45 (5.0) .55 (1.0) .53 (2.0) .51 (4.0)
#11 slashdot .15 (4.0) .22 (1.5) .18 (3.0) .11 (5.0) .22 (1.5) .21 (3.5) .22 (1.5) .21 (3.5) .20 (5.0) .22 (1.5)
#12 tmc2007 .52 (2.0) .51 (4.0) .51 (4.0) .53 (1.0) .51 (4.0) .20 (2.0) .17 (5.0) .19 (3.5) .22 (1.0) .19 (3.5)
#13 yeast .58 (4.5) .59 (2.0) .59 (2.0) .59 (2.0) .58 (4.5) .31 (3.5) .31 (3.5) .32 (1.0) .31 (3.5) .31 (3.5)

avg
3.6 4.0 2.5 2.5 2.3 3.5 3.4 3.1 2.5 2.5ranking

better/equal
— 69% 77% 77% 85% — 85% 85% 92% 85%random
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Fig. 3 Friedman ranking with Nemenyi as post-test for the BR-SVMs and the AULC measure. The experimental protocol separated is followed.

tended to solve a more general problem than what is neces-
sary in that case. Also, we should note that there are cases
in which transductive inference may be more effective, such

as a scenario with extremely few labeled examples, with all
unlabeled data available beforehand8.

8 https://en.wikipedia.org/wiki/Transduction_

(machine_learning)
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In this round of experiments we employed the LPBHN
algorithm, a transductive inference multi-label algorithm that
outputs ranking of labels, additionally using the RCut method
to apply a threshold on the ranking and obtain a hard assign-
ment of labels for each test instance.

The Ranking Loss measure was used to evaluate the qual-
ity of predictions since LPBHN outputs rankings. As men-
tioned earlier in the paper, we also used the RCut method
in this experimental setup, in order to obtain a hard assign-
ment of labels from the rankings. We remind here that RCut
selects the t first labels from the ranking, with t being the
nearest integer to the training set cardinality. Since in the
active learning setting the number of labeled examples is re-
duced, we expect that the estimation of the cardinality using
the training set could be less precise in our case.

Figure 4 presents the learning curve for the corel5k data
set. The figures referring to the learning curves of other data
sets are, similar to the plots for the separated protocol, pre-
sented in an on-line appendix9. from the plots we can ob-
serve that score dev is consistently superior to both random
and score avg for the two considered scenarios. score avg on
the other hand, fails to consistently outperform the passive
method, especially for Nini = 5.

Table 12 and 13 presents results for the remaining pro-
tocol for all data sets concerning learning evaluation mea-
sures FV and AULC10, respectively. score dev shows the best
average ranking and the best stability (better or equal than
random) for all scenarios (85%). furthermore, score avg has
lower stability for the remaining protocol than the one ex-
hibited for the separated protocol.

Table 12 Results for the FV measure in the last iteration of the learn-
ing curve for each active learning method with the remaining protocol.
Values in parentheses refer to the method’s ranking position.

Ranking-Loss

Nini = 1 Nini = 5
random score avg score dev random score avg score dev

bibtex 0.10(2.0) 0.16(3.0) 0.09(1.0) 0.02(1.5) 0.02(1.5) 0.03(3.0)
cal500 0.17(3.0) 0.15(1.5) 0.15(1.5) 0.17(3.0) 0.16(1.5) 0.16(1.5)
corel16k 0.14(2.5) 0.14(2.5) 0.13(1.0) 0.10(2.5) 0.10(2.5) 0.09(1.0)
corel5k 0.12(2.0) 0.13(3.0) 0.11(1.0) 0.07(1.5) 0.08(3.0) 0.07(1.5)
emotions 0.06(2.5) 0.06(2.5) 0.03(1.0) 0.06(2.5) 0.06(2.5) 0.01(1.0)
enron 0.15(3.0) 0.13(1.5) 0.13(1.5) 0.14(3.0) 0.12(1.0) 0.13(2.0)
llog 0.09(2.0) 0.09(2.0) 0.09(2.0) 0.06(3.0) 0.05(1.5) 0.05(1.5)
medical 0.05(2.0) 0.06(3.0) 0.04(1.0) 0.04(2.0) 0.04(2.0) 0.04(2.0)
ohsumed 0.15(3.0) 0.12(1.5) 0.12(1.5) 0.13(3.0) 0.10(1.5) 0.10(1.5)
scene 0.03(1.0) 0.16(2.5) 0.16(2.5) 0.02(2.0) 0.03(3.0) 0.01(1.0)
slashdot 0.05(2.0) 0.09(3.0) 0.04(1.0) 0.04(1.5) 0.05(3.0) 0.04(1.5)
tmc2007 0.14(3.0) 0.11(1.5) 0.11(1.5) 0.14(3.0) 0.12(1.5) 0.12(1.5)
yeast 0.06(1.0) 0.07(2.5) 0.07(2.5) 0.07(2.0) 0.06(1.0) 0.08(3.0)

avg
2.2 2.3 1.5 2.3 2.0 1.7ranking

better/equal
— 54% 85% — 77% 85%random

9 https://www.dropbox.com/s/cxyf27wzp9xzlxr/

appendix.pdf?dl=0
10 AULC values for the Ranking-Loss measure were multiplied by 10

to consider the third decimal place in the comparison.

Table 13 Results for the AULC measure in the last iteration of the
learning curve for each active learning method with the remaining pro-
tocol. Values in parentheses refer to the method’s ranking position.

Ranking-Loss

Nini = 1 Nini = 5
random score avg score dev random score avg score dev

bibtex 1.73 (2.0) 1.95 (3.0) 1.70 (1.0) 0.28 (1.5) 0.28 (1.5) 0.29 (3.0)
cal500 1.90 (3.0) 1.81 (2.0) 1.80 (1.0) 1.75 (3.0) 1.69 (1.5) 1.69 (1.5)
corel16k 1.86 (2.0) 1.89 (3.0) 1.78 (1.0) 1.04 (3.0) 1.03 (2.0) 0.98 (1.0)
corel5k 1.40 (3.0) 1.37 (2.0) 1.31 (1.0) 0.76 (2.0) 0.79 (3.0) 0.73 (1.0)
emotions 1.05 (1.0) 1.32 (3.0) 1.28 (2.0) 0.72 (2.0) 0.83 (3.0) 0.39 (1.0)
enron 1.59 (2.5) 1.59 (2.5) 1.51 (1.0) 1.44 (3.0) 1.30 (1.0) 1.32 (2.0)
llog 1.18 (3.0) 1.17 (2.0) 1.09 (1.0) 0.64 (3.0) 0.61 (2.0) 0.59 (1.0)
medical 0.98 (3.0) 0.96 (2.0) 0.87 (1.0) 0.48 (3.0) 0.44 (2.0) 0.42 (1.0)
ohsumed 2.11 (3.0) 1.77 (2.0) 1.75 (1.0) 1.49 (3.0) 1.31 (1.0) 1.32 (2.0)
scene 0.87 (1.0) 1.94 (3.0) 1.92 (2.0) 0.39 (2.0) 0.40 (3.0) 0.28 (1.0)
slashdot 0.86 (2.0) 1.20 (3.0) 0.59 (1.0) 0.48 (2.0) 0.50 (3.0) 0.46 (1.0)
tmc2007 1.67 (3.0) 1.41 (2.0) 1.39 (1.0) 1.52 (3.0) 1.31 (2.0) 1.29 (1.0)
yeast 0.84 (3.0) 0.82 (2.0) 0.72 (1.0) 0.80 (1.0) 0.83 (2.0) 0.89 (3.0)

avg
2.4 2.4 1.2 2.4 2.1 1.5ranking

better/equal
— 62% 85% — 62% 85%random

Finally, Figure 5 depicts the average ranking of each
method together with the performed statistical significance
test. Again, score dev shows the best values of average rank-
ing for all scenarios, with a statistically significant differ-
ence to random when considering AULC as the evaluation
measure. Additionally, we can observe a statistically signif-
icant difference between score dev and score avg when con-
sidering AULC for Nini = 1.

4 Conclusions

Dealing with learning tasks in constantly changing environ-
ments, requires approaches that, far from relying on static
and passive learning models, enable effective evolving of
the learning system when prompted with new data. Active
learning is such an approach, enabling a given classifier to
actively choose which of the new data will be manually an-
notated for training. In this manner, apart from reducing an-
notation costs and requiring fewer training examples, the
classifier is capable of evolving to better represent new data.

Although active learning for single-label learning has
been a well investigated topic of research, this is not the
case for multi-label learning. In this work, we discussed key
issues in pool-based multi-label active learning based on
previous work in the literature. We presented the main ap-
proaches regarding the scoring and aggregation strategies of
multi-label active learning and proposed a novel aggregation
approach, called score dev, We implemented all previously
existing approaches, as well as our method in a common
framework and performed extensive experimental compar-
isons for two different multi-label learning algorithms, on
thirteen multi-label data sets and under two different appli-
cation settings (transductive, inductive).
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Fig. 4 Learning algorithm: LPBHN-Rcut. Experimental protocol: separated. Data set: corel5k.

CD

1 2 3

score dev score avg
random

(a) Nini = 1 / FV

CD

1 2 3

score dev random
score avg

(b) Nini = 5 / FV

CD

1 2 3

score dev score avg
random

(c) Nini = 1 / AULC

CD

1 2 3

score dev random
score avg

(d) Nini = 5 / AULC

Fig. 5 Friedman test with a Nemenyi post-test for the LPBHN classifier and for the AULC and FV measures. The remaining protocol was used.

The results on two different evaluation protocols, an in-
ductive and a transductive learning scenario with BR-SVMs
and LPBHN as base classifiers respectively, show a consis-
tent advantage of our aggregation method dev with score as
the evaluation approach, compared to the rest of the methods
and to conventional passive learning, followed by the aver-
age aggregating strategy, again with score for evaluation. It
should be noted that the raw score used by dev is advanta-
geous since one does not need to normalize or define thresh-
olds to calculate it. rank and conf strategies, on the other
hand, obtain their results using manipulated or normalized
(by the base classifiers) scores, which make them more base
classifier dependent.
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