
 1

An Intelligent Educational Metadata Repository◊

*Nick Bassiliades§, *Fotios Kokkoras¥, *Ioannis Vlahavas, ** Dimitrios Sampson

* Dept. of Informatics

Aristotle University of Thessaloniki
54006 Thessaloniki, Greece

{nbassili,kokkoras,vlahavas}@csd.auth.gr

** Informatics and Telematics Institute
1 Kyvernidou Str.

54639 Thessaloniki, Greece
sampson@ath.forthnet.gr

Abstract

Recently, several standardization efforts for e-learning technologies gave rise to various

specifications for educational metadata, that is, data describing all the "entities" involved in an

educational procedure. The internal details of systems that utilize these metadata are still an

open issue since these efforts are primarily dealing with "what" and not "how". In this

chapter, under the light of these emerging standardization efforts, we present X-DEVICE, an

intelligent XML repository system for educational metadata. X-DEVICE can be used as the

intelligent back-end of a WWW portal on which "learning objects" are supplied by

educational service providers and accessed by learners according to their individual profiles

and educational needs. X-DEVICE transforms the widely adopted XML binding for

educational metadata into a flexible, object-oriented representation and uses intelligent

second-order logic querying facilities to provide advanced, personalized functionality.

Furthermore, a case study is presented, in which learning object metadata and learner's profile

metadata are combined under certain X-DEVICE rules in order to dynamically infer

customized courses for the learner.

◊ Part of the work presented in this chapter was partially financially supported by the European Commission

under the IST No 12503 Project "KOD - Knowledge on Demand" through the Information Society Technologies

Programme (IST).
§ Supported by a scholarship from the Greek Foundation of State Scholarships (F.S.S. - I.K.Y.).
¥ Supported by a scholarship from the Informatics and Telematics Institute.

 2

1. INTRODUCTION

Educational applications are among the most promising uses of the World Wide Web. There

is already a large amount of instructional material on-line, most of it in the form of static

multimedia HTML documents, some of which are enriched with a level of interactivity via

Java-based technologies. Unfortunately, the majority of these approaches has been built on

general-purpose, non-educational standards and fails to utilize Web's great potential for

distributed educational resources that are easily located and interoperate with each other.

 Although computers have been used in education for almost 20 years, in the form of

Computer based Training (CBT) and Computer Assisted Instruction (CAI), the level of

sophistication of such systems was rather primitive, since they were primarily dealing with

the sequencing of the instructional material. In contrast to this, research in information

technology assisted education has reached sophisticated levels during 90's, taking into account

issues like pedagogy, individual learner and interface, apart from the basic educational

material organization. Following the recent "e-" trend, these approaches are just beginning to

appear on the Internet. The reason for this late adoption is mainly the substantial effort that is

required to bring them on the Web since all of them have been designed without the Web in

mind.

 On the other hand, it is commonplace that our society has already moved away from the

"once for life" educational model. The complexity and continuous evolution of modern

enterprises' activities requires continuous training of their personnel. The networked

community enables the management and enhancement of knowledge in a centralized - yet

personal way, while keeping track and merging new intellectual resources into that process.

 The above requirements and advances lead us to the "Lifelong Learning" concept. The idea

is to integrate the WWW technology with a novel, dynamic and adaptive educational model

for continuous learning. The result will be a learning environment that will enable the

individual learner to acquire knowledge just in time, anytime and anywhere, tailored to

his/her personal learning needs.

 In our days, there is an ongoing, large-scale effort on improving the interoperability over

the Internet. The eXtended Mark-Up Language (XML - [43]) is massively used to define the

semantics of the information required to achieve the so-called Semantic Web idea [44]. In the

domain of education, these efforts are primarily dealing with the definition of educational

metadata, that is, data describing all the "entities" involved in an educational process. The

 3

internal details of systems that utilize these metadata are still an open issue, since these efforts

are primarily dealing with "what" and not "how". Although in an early stage of development,

these standardization efforts will enable the various educational resource developers to create

autonomous, on-line educational material that will be used by multiple tutorials, will operate

independently of any single tutorial and will be adjusted to each learner's individual needs.

 In this chapter, under the light of these emerging standardization efforts, we present

X-DEVICE [7], an intelligent XML repository system for educational metadata. X-DEVICE can

be used as the intelligent back-end of a WWW portal on which "learning objects" are supplied

by educational service providers and accessed by learners according to their individual

profiles and educational needs. X-DEVICE transforms the widely adopted XML binding for

educational metadata into a flexible, object-oriented representation and uses intelligent

second-order logic querying facilities to provide advanced, personalized functionality.

Furthermore, a case study is presented, in which learning object metadata and learner's profile

metadata are combined under certain X-DEVICE rules in order to dynamically infer

customized courses for the learner.

 The outline of this chapter is as follows: Section 2 refers to the standardization efforts in

the education and describes the current trends in intelligent approaches in e-Learning; Section

3 overviews the management of XML data and documents; Section 4 describes the storage

model of X-DEVICE, i.e. it describes how XML data are mapped onto the object data model of

X-DEVICE; Section 5 presents the X-DEVICE deductive rule language for querying XML data

through several examples on querying educational metadata objects. Section 6 presents an e-

Learning case-study, which combines in an intelligent way metadata from different

information models in order to dynamically generate a course, adapted to an individual

learner. Finally, Section 7 concludes this chapter and discusses future work. There are five

Appendices in this chapter that contain the DTDs for the various educational metadata used

throughout this chapter, their equivalent X-DEVICE object schemata, a sample XML document

with learner information, its X-DEVICE representation, and finally, the syntax of the X-DEVICE

rule language.

2. PREPARING THE BASE FOR ADVANCED E-LEARNING

The term e-Learning is used to describe a wide range of efforts to provide educational

material on the web. These efforts include a diversity of approaches, ranging from static

HTML pages with multimedia material to sophisticated interactive educational applications

 4

accessible on-line. The state-of-the-art in this latter category is the "Adaptive and Intelligent

Web-based Educational Systems" (AIWES). As the term indicates, such approaches have

their roots in the fields of Intelligent Tutoring Systems (ITS) and Adaptive Hypermedia

Systems (AHS). Actually, most of the current implementations are web-enabled adaptations

of earlier stand-alone systems. The main features of AIWES are [8]:

 Adaptive Curriculum Sequencing: The material that will be presented to the learner is

selected according to his learning request that is initially stated to the system. The sequencing

refers to various levels of granularity; from which concept (topic, lesson) should be presented

next to which is the next task (exercise, problem) the user should deal with. Either type of

sequencing if performed based on the learner's model, that is, the perception that the system

has about the learner's current knowledge status and goals.

 Problem Solving Support: We can identify three levels of support. In "Intelligent analysis

of learner's solution" the system waits for the final solution and responds with the errors the

student has made. In "Interactive Problem Solving Support" the system is continuously

monitoring the learner and is capable of giving hints, signaling errors or even auto-executing

the next step of an exercise. Finally, in "Example based Problem Solving Support" the system

is able to suggest relevant problems that the user has successfully dealt with in the past.

 Adaptive Presentation: This feature refers to the system's ability to adapt the content of the

supplied curriculum to the learner's preferences.

 Student Model Matching: This is a unique feature in AIWES. It allows the categorization

of the learners to classes with similar educational characteristics and the use of this

information for collaborative problem solving support and intelligent class monitoring.

 None of the currently available e-learning systems delivers the advanced functionality

described earlier. Most of the current e-learning approaches are limited to simple hyperlinks

between content pages and "portal pages" which organize a set of related links. This happens

because most of the existing educational material can be easily published on-line thanks to

MIME data format standards. This is very important since educational material is expensive

to create in terms of cost and time. This reusability however does not exist at the content,

tutorial, or pedagogical levels.

 One interesting approach on e-Learning is described in [34] where a framework called

Model for Distributed Curriculum (MDC) is introduced. MDC uses a topic server architecture

to allow a Web-based tutorial to include a specification for another tutorial where the best fit

to this specification will automatically be found at run time. A specific reasoning mechanism

towards this functionality is not presented though.

 5

 Another approach in e-Learning, which takes into account personalization aspects, is the

DCG [42]. This is a tool that generates individual courses according to the learner's goals and

previous knowledge and dynamically adapts the course according to the learner's success in

acquiring knowledge. DGC uses "concept structures" as a road-map to generate the plan of

the course.

 The lack of widely adopted methods for searching the Web by content makes difficult for

an instructor or learner to find educational material on the Web that addresses particular

learning and pedagogical goals. In addition, the lack of standards prevents the interoperability

of educational resources. Towards this direction and under the aegis of the IEEE Learning

Technology Standards Committee (LTSC) [20], several working groups are developing

technical standards, recommended practices and guides for software components, tools,

technologies and design methods that facilitate the development, deployment, maintenance

and interoperation of computer implementations of educational components and systems.

Two of the most important LTSC groups are the Learning Object Metadata (LOM) group and

the Learner Model (LM) group.

 The LOM working group is dealing with the attributes required to adequately describe a

learning object [21], that is, any digital or non-digital mean, which can be used during

technology supported learning. Such attributes include type of object, author, owner, terms of

distribution, format, requirements to operate, etc. More over, LOM may also include

pedagogical attributes, such as teaching or interaction style, mastery level, grade level, and

prerequisites. The Learner Model Group is dealing with the specification of the syntax and

semantics of attributes that will characterize a learner and his/her knowledge abilities [22].

These will include elements such as knowledge, skills, abilities, learning styles, records, and

personal information.

 Another working group, whose work is referenced later in this chapter, is the Content

Packaging group, which is trying to define a single unit of transmission for the media

components (text, graphics, audio, video) and all the supporting material of a learning object.

This will enable, among others, the activation of learning content with a single click of a URL

in a browser.

 Since no information is included in these standards on how to represent meta-data in a

machine-readable format, the IMS Global Learning Consortium developed a representation of

LOM in XML [25]. Similar bindings have been developed by IMS for the learner model

metadata (LIP - [24]) and the content packaging metadata (CP - [23]). For technical details

the reader can refer to Appendix A of this chapter.

 6

 One of the most ambitious efforts on e-Learning that makes use of educational metadata is

the Advanced Distributed Learning initiative [3]. Recently, ADL released the SCORM

(Sharable Courseware Object Reference Model) that attempts to map existing learning models

and practices so that common interfaces and data may be defined and standardized across

courseware management systems and development tools.

 Another approach on utilizing educational metadata in personalized e-learning is

CG-PerLS [28], a knowledge based approach for organizing and accessing educational

resources. CG-PerLS is a model of a WWW portal for learning objects that encodes the

learning technologies metadata in the Conceptual Graph knowledge representation formalism,

and uses related inference techniques to provide advanced, personalized functionality.

CG-PerLS allows learning resource creators to manifest their material, client-side learners to

access these resources in a way tailored to their individual profile and educational needs, and

dynamic course generation based on fine or coarse grained educational resources.

 All the above standardization efforts will require enough time to mature. More time will be

required to build systems to conform to these specifications. The internal details of such

systems are an open issue since these standardization efforts are primarily dealing with "what"

and not "how". Meanwhile, everyday more and more educational material is becoming

available. Therefore, there is an urgent need for methods to efficiently organize what is

available today and what will become available in the near future, before the educational

resource providers conform to the results of the standardization efforts.

 The X-DEVICE, which is presented in the following sections, is an XML-based, intelligent

educational metadata repository system. X-DEVICE translates the DTD definitions of the XML

binding of the educational metadata, into an object database schema that includes classes and

attributes. The XML metadata are translated into objects of the database and stored into an

underlying object-oriented database. In its current state, X-DEVICE can handle LOM, LIP and

CM metadata and perform reasoning over them using second-order logic querying facilities. It

can be used as the intelligent back-end of a WWW portal on which "learning objects" are

supplied by educational service providers and accessed by learners according to their

individual profiles and educational needs.

3. MANAGING XML D ATA

XML is the currently proposed standard for structured or even semi-structured information

exchange over the Internet [43]. However, the maintenance of this information is equally

 7

important. Integrating, sharing, re-using and evolving information captured from XML

documents are essential for building long-lasting applications of industrial strength.

 There exist two major approaches to manage and query XML documents. The first

approach uses special purpose query engines and repositories for semi-structured data ([9],

[17], [33], [30], [35]). These database systems are built from scratch for the specific purpose

of storing and querying XML documents. This approach, however, has two potential

disadvantages. Firstly, native XML database systems do not harness the sophisticated storage

and query capability already provided by existing database systems. Secondly, these systems

do not allow users to query seamlessly across XML documents and other (structured) data

stored in database systems.

 Traditional data management has an enormous research background that should be utilized.

The second approach to XML data management is to capture and manage XML data within

the data models of either relational ([40], [14], [16], [39]), object-relational ([41], [27]), or

object databases ([47], [38], [36], [12]). Our system, X-DEVICE, stores XML data into the

object database ADAM [18], because XML documents have by nature a hierarchical structure

that better fits the object model. Also references between or within documents play an

important role and are a perfect match for the notion of object in the object model. This better

matching between the object and document models can also be seen in the amount of earlier

approaches in storing SGML multimedia documents in object databases ([9], [37], [1], [2]).

 Capturing XML data in traditional DBMSs alone does not suffice for exploiting the

facilities of a database system. Effective and efficient querying and publishing these data on

the Web is actually more important since it determines the impact this approach will have on

future Web applications. There have been several query language proposals ([45], [13], [2],

[11], [10], [19]) for XML data. Furthermore, recently the WWW consortium issued a working

draft proposing XQuery [46], an amalgamation of the ideas present in most of the proposed

XML query languages of the literature. Most of them have functional nature and use path-

based syntax. Some of them ([13], [2], [11]), including XQuery [46], have also borrowed an

SQL-like declarative syntax, which is popular among users.

 The X-DEVICE system is a deductive object-oriented database that stores XML documents

as objects and uses logic-based rules as a query language for XML data [7]. X-DEVICE

integrates high-level, declarative rules (namely deductive and production rules) into an active

OODB that supports only event-driven rules [15], built on top of Prolog. This is achieved by

translating each high-level rule into one event-driven rule. The condition of the declarative

 8

rule compiles down to a set of complex events that is used as a discrimination network that

incrementally matches the rule conditions against the database.

 X-DEVICE automatically maps XML document DTDs to object schemata, without loosing

the document's original order of elements. XML elements are represented either as first-class

objects or as attributes based on their complexity. The deductive rule language of X-DEVICE

uses special operators for specifying complex queries and materialized views over the stored

semi-structured data. Most of these operators have a second-order syntax (i.e. variables range

over class and attribute names), but they are implemented by translating them into first-order

rules (i.e. variables can range over class instances and attribute values), so that they can be

efficiently executed against the underlying deductive object-oriented database.

 The advantages of using a logic-based query language come from their well-understood

mathematical properties. The declarative character of these languages also allows the use of

advanced optimization techniques. Logic has also been used for querying semi-structured

documents, in WebLog [29] for HTML documents and in F-Logic/FLORID [31] and

XPathLog/LoPix [32] for XML data.

4. THE X-DEVICE STORAGE M ODEL

The X-DEVICE system [7] incorporates XML documents with a schema described through a

DTD into an object-oriented database. Specifically, X-DEVICE parses XML documents, which

describe learning resources and learners' information (including their DTD definitions), and

transforms them as follows: DTD definitions are translated into an object database schema

that includes classes and attributes, while XML data are translated into objects of the

database. Generated classes and objects are stored within the underlying object database.

 The mapping between a DTD and the object-oriented data model uses the object types

presented in Figure 1, and is done as follows:

 Elements are represented as either object attributes or classes. More specifically:

• If an element has PCDATA content (without any attributes), it is represented as an

attribute of the class of its parent element. The name of the attribute is the same as the

name of the element and its type is string.

• If an element has either a) children elements, or b) attributes, then it is represented as a

class that is an instance of the xml_seq meta-class. The attributes of the class include

both the attributes of the element and its sub-elements. The types of the attributes of the

class are determined as follows:

 9

- Simple character (PCDATA) sub-elements correspond to attributes of string type,

except when they have also attribute elements. In this case, the element is represented

as a class, the element attributes as class attributes, and the element content as a string

attribute called content .

- Element attributes correspond to object attributes of string type.

- Children elements or sub-elements that are represented as objects correspond to object

reference attributes.

 Attributes of elements are represented as object attributes. The types of the attributes are

currently only strings or object references, since DTDs do not support data types. Attributes

are distinguished from sub-elements through the att_lst meta-attribute.

 In Appendix B the OODB schemata for the educational metadata used throughout this

chapter are presented. The DTDs for these educational metadata are shown in Appendix A.

More details for the XML-to-object mapping algorithm of X-DEVICE can be found in [7].

Appendix C shows an XML document that conforms to the LIP DTD (see Appendix A) and

Appendix D shows how this document is represented in X-DEVICE as a set of objects.

 There are more issues that a complete mapping scheme needs to address, except for the

above mapping rules. First, elements in a DTD can be combined through either sequencing or

alternation. Sequencing means that a certain element must include all the specified children

elements with a specified order. This is handled by the above mapping scheme through the

existence of multiple attributes in the class that represents the parent element, each for each

child element of the sequence. The order is handled outside the standard OODB model by

providing a meta-attribute (elem_ord) for the class of the element that specifies the correct

ordering of the children elements. This meta-attribute is used for returning results to the user

in the form of an XML document, or by the query mechanism.

class xml_elem
attributes
 alias (attribute-xml_elem, set, optional)
 empty (attribute, set, optional)

class xml_seq
is_a xml_elem
attributes
 elem_ord (attribute, list, optional)
 att_lst (attribute, set, optional)

class xml_alt
is_a xml_elem

Figure 1. X-DEVICE object types for mapping XML documents.

 10

 On the other hand, alternation means that any of the specified children elements can be

included in the parent element. Alternation is also handled outside the standard OODB model

by creating a new class for each alternation of elements, which is an instance of the xml_alt

meta-class and it is given a system-generated unique name. The attributes of this class are

determined by the elements that participate in the alternation. The types of the attributes are

determined as in the sequencing case. The structure of an alternation class may seem similar

to a sequencing class, however the behavior of alternation objects is different, because they

must have a value for exactly one of the attributes specified in the class (e.g. see Appendix D,

instances of class activity_alt1).

 The alternation class is always encapsulated in a parent element. The parent element class

has an attribute with the system-generated name of the alternation class, which should be

hidden from the user for querying the class. Therefore, a meta-attribute (alias) is provided

with the aliases of this system-generated attribute, i.e. the names of the attributes of the

alternating class. Mixed content elements are handled similarly to alternation of elements,

whereas the plain text elements are represented as string attributes, with the name content .

 Another issue that must be addressed is the mapping of the occurrence operators for

elements, sequences and alternations. More specifically, these operators are handled as

follows:

• The "star"-symbol (*) after a child element causes the corresponding attribute of the

parent element class to be declared as an optional, multi-valued attribute.

• The "cross"-symbol (+) after a child element causes the corresponding attribute of the

parent element class to be declared as a mandatory, multi-valued attribute.

• The question mark (?) after a child element causes the corresponding attribute of the

parent element class to be declared as an optional, single-valued attribute.

• Finally, the absence of any symbol means that the corresponding attribute should be

declared as a mandatory, single-valued attribute.

 The order of children element occurrences is important for XML documents, therefore the

multi-valued attributes are implemented as lists and not as sets.

 Empty elements are treated in the framework described above, depending on their internal

structure. If an empty element does not have attributes, then it is treated as a PCDATA

element, i.e. it is mapped onto a string attribute of the parent element class. The only value

that this attribute can take is yes , if the empty element is present. If the empty element is

absent then the corresponding attribute does not have a value. On the other hand, if an empty

 11

element has attributes, then is represented by a class. Finally, unstructured elements that have

content ANY are not currently treated by X-DEVICE, therefore we have transformed all the

elements with ANY structure in the DTDs of the educational metadata into PCDATA

elements.

5. THE X-DEVICE DEDUCTIVE QUERY LANGUAGE

Users can query the stored XML documents using X-DEVICE, by: a) submitting the query

through an HTML form, b) submitting an XML document that encapsulates the X-DEVICE

query as a string, or c) entering the query directly in the text-based Prolog environment. In

any of the above ways, the X-DEVICE query processor executes the query and transforms the

results into an XML document that is returned to the user.

 In this section, we give a brief overview of the X-DEVICE deductive rule language. More

details about X-DEVICE can be found in [5], [6], [7].

5.1. First-Order Syntax and Semantics

The syntax for X-DEVICE deductive rules is given in Appendix E. Rules are composed of

condition and conclusion, whereas the condition defines a pattern of objects to be matched

over the database and the conclusion is a derived class template that defines the objects that

should be in the database when the condition is true. The first rule in Example 1 defines that

an object with attributes identifier=ID and title=T exists in class

lp_related_resources if there is an object with OID G in class general with

attributes identifier=ID , title=T and the string 'Logic Programming' inside

the attribute keyword .

Example 1

if G@general(identifier:ID,title:T,keyword ∋ 'Logic Programming')
then lp_related_resources(identifier:ID,title:T)

if LP@lp_related_resources(identifier:ID) and
 G@general(identifier=ID) and

 L@lom(general=G,relation ∋ R) and

 R@relation(kind='Requires',resource:RS) and
 RS@resource(identifier:ID1\=ID) and
 G1@general(identifier=ID1,title:T1)
then lp_related_resources(identifier:ID1,title:T1)

 Class lp_related_resources is a derived class, i.e. a class whose instances are

derived from deductive rules. Only one derived class template is allowed at the THEN-part

 12

(head) of a deductive rule. However, there can exist many rules with the same derived class at

the head. The final set of derived objects is a union of the objects derived by the two rules.

For example, the transitive closure of the set of educational resources required from 'Logic

Programming' resources is completed with the second (recursive) rule of Example 1, which

recursively adds to the result resources that are required by the resources that are in the result

already. The second rule is very complicated because it must retrieve the OID of the lom

objects that have already been placed in the result, through their text identifier. In Example 13

we will present a more comprehensive version of this set of rules.

 The syntax of the basic rule language is first-order. Variables can appear in front of class

names (e.g. LP, G), denoting OIDs of instances of the class, and inside the brackets (e.g. ID ,

T, R), denoting attribute values (i.e. object references and simple values, such as integers,

strings, etc). Variables are instantiated through the ':' operator when the corresponding

attribute is single-valued, and the '∋' operator when the corresponding attribute is multi-

valued. Since multi-valued attributes are implemented through lists (ordered sequences) the '∋'

operator guarantees that the instantiation of variables is done in the predetermined order

stored inside the list.

 Conditions also can contain comparisons between attribute values, constants and variables

(e.g. kind='Requires'). Negation is also allowed if rules are safe, i.e. variables that

appear in the conclusion must also appear at least once inside a non-negated condition.

Furthermore, the use of arbitrary Prolog goals inside the condition of rules is allowed in X-

DEVICE. In this way the system can be extended with several features, which are outside of

the language and therefore cannot be optimized. For example, in the first rule of Example 1

the search for the keyword 'Logic Programming' is case-sensitive. If a case-insensitive search

is required instead, then the following rule calls upon a Prolog predicate (either built-in or

user-defined) that transforms the keywords in capital case and then compares them to

'LOGIC PROGRAMMING'.

if G@general(identifier:ID,title:T,keyword ∋ K) and
 prolog{upper_case(K,K1), K1=='LOGIC PROGRAMMING'}
then lp_related_resources(identifier:ID,title:T)

 A query is executed by submitting the set of stratified rules (or logic program) to the

system, which translates them into active rules and activates the basic events to detect

changes at base data. Data then are forwarded to the rule processor through a discrimination

network (much alike in a production system fashion). Rules are executed with fixpoint

semantics (semi-naive evaluation), i.e. rule processing terminates when no more new

 13

derivations can be made. Derived objects are materialized and are either maintained after the

query is over or discarded on user's demand. X-DEVICE also supports production rules, which

have at the THEN-part one or more actions expressed in the procedural language of the

underlying OODB.

 The main advantage of the X-DEVICE system is its extensibility that allows the easy

integration of new rule types as well as transparent extensions and improvements of the rule

matching and execution phases. The current system implementation includes deductive rules

for maintaining derived and aggregate attributes. Among the optimizations of the rule

condition matching is the use of a RETE-like discrimination network, extended with re-

ordering of condition elements, for reducing time complexity and virtual-hybrid memories,

for reducing space complexity [4]. Furthermore, set-oriented rule execution can be used for

minimizing the number of inference cycles (and time) for large data sets [5].

5.2. Extended Language Constructs for Querying XML Data

The deductive rule language of X-DEVICE supports constructs and operators for traversing and

querying tree-structured XML data, which are implemented using second-order logic syntax

(i.e. variables can range over class and attribute names) that can also be used to integrate

schemata of heterogeneous databases [6].

 These XML-aware constructs are translated into a combination of a) a set of first-order

logic deductive rules, and/or b) a set of production rules that their conditions query the meta-

classes of the OODB, they instantiate the second-order variables, and they dynamically

generate first-order deductive rules.

 Throughout this section, we will demonstrate the use of X-DEVICE for querying XML data

through examples on educational metadata objects. The DTDs for these metadata are shown

in Appendix A, while their equivalent X-DEVICE object schemata are shown in Appendix B.

More details about the translation of the various XML-aware constructs to the basic first-

order rule language can be found elsewhere ([7]).

Path Expressions

X-DEVICE supports several types of path expressions into rule conditions. The simplest case is

when all the steps of the path must be determined. For example, the second rule of Example 1

can be expressed as follows:

Example 2

if LP@lp_related_resources(identifier:ID) and
 L@lom(identifier.general=ID, kind.relation='Requires',

 14

 identifier.resource.relation:ID1\=ID) and

 G1@general(identifier=ID1,title:T1)
then lp_related_resources(identifier:ID1,title:T1)

 The path expressions are composed using dots between the "steps", which are attributes of

the interconnected objects, which represent XML document elements. The innermost attribute

should be an attribute of "departing" class, i.e. relation is an attribute of class lom .

Moving to the left, attributes belong to classes that represent their predecessor attributes.

Notice that we have adopted a right-to-left order of attributes, contrary to the C-like dot

notation that is commonly assumed, because we would like to stress out the functional data

model origins of the underlying ADAM OODB [18]. Under this interpretation the chained

"dotted" attributes can be seen as function compositions.

 Another case in path expressions is when the number of steps in the path is determined, but

the exact step name is not. In this case, a variable is used instead of an attribute name. This is

demonstrated by the following example, which returns the identifiers of all direct sub-

elements of lom objects that have 'Logic Programming' in their keywords.

Example 3

if L@lom(identifier.E:ID,keyword.general ∋ 'Logic Programming')
then identifiers(identifier:ID)

 Variable E is in the place of an attribute name, therefore it is a second-order variable, since

it ranges over a set of attributes, and attributes are sets of things (attribute values). Deductive

rules that contain second-order variables are always translated into a set of rules whose

second-order variable has been instantiated with a constant. This is achieved by generating

production rules, which query the meta-classes of the OODB, instantiate the second-order

variables, and generate deductive rules with constants instead of second-order variables. More

details can be found in [6] and [7]. In this example, two such bindings actually exist for

variable E, namely elements general and metadata .

 The most interesting case of path expressions is when some part of the path is unknown,

regarding both the number and the names of intermediate steps. This is handled in X-DEVICE

by using the "star" (*) operator in place of an attribute name. Such path expressions are called

"generalized". Example 3 can be re-written using the "star" (*) operator as:

Example 4

if L@lom(identifier.*:ID,keyword.general ∋ 'Logic Programming')
then identifiers(identifier:ID)

 15

 The above query has different semantics from Example 3 because it involves any sub-tree

with an identifier leaf of any length originating from lom objects. Actually, the

identifier.* path is resolved with the following three concrete paths:

identifier.general
identifier.metadata
identifier.resource.relation

 Sometimes, one of the steps of the path expression involves a recursive element, i.e. an

element that contains other elements of the same type, as for example the element

definition of the LIP objects (Appendix A). Example 5 illustrates the use of recursive

elements in path expressions. Specifically, the rule in Example 5 retrieves the names of all

modules that have been taken by some Mr. John Smith in the first year of the curriculum.

Since definition is a recursive element, it is not determined at which depth of the tree the

required constants will be found. Thus, the star (*) symbol after the definition element.

Notice that once the appropriate level of the definition elements is found (where the

'Curriculum' constant exists), it is known that 'Module' definitions are exactly one

step further.

Example 5

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 definition*.activity:D1) and
 D1@definition(indexid.referential.contentype='Year1',

 tyvalue.typename='Curriculum',definition ∋ D2) and

 D2@definition(tyvalue.typename='Module',
 indexid.referential.contentype:ModName)
then modules(module:ModName)

Ordering Expressions

X-DEVICE supports expressions that query an XML tree based on the ordering of elements.

Here we will demonstrate all types of ordering expressions through several examples.

Example 6 retrieves the first two modules that Mr. John Smith took during his second year.

Example 6

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 definition*.activity:D1) and
 D1@definition(indexid.referential.contentype='Year2',

 tyvalue.typename='Curriculum',

 definition ∋=<2 D2) and
 D2@definition(indexid.referential.contentype:ModName)
then modules(module:ModName)

 16

 The ∋=<2 operator is an absolute numeric ordering expression that returns the first two

elements of the corresponding list-attribute. More such ordering expressions exist for every

possible position inside a multi-valued attribute. The operator ∋=n that returns the n-th element

in a sequence has the shortcut notation ∋n. When there are multiple such expressions in a path

expression, then there is another shortcut notation, which is demonstrated with Example 7 that

retrieves the subject of the second lecture of the third module that Mr. John Smith attended to

during his second year.

Example 7

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 definition*.activity:D1) and

 D1@definition(indexid.referential.contentype='Year2',
 tyvalue.typename='Curriculum',

 fielddata.definitionfield 2.definition 3:Lecture) and
then lecture(subject:Lecture)

 Except for the absolute numeric ordering expressions, there are also relative ordering

expressions, which are demonstrated with the following two examples. The first one

(Example 8) retrieves the subjects of the lectures that Mr. John Smith attended to between the

lectures of 'Boolean Logic' and 'FET Transistors' . Notice that the query also

determines the name of the module, which must be 'Electronics_101' .

Example 8

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 definition*.activity:D1) and
 D1@definition(indexid.referential.contentype='Electronics_101',

 definitionfield ∋ L1) and

 D1@definition(definitionfield ∋ L2) and
 L1@definitionfield(fielddata='Boolean Logic') and
 L2@definitionfield(fielddata='FET Transistors') and

 D1@definition(definitionfield ∋between(L1,L2) L) and
 L@definitionfield(fielddata:Lecture) and
then lecture(subject:Lecture)

 The operator between(L1,L2) is a relative ordering expression that returns all

elements in a sequence after the one with an OID identified by the instantiations of the

variable L1 and before the ones with OID L2 .

 In some cases, the relative ordering expression coexists with an absolute numeric ordering

expression, which is called a complex ordering expression. Example 9 demonstrates this by

 17

retrieving the subjects of the first two lectures that Mr. John Smith attended to after the

lectures of 'Boolean Logic' during the 'Electronics_101' module.

Example 9

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 definition*.activity:D1) and
 D1@definition(indexid.referential.contentype='Electronics_101',

 definitionfield ∋ L1) and

 L1@definitionfield(fielddata='Boolean Logic') and

 D1@definition(definitionfield ∋{after(L1), =<2} L) and
 L@definitionfield(fielddata:Lecture) and
then lecture(subject:Lecture)

 The operator ∋{after(I),=<2} is a complex ordering expression that consists of the relative

ordering expression after(L1) followed by the absolute numeric ordering expression =<2.

Exporting Results

So far, only the querying of existing XML documents through deductive rules has been

discussed. However, it is important that the results of a query can be exported as an XML

document. This can be performed in X-DEVICE by using some directives around the

conclusion of a rule that defines the top-level element of the result document.

 When the rule processing procedure terminates, X-DEVICE employs an algorithm that

begins with the top-level element designated with one of these directives and navigates

recursively all the referenced classes constructing a result in the form of an XML tree-like

document. More details can be found in [7]. Example 10 demonstrates how XML documents

(and DTDs) are constructed in X-DEVICE for exporting them as results. Actually, Example 10

is the same with Example 5; the only difference being the keyword xml_result around the

derived class.

Example 10

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 definition*.activity:D1) and

 D1@definition(indexid.referential.contentype='Year1',

 tyvalue.typename='Curriculum',definition ∋ D2) and
 D2@definition(tyvalue.typename='Module',
 indexid.referential.contentype:ModName)
then xml_result(modules(module:ModName))

 The keyword xml_result is a directive that indicates to the query processor that the

encapsulated derived class (modules) is the answer to the query. This is especially

important when the query consists of multiple rules. In order to build an XML tree as a query

 18

result, the objects that correspond to the elements must be constructed incrementally in a

bottom-up fashion, i.e. first the simple elements that are towards the leaves of the tree are

generated and then combined into more complex elements towards the root of the tree. The

above query produces an awkward forest of modules elements, with the following DTD:

<!DOCTYPE modules [
 <!ELEMENT modules (module)>
 <!ELEMENT module (#PCDATA)>
]>

 To see why the above is an awkward result, regard the input XML document of Appendix

C, which will produce the following answer document:

<modules>
 <module>Electronics_101</module>

</modules>
<modules>
 <module>Maths_101</module>
</modules>

 A better-looking XML document would be one that encapsulates both module elements

in the same (root) modules element, like the following:

<modules>
 <module>Electronics_101</module>

 <module>Maths_101</module>
</modules>

 The above XML document, where an element has multiple occurrences of the same sub-

element type, conforms to the following DTD, instead of the one presented above:

<!DOCTYPE modules [

 <!ELEMENT modules (module*)>
 <!ELEMENT module (#PCDATA)>
]>

 In order to construct the above tree-structured DTD, then we should use the list

construct in the rule conclusion to wrap the module elements inside the top-level element

modules :

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 definition*.activity:D1) and
 D1@definition(indexid.referential.contentype='Year1',
 tyvalue.typename='Curriculum',

 tyvalue.typename.definition='Module',
 indexid.referential.contentype.definition:ModName)
then xml_result(modules(module:list(ModName)))

 19

 The list(ModName) construct in the conclusion denotes that the attribute module of

the derived class modules is an attribute whose value is calculated by the aggregate function

list . This function collects all the instantiations of the variable ModName and stores them

under a strict order into the multi-valued attribute module . More details about the

implementation of aggregate functions in X-DEVICE can be found in [5].

 In order to produce an even more structured DTD with the module element not being a

mere PCDATA element, but having an internal structure as well, then X-DEVICE offers a

wrapping construct as a shortcut notation:

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 definition*.activity:D1) and

 D1@definition(indexid.referential.contentype='Year1',
 tyvalue.typename='Curriculum',
 tyvalue.typename.definition='Module',
 indexid.referential.contentype.definition:ModName)
then xml_result(modules(module(name:ModName)))

 This would produce the following slightly more complicated DTD:

<!DOCTYPE modules [

 <!ELEMENT modules (module*)>
 <!ELEMENT module (name)
 <!ELEMENT name (#PCDATA)>
]>

which corresponds to the following result document:

<modules>
 <module>
 <name>Electronics_101</name>

 </module>
 <module>
 <name>Maths_101</name>
 </module>
</modules>

 Another directive for constructing XML documents is xml_sorted , which is similar to

xml_result and is used for sorting the elements of the result according to a group of

element values specified in the rule head. Example 11 repeats the rule of Example 10, sorting

the result according to the module name.

Example 11

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 definition*.activity:D1) and

 D1@definition(indexid.referential.contentype='Year1',

 20

 tyvalue.typename='Curriculum',

 tyvalue.typename.definition='Module',
 indexid.referential.contentype.definition:ModName)
then xml_sorted([ModName],modules(module(name:ModName)))

Alternative Attribute Expressions

The presentation of X-DEVICE so far assumed that path expressions contain steps that refer

only to normal XML elements. However, step expressions can also refer to element attributes,

using the (^) symbol as a prefix before the name. Example 12 retrieves all the comments in

the English language found anywhere inside the LIP object of Mr. John Smith.

Example 12

if L@learnerinfo(text.formname.identification='Mr. John Smith',

 comment.*:C) and

 C@comment(content:Text,^xml_lang='en')
then xml_result(comments(comment:list(Text)))

 The system attribute is another special attribute that can be used in X-DEVICE. Example 13

demonstrates the use of special attributes. Recall the two rules of Example 1 that retrieve the

identifiers and titles of all educational resources required for "teaching" Logic Programming.

The first rule collects all the resources that directly contain the 'Logic Programming'

keyword, while the second rule recursively adds to the result resources by retrieving the OID

of the lom objects that have already been placed in the result, through their text identifier.

Things would be easier if one could record in the result class lp_related_resources

the OID of the recorded lom object, so that the second rule knows where to begin. However,

we would not like this lom OID to appear in the final result. This is achieved by prefixing the

name of the "hidden" attribute with an exclamation mark (!). In this way, it is considered a

system attribute that will not appear in the result.

Example 13

if L@lom(identifier.general:ID,title.general:T,

 keyword.general ∋ 'Logic Programming')
then xml_result(
 lp_related_resources(!orig_lom:L,identifier:ID,title:T))

if LP@lp_related_resources((!orig_lom:L) and
 L@lom(kind.relation='Requires',
 identifier.resource.relation:ID1) and

 L1@lom(identifier.general=ID1,title.general:T1)
then lp_related_resources(!orig_lom:L1,identifier:ID1,title:T1)

 21

 Notice that although both rules refer to the same derived class

lp_related_resources , only one of them contains the xml_result directive.

However, this is not a strict language rule; it does not matter if several rules contain the

xml_result or any other result directive, as long as the following constraints are satisfied:

• Only one type of result directive is allowed in the same query.

• Only one derived class is allowed at the result.

6. E-LEARNING CASE STUDY

In this section we present an e-learning case-study, which demonstrates the functionality of

the X-DEVICE system as an intelligent educational metadata repository. Specifically, the

system (Figure 2) maintains LOM objects submitted by learning resource providers as well as

LIP objects of its registered users (learners). Users submit their learning requests through a

Web interface and the system dynamically generates a Content Package. The latter provides

access to the suggested educational resources that cover the learning request.

 X-DEVICE uses deductive rules to suggest educational material by intelligently combining

information of educational resources (LOM objects) with information about an individual

learner (LIP objects). Specifically, we assume that the LIP objects of the database include past

learner activities in terms of LOM objects that they have "learned". This may sound as an

oversimplification, but we can assume that when new learners are added to the system their

past activities expressed in various "agreed" formats are "translated" to the format required by

our system, i.e. sets of LOM objects that were used during these past activities. Furthermore,

we assume that when a learner has a new learning goal (e.g. 'Logic Programming'),

this is represented in the goal sub-tree of his/her LIP object. The objective of this case-study

is to construct a content package that includes all the required LOM objects for achieving the

WWW

Server

Learner

Queries (Deductive Rules)

Internet

LOM & LIP objects

X-DEVICE

Learning
Resources

Learning
Request

CP

Metadata
Submission

CP

Figure 2. The architecture of the X-DEVICE system.

 22

new learning goal, except of those that have already been "taken" by the learner in the past.

The outline of the constructed CP tree and the rules that generate it are shown in Figure 3.

 In order to identify the LOM objects that can achieve the learning goal we first match the

goal directly with the title of the LOM object (Rule 1). If the match fails, then we try to find

LOM objects whose keywords are contained within the learning goal (Rule 2), e.g. 'Logic' ,

'Programming' . A more sophisticated approach would use ontologies to better resolve the

user's learning goal. The information found with either the above ways is maintained within

the user-defined class top_level .

Rule 1

if L@learnerinfo(text.formname.identification:LName,
 tyvalue.typename.goal='Education',

 tyvalue.typename.status.goal='New',
 short.description.goal:Subject) and
 L1@lom(title.general=Subject,identifier.general:ID)
then top_level(learner:LName,goal:Subject,lom_id:ID,
 lom_title:Subject,!org_learner:L,!org_lom:L1)

Rule 2

if L@learnerinfo(text.formname.identification:LName,

 tyvalue.typename.goal='Education',
 tyvalue.typename.status.goal='New',
 short.description.goal:Subject $ K) and
 not T1@tmp_elem1 and

 L1@lom(keyword.general ∋ K,title.general=LTitle,
 identifier.general:ID)
then top_level(learner:LName,goal:Subject,lom_id:ID,
 lom_title:LTitle,!org_learner:L,!org_lom:L1)

 Notice that the above two rules keep also the OIDs of the original LOM and LIP objects

manifest

organizations

organization

resources

resource

item

file

Rule 11

Rules 3, 6

Rule 10

Rule 4

Rule 9

Rules 5, 8

Rule 7

top_level
Rules 1, 2

Rules 12, 13

1-to-N

1-to-1

Figure 3. Outline of the case-study

 23

that initiated the whole procedure, in order to use them in subsequent retrieval of information

about these objects. This is achieved by using system attributes, which will be hidden away

from the final XML result. Also notice the use of the ($) operator, which searches if its right-

hand-side argument (string) is a sub-string of its left-hand-side argument.

 Subsequently, the "discovered" top-level LOM objects are added to the content package as

organizations and items. Specifically, each top-level LOM object is considered to be an

alternative study suggestion for the learning goal and will be represented by a separate

organization element. Each of these organization elements will have just one item sub-

element, which also represents the corresponding top-level LOM object. The LOM objects

that are related to these top-level objects will be recursively "hanged" below these top-level

item elements.

 Rule 3 creates the top-level item elements for each of the top-level LOM objects. Before

the item object is created, the rule condition ensures that the same LOM object has not been

"attended" by the learner in the past, by checking his/her activity records for completed

educational activities that their source is LOM and their ID matches the ID of the

"discovered" object. Activities can be nested, thus we use the recursive element activity* .

Furthermore, there may be cases where "discovered" top-level LOM objects are connected

through 'Required' relations. In order to avoid repetitions of items in the CP tree, if the same

LOM object has already been recorded as an item object, it is not created again. Subsequently,

Rule 4 creates an organization object for each top-level LOM object and points to the

corresponding item object. Notice that we use a Prolog predicate to generate a unique

identifier for the organization object by combining the string of the goal with a number.

Rule 3

if TL@top_level(lom_id:ID,lom_title:LTitle,
 !org_learner:L,!org_lom:L1) and

 not L@learnerinfo(tyvalue.typename.activity*='Education',
 tyvalue.typename.status.activity*='Completed',
 source.sourcedid.learningactivityref.activity*='lom',
 id.sourcedid.learningactivityref.activity*=ID) and

 not I@item(^identifier=ID,!org_learner=L)
then item(^identifier:ID,title:LTitle,!org_lom:L1,!org_learner:L)

Rule 4

if TL@top_level(lom_id:ID,goal:Subject) and

 I@item(^identifier=ID) and
 prolog{generate_id(Subject,OID)}
then organization(^identifier:OID,title:Subject,item:list(I))

 24

 For each organizational item a corresponding resource object that holds information about

physical resources of the LOM object must be created and linked to the item object. Rule 5

creates the resource object and stores information about the type of the resource. Notice that

the OID of the corresponding item object is kept for using it later (Rule 6) for cross-

referencing the resource from the item object. Notice that Rule 6 is a, so-called, derived-

attribute rule [5], which defines the value that an attribute of an existing object should have.

Rule 5

if I@item(!org_lom:L) and
 L@lom(format.technical:Type) and

 prolog{generate_id(resource,RID)}
then resource(^identifier:RID,^type:Type,!org_item:I)

Rule 6

if R@resource(^identifier:RID,!org_item:I)
then I@item(^identifierref:RID)

 The resource object is not complete until it is linked with the physical file information of

the corresponding LOM object, which we assume corresponds to the location element of

the technical sub-tree of the LOM object. However, the file sub-element of

resource is an object itself, so it must first be created (Rule 7) and then linked to the

resource object (Rule 8).

Rule 7

if R@resource(!org_item:I) and

 I@item(!org_lom:L) and
 L@lom(location.technical:File)
then file(^href:File,!org_resource:R)

Rule 8

if F@file(!org_resource:R)
then R@resource(file:list(F))

 Finally, the organization and resource objects must be linked together into a

manifest object. First, all the organization objects are linked together into one

organizations object (Rule 9), according to the DTD of CP (see Appendix A). The

same also is done for the resource objects (Rule 10). Finally, Rule 11 generates the top-

level manifest object, generating an identifier from the learner's name. Notice the use of

the xml_result directive to indicate the top-level element of the result XML document.

 25

Rule 9

if O@organization
then organizations(organization:list(O))

Rule 10

if R@resource
then resources(resource:list(R))

Rule 11

if TL@top_level(learner:LName) and

 R@resources and
 O@organizations and
 prolog{generate_id(LName,MID)}

then xml_result(manifest(^identifier:MID,
 organizations:O,resources:R))

 Now that the result tree has been created, it is time to navigate through the LOM objects

that are required by the top-level LOM objects, check if they have been encountered by the

learner during his past activities, create the corresponding items, and finally, link them to their

parent item/LOM object. Rule 12 creates the items and keeps the OID of their parent item

object, which is used by Rule 13 to link the two items. Notice that Rule 12 checks if the item

objects to be created have already been created for the same learner. This could happen when

multiple LOM objects have common 'Required' LOM objects.

Rule 12

if I@item(!org_lom:L,!org_learner:L2) and

 L@lom(kind.relation='Requires',
 identifier.resource.relation:ID1) and
 L1@lom(identifier.general=ID1,title.general:T1) and
 not L2@learnerinfo(tyvalue.typename.activity*='Education',

 tyvalue.typename.status.activity*='Completed',
 source.sourcedid.learningactivityref.activity*='lom',
 id.sourcedid.learningactivityref.activity*=ID1)
 not I1@item(^identifier=ID1,!org_learner=L2)

then item(^identifier:ID1,title:T1,!org_lom:L1,!org_learner:L2,
 !parent_item:I)

Rule 13

if I1@item(!parent_item:I)
then I@item(item:list(I1))

 Although the resulting class (manifest) has already been created in Rule 11, it does not

matter to continue deriving objects, because the order of rule execution is determined by

stratification and the results will be exported after the logic program reaches a fixpoint. The

 26

creation of the resource objects that correspond to the recursively added item objects is

taken care by rules already defined (Rule 5 - Rule 8).

 The XML document that will be created by the previous set of rules (Figure 3) will be

packaged along with the corresponding physical resources (e.g. files) and sent to the learner.

The DTD of this document is a subset of the full CP DTD (see Appendix A).

<!ELEMENT manifest (organizations, resources)>
<!ATTLIST manifest

 identifier ID #REQUIRED>
<!ELEMENT organizations (organization*)>
<!ELEMENT organization (title?, item*)>
<!ATTLIST organization

 identifier ID #REQUIRED>
<!ELEMENT item (title?, item*)>
<!ATTLIST item
 identifier ID #REQUIRED

 identifierref CDATA #IMPLIED>
<!ELEMENT resources (resource*)>
<!ELEMENT resource (file+)>
<!ATTLIST resource

 identifier ID #REQUIRED
 type CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT file EMPTY>

<!ATTLIST file
 href CDATA #REQUIRED>

 The case-study presented here does not deal with what the user does in order to study the

suggested LOM objects and what happens after each of the suggested item gets completed.

However, we assume that the studied LOM objects are added to the activity sub-tree of the

learner's LIP object, so that the next time the learner has a new learning goal they will not be

considered again (see Rule 3).

7. CONCLUSIONS AND FUTURE WORK

In this chapter, we presented X-DEVICE, an intelligent repository system for educational

metadata. X-DEVICE transforms the widely adopted XML binding for LOM, LIP and CP

educational metadata, into a flexible, object-oriented representation and uses intelligent

second-order logic querying facilities to provide advanced, personalized learning content

access. As demonstrated by the case-study, X-DEVICE can be used as the intelligent back-end

of a WWW portal on which "learning objects" are supplied by educational service providers

and accessed by learners according to their individual profiles and educational needs.

 27

 X-DEVICE stores an XML document into an OODB by automatically mapping the schema

of the XML document (DTD) to an object schema and XML elements to database objects,

treating them according to their structure complexity, without loosing the relative order of

elements in the original document. Furthermore, X-DEVICE employs a powerful deductive

rule query language for expressing queries over the stored XML data. The deductive rule

language has certain constructs (such as second-order variables, general path and ordering

expressions) for traversing tree-structured data that were implemented by translating them

into first-order deductive rules.

 Comparing X-DEVICE with other XML query languages (e.g. XQuery) seems that the high-

level, declarative syntax of X-DEVICE allows users to express everything that XQuery can

express, in a more compact and comprehensible way, with the powerful addition of fixpoint

recursion and second-order variables. Furthermore, users can also express complex XML

document views, a fact that can greatly facilitate customizing information for e-learning, as it

was demonstrated by the case-study.

 Concerning the functionality of X-DEVICE as an educational portal, we plan to incorporate

the learner's assessment results described in the IMS Question & Test Interoperability

Specification (QTI - [26]). This information can be used to improve the overall knowledge

transfer from the system to the learner by preferring to serve him/her with a specific learning

object from a set of similar ones, based on the assessment results obtained by learners with

similar profiles. This will require substantial research on aspects related to the learner's

model.

 Furthermore, the suitability of the suggested learning content would be improved by using

ontologies to better resolve the end-users' learning request. Further improvement could be

achieved by using curriculum description information. In its current state, X-DEVICE assumes

a curriculum description defined indirectly by the relations between learning objects. On the

other hand, curriculum information contains higher-level pedagogical knowledge and as a

result can lead to a better teaching strategy for the suggested educational material.

 28

8. REFERENCES

[1] Abiteboul S., Cluet S., Christophides V., Milo T., Moerkotte G., Siméon J., Querying

Documents in Object Databases, Int. J. on Digital Libraries, 1(1): 5-19 (1997)

[2] Abiteboul S., Quass D., McHugh J., Widom J., and Wiener J.L., "The Lorel Query

Language for Semistructured Data," Int. Journal on Digital Libraries, 1(1), pp. 68-88,

1997.

[3] ADL, "Sharable Courseware Object Reference Model (SCORM)", Version 1.1, Jan-

2001, (http://www.adlnet.org).

[4] Bassiliades N. and Vlahavas I., “Processing Production Rules in DEVICE, an Active

Knowledge Base System”, Data & Knowledge Engineering, Vol. 24(2), pp. 117-155,

1997.

[5] Bassiliades N., Vlahavas I., and Elmagarmid A.K., "E-DEVICE: An extensible active

knowledge base system with multiple rule type support", IEEE TKDE, 12(5), pp. 824-

844, 2000.

[6] Bassiliades N., Vlahavas I., Elmagarmid A.K., and Houstis E.N., “InterBaseKB:

Integrating a Knowledge Base System with a Multidatabase System for Data

Warehousing,” IEEE TKDE, (to appear) 2001.

[7] Bassiliades N., Vlahavas I., Sampson D., Using Logic for Querying XML Data,

submitted for publication.

[8] Brusilovsky P., Adaptive and Intelligent Technologies for Web-based Education, in

C.Rollinger and C.Peylo (eds.), Kunstliche Intelligenz, Special Issue on Intelligent

Systems and Technology, 1999, 4.

[9] Buneman P., Davidson S. B., Hillebrand G. G., Suciu D., A Query Language and

Optimization Techniques for Unstructured Data, Proc. ACM SIGMOD Conf., 1996,

pp. 505-516.

[10] Buneman P., Fernandez M., Suciu D., "UnQL: A query language and algebra for

semistructured data based on structural recursion," VLDB Journal, 9(1), 2000.

[11] Chamberlin D., Robie J., and Florescu D., "Quilt: an XML Query Language for

Heterogeneous Data Sources," Int. Workshop WebDB, pp. 53-62, 2000.

[12] Chung T.-S., Park S., Han S.-Y., and Kim H.-J., Extracting Object-Oriented Database

Schemas from XML DTDs Using Inheritance, K. Bauknecht, S.K. Madria, G. Pernul

 29

(Eds.), Proc. 2nd Int. Conf. EC-Web 2001, Munich, Germany, 2001, LNCS 2115, pp.

49-59.

[13] Deutsch A., Fernandez M., Florescu D., Levy A., and Suciu D., "A Query Language

for XML," WWW8 / Computer Networks, 31(11-16), pp. 1155-1169, 1999.

[14] Deutsch A., Fernandez M.F., Suciu D., "Storing Semistructured Data with STORED,"

ACM SIGMOD Conf., pp. 431-442, 1999.

[15] Diaz O., Jaime A., "EXACT: An Extensible Approach to Active Object-Oriented

Databases", VLDB Journal, 6(4), pp. 282-295, 1997.

[16] Florescu D. and Kossmann D., “Storing and Querying XML Data using an RDMBS,”

IEEE Data Eng. Bulletin, 22(3), pp. 27-34, 1999.

[17] Goldman R., Widom J., DataGuides: Enabling Query Formulation and Optimization in

Semistructured Databases, Proc. Int. Conf. VLDB, 1997, pp. 436-445.

[18] Gray P.M.D., Kulkarni K.G., and Paton N.W., Object-Oriented Databases, A Semantic

Data Model Approach, Prentice Hall, London, 1992.

[19] Hosoya H., Pierce B., "XDuce: A Typed XML Processing Language," Int. Workshop

WebDB, pp. 111-116, 2000.

[20] IEEE Learning Technology Standards Committee (LTSC), http://ltsc.ieee.org/

[21] IEEE P1484.12/D6.0, "Draft Standard for Learning Object Metadata", Feb-2001.

[22] IEEE P1484.2/D7, "Draft Standard for Learning Technology - Public and Private

Information (PAPI) for Learners (PAPI Learner)", Nov-2000.

[23] IMS Global Learning Consortium, Content Packaging (CP) Specification, Version

1.1.2, Final Specification, http://www.imsglobal.org/content/packaging/index.html

[24] IMS Global Learning Consortium, Learner Information Package (LIP) Specification,

Version 1.0, Final Specification, Mar 2001,

http://www.imsglobal.org/profiles/index.html

[25] IMS Global Learning Consortium, Learning Resource Meta-data (LOM) Specification,

Version 1.2, Final Specification, May 2001,

http://www.imsglobal.org/metadata/index.html

[26] IMS Global Learning Consortium, Question & Test Interoperability Specification,

Version 1.1, Feb-2001, http://www.imsproject.com/question

[27] Klettke M. and Meyer H., “XML and Object-Relational Database Systems - Enhancing

Structural Mappings Based on Statistics,” Int. Workshop WebDB, pp. 63-68, 2000.

 30

[28] Kokkoras F., Sampson D.G., and Vlahavas I., CG-PerLS: Conceptual Graphs for

Personalized Learning Systems, to be presented at 8th Panhellenic Conf. on

Informatics, Cyprus, Nov. 2001

[29] Lakshmanan L.V.S., Sadri F., Subramanian I. N., A Declarative Language for

Querying and Restructuring the WEB. RIDE-NDS 1996: 12-21

[30] Lucie Xyleme, A Dynamic Warehouse for XML Data of the Web, IEEE Data

Engineering Bulletin, 24(2), June 2001, pp. 40-47.

[31] Ludäscher B., Himmeröder R., Lausen G., May W., Christian Schlepphorst, Managing

Semistructured Data with FLORID: A Deductive Object-Oriented Perspective,

Information Systems, Vol. 23, No 8, 1998, pp. 589-613.

[32] May W.: XPathLog: A Declarative, Native XML Data Manipulation Language.

IDEAS 2001: 123-128

[33] McHugh J., Abiteboul S., Goldman R., Quass D., Widom J., Lore: A Database

Management System for Semistructured Data, ACM SIGMOD Record, 26(3),pp. 54-

66, 1997.

[34] Murray T., A Model for Distributed Curriculum on the WWW, Journal of Interactive

Media in Education, 5 (1998) (http://www-jime.open.ac.uk/98/5).

[35] Naughton J., et al, The Niagara Internet Query System, IEEE Data Engineering

Bulletin, 24(2), June 2001, pp. 27-33.

[36] Nishioka S., Onizuka M., Mapping XML to Object Relational Model, Proc. Int. Conf.

on Internet Computing, pp. 171-177, 2001.

[37] Ozsu M.T., Iglinski P., Szafron D., El-Medani S., and Junghanns M., “An Object-

Oriented SGML/HyTime Compliant Multimedia Database Management System,”

presented at ACM Multimedia, Seattle, WA, USA, 1997.

[38] Renner A., "XML Data and Object Databases: A Perfect Couple?", Proc. Int. Conf. on

Data Engineering, pp. 143-148, 2001.

[39] Schmidt A., Kersten M.L., Windhouwer M., Waas F., "Efficient Relational Storage

and Retrieval of XML Documents," Int. Workshop WebDB, pp. 47-52, 2000.

[40] Shanmugasundaram J., Tufte K., Zhang C., He G., DeWitt D.J., and Naughton J.F.,

“Relational Databases for Querying XML Documents: Limitations and Opportunities,”

Int Conf. VLDB, pp. 302-314, 1999.

[41] Shimura T., Yoshikawa M., and Uemura S., “Storage and Retrieval of XML

Documents Using Object-Relational Databases,” Proc. Int. Conf. on Database and

Expert Systems Applications, Florence, Italy, 1999, pp. 206-217.

 31

[42] Vassileva J., "Dynamic Course Generation on the WWW", 8th World Conference on

AI in Education (AI-ED97), Knowledge and Media in Learning Systems, Kobe, Japan,

1997.

[43] W3 Consortium, Extensible Markup Language (XML) 1.0 (2nd Edition),

Recommendation, Oct 2000, http://www.w3.org/TR/REC-xml.

[44] W3 Consortium, Semantic Web Activity Statement,

http://www.w3.org/2001/sw/Activity.

[45] W3 Consortium, XML Path Language (XPath) Ver. 1.0, Recommendation, Nov 1999,

http://www.w3.org/TR/xpath

[46] W3 Consortium, XQuery 1.0: An XML Query Language, Working Draft, June 2001,

http://www.w3.org/TR/xquery.

[47] Yeh C.-L., “A Logic Programming Approach to Supporting the Entries of XML

Documents in an Object Database,” Int. Workshop PADL, pp. 278-292, 2000.

 32

Appendix A. DTDS FOR LOM, LIP AND CP OBJECTS

This appendix contains the DTDs for the LOM (Learning Object Metadata) [25], LIP

(Learner Information Packaging) [24] and CP (Content Packaging) [23] objects that are used

throughout this chapter. Notice that, due to space limitations, only a part of the LIP DTD that

is used in chapter is actually shown. Furthermore, some of the DTDs have been simplified for

presentation purposes.

LOM
<!ELEMENT lom (general?, lifecycle?, metametadata?, technical?, educational?, rights?,
relation*, annotation*, classification*)>
<!ELEMENT general (identifier?, title?, catalogentry*, language*, description*, keyword*,
coverage*, structure?, aggregationlevel?, extension?)>
<!ELEMENT catalogentry (catalog, entry, extension?)>
<!ELEMENT lifecycle (version?, status?, contribute*, extension?)>
<!ELEMENT contribute (role, centity*, date?, extension?)>
<!ELEMENT date (datetime?, description?)>
<!ELEMENT metametadata (identifier?, catalogentry*, contribute*, metadatascheme*, language?,
extension?)>
<!ELEMENT technical (format*, size?, location*, requirement*, installationremarks?,
otherplatformrequirements?, duration?, extension?)>
<!ELEMENT requirement (type?, name?, minimumversion?, maximumversion?, extension?)>
<!ELEMENT duration (datetime?, description?)>
<!ELEMENT educational (interactivitytype?, learningresourcetype*, interactivitylevel?,
semanticdensity?, intendedenduserrole*, context*, typicalagerange*, difficulty?,
typicallearningtime?, description?, language*, extension?)>
<!ELEMENT typicallearningtime (datetime?, description?)>
<!ELEMENT rights (cost?, copyrightandotherrestrictions?, description?, extension?)>
<!ELEMENT copyrightandotherrestrictions (source, value)>
<!ELEMENT relation (kind?, resource?, extension?)>
<!ELEMENT resource (identifier?, description?, catalogentry*, extension?)>
<!ELEMENT annotation (person?, date?, description, extension?)>
<!ELEMENT classification (purpose?, taxonpath*, description?, keyword*, extension?)>
<!ELEMENT taxonpath (source?, taxon?)>
<!ELEMENT taxon (id?, entry?, taxon?)>
<!ELEMENT structure (source, value)>
<!ELEMENT type (source, value)>
<!ELEMENT name (source, value)>
<!ELEMENT aggregationlevel (source, value)>
<!ELEMENT status (source, value)>
<!ELEMENT role (source, value)>
<!ELEMENT interactivitytype (source, value)>
<!ELEMENT learningresourcetype (source,
value)>
<!ELEMENT interactivitylevel (source, value)>
<!ELEMENT semanticdensity (source, value)>
<!ELEMENT intendedenduserrole (source, value)>
<!ELEMENT context (source, value)>
<!ELEMENT difficulty (source, value)>
<!ELEMENT cost (source, value)>
<!ELEMENT kind (source, value)>
<!ELEMENT purpose (source, value)>
<!ELEMENT centity (vcard)>
<!ELEMENT person (vcard)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT entry (#PCDATA)>
<!ELEMENT description (#PCDATA)>

<!ELEMENT keyword (#PCDATA)>
<!ELEMENT coverage (#PCDATA)>
<!ELEMENT source (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT installationremarks (#PCDATA)>
<!ELEMENT otherplatformrequirements (#PCDATA)>
<!ELEMENT typicalagerange (#PCDATA)>
<!ELEMENT location (#PCDATA)>
<!ATTLIST location
 type (URI | TEXT) #IMPLIED>
<!ELEMENT identifier (#PCDATA)>
<!ELEMENT extension (#PCDATA)>
<!ELEMENT catalog (#PCDATA)>
<!ELEMENT language (#PCDATA)>
<!ELEMENT vcard (#PCDATA)>
<!ELEMENT datetime (#PCDATA)>
<!ELEMENT metadatascheme (#PCDATA)>
<!ELEMENT format (#PCDATA)>
<!ELEMENT size (#PCDATA)>
<!ELEMENT minimumversion (#PCDATA)>
<!ELEMENT maximumversion (#PCDATA)>
<!ELEMENT id (#PCDATA)>

LIP
<!ELEMENT learnerinformation (comment?, contentype?, (identification | goal | qcl | activity |
competency | transcript | accessibility | interest | affiliation | securitykey | relationship
| ext_learnerinfo)*)>
<!ATTLIST learnerinformation
 xml:lang CDATA "en">
<!ELEMENT identification (comment?, contentype?, (formname | name | address | contactinfo |
demographics | agent)*, ext_identification?)>

 33

<!ELEMENT goal (typename?, comment?, contentype?, date*, priority?, status?, description?,
goal*, ext_goal?)>
<!ELEMENT qcl (typename?, comment?, contentype?, title?, organization?, registrationno?,
level?, date*, description?, ext_qcl?)>
<!ELEMENT activity (typename?, comment?, contentype?, date*, status?, units?,
(learningactivityref | definition | product | testimonial | evaluation)*, description?,
activity*, ext_activity?)>
<!ELEMENT name (typename?, comment?, contentype?, partname*)>
<!ELEMENT description (short | long | full)+>
<!ELEMENT full (comment?, media+)>
<!ELEMENT contentype (comment?, (referential | temporal | privacy)+, ext_contentype?)>
<!ELEMENT referential (sourcedid | indexid | (sourcedid, indexid))>
<!ELEMENT status (typename?, date?, description?)>
<!ELEMENT partname (typename?, text?)>
<!ELEMENT date (typename?, datetime, description?, ext_date?)>
<!ELEMENT organization (typename?, description?)>
<!ELEMENT level (text, level?)>
<!ELEMENT evaluation (typename?, comment?, contentype?, evaluationid?, date*, evalmetadata?,
objectives*, status?, noofattempts?, duration*, result*, description?, evaluation*,
ext_evaluation?)>
<!ELEMENT testimonial (typename?, comment?, contentype?, date*, description?,
ext_testimonial?)>
<!ELEMENT definition (typename?, comment?, contentype?, definitionfield*, description?,
definition*, ext_definition?)>
<!ELEMENT evalmetadata (typename?, evalmetadatafield+)>
<!ELEMENT objectives (comment?, (media | contentref)+, ext_objectives?)>
<!ATTLIST objectives
 view (All | Administrator | AdminAuthority | Assessor | Author | Candidate |
InvigilatorProctor | Psychometrician | Scorer | Tutor) "All">
<!ELEMENT result (comment?, ((interpretscore | score)* | result*))>
<!ELEMENT product (typename?, comment?, contentype?, date?, description?, ext_product?)>
<!ELEMENT formname (typename?, comment?, contentype?, text?)>
<!ELEMENT learningactivityref (sourcedid | text)+>
<!ELEMENT relationship (typename?, comment?, contentype?, tuple?, description?,
ext_relationship?)>
<!ELEMENT duration (fieldlabel, fielddata)>
<!ELEMENT tuple (tuplesource, tuplerelation, tupledest+)>
<!ELEMENT media (#PCDATA)>
<!ATTLIST media
 mediamode (Text | Image | Video | Audio | Applet | Application) #REQUIRED
 contentreftype (uri | entityref | Base-64) "Base-64"
 mimetype CDATA #REQUIRED>
<!ELEMENT tysource (#PCDATA)>
<!ATTLIST tysource
 sourcetype (imsdefault | list | proprietary | standard) "imsdefault"
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT tuplesource (sourcedid?, indexid)>
<!ELEMENT tuplerelation (typename, text?)>
<!ELEMENT tupledest (sourcedid?, indexid)>
<!ELEMENT units (unitsfield+)>
<!ELEMENT typename (tysource?, tyvalue)>
<!ELEMENT comment (#PCDATA)>
<!ATTLIST comment
 xml:lang CDATA "en"
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT source (#PCDATA)>
<!ATTLIST source
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT id (#PCDATA)>
<!ATTLIST id
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT short (#PCDATA)>
<!ATTLIST short
 xml:lang CDATA "en"
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT long (#PCDATA)>
<!ATTLIST long
 xml:lang CDATA "en"
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT fielddata (#PCDATA)>
<!ATTLIST fielddata
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT datetime (#PCDATA)>
<!ATTLIST datetime
 e-dtype NMTOKEN #FIXED "dateTime">
<!ELEMENT text (#PCDATA)>

<!ATTLIST text
 uri CDATA #IMPLIED
 xml:lang CDATA "en"
 entityref ENTITY #IMPLIED
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT title (#PCDATA)>
<!ATTLIST title
 xml:lang CDATA "en"
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT registrationno (#PCDATA)>
<!ATTLIST registrationno
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT fieldlabel (typename)>
<!ELEMENT sourcedid (source, id)>
<!ELEMENT indexid (#PCDATA)>
<!ATTLIST indexid
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT evaluationid (#PCDATA)>
<!ATTLIST evaluationid
 e-dtype NMTOKEN #FIXED "ID">
<!ELEMENT noofattempts (#PCDATA)>
<!ATTLIST noofattempts
 e-dtype NMTOKEN #FIXED "int">
<!ELEMENT evalmetadatafield (fieldlabel,
fielddata)>
<!ATTLIST evalmetadatafield
 xml:lang CDATA "en">
<!ELEMENT contentref (#PCDATA)>
<!ATTLIST contentref
 e-dtype NMTOKEN #FIXED "ID">

 34

<!ELEMENT tyvalue (#PCDATA)>
<!ATTLIST tyvalue
 xml:lang CDATA "en"
 e-dtype NMTOKEN #FIXED "string">
<!ELEMENT interpretscore (fieldlabel,
fielddata)>
<!ELEMENT score (fieldlabel, fielddata)>
<!ELEMENT definitionfield (fieldlabel,
fielddata)>
<!ELEMENT unitsfield (fieldlabel, fielddata)>
<!ELEMENT ext_goal (#PCDATA)>
<!ELEMENT ext_evaluation (#PCDATA)>

<!ELEMENT ext_learnerinfo (#PCDATA)>
<!ELEMENT ext_contentype (#PCDATA)>
<!ELEMENT ext_activity (#PCDATA)>
<!ELEMENT ext_date (#PCDATA)>
<!ELEMENT ext_definition (#PCDATA)>
<!ELEMENT ext_identification (#PCDATA)>
<!ELEMENT ext_objectives (#PCDATA)>
<!ELEMENT ext_product (#PCDATA)>
<!ELEMENT ext_qcl (#PCDATA)>
<!ELEMENT ext_relationship (#PCDATA)>
<!ELEMENT ext_testimonial (#PCDATA)>

CP
<!ELEMENT manifest (metadata?, organizations,
resources, manifest*)>
<!ATTLIST manifest
 identifier ID #REQUIRED
 version CDATA #IMPLIED>
<!ELEMENT organizations (organization*)>
<!ATTLIST organizations
 default IDREF #IMPLIED>
<!ELEMENT organization (title?, item*,
metadata?)>
<!ATTLIST organization
 identifier ID #REQUIRED>
<!ELEMENT item (title?, item*, metadata?)>
<!ATTLIST item
 identifier ID #REQUIRED
 isvisible CDATA #IMPLIED
 parameters CDATA #IMPLIED
 identifierref CDATA #IMPLIED
 a-dtype NMTOKENS "isvisible boolean">

<!ELEMENT metadata (schema?, schemaversion?)>
<!ELEMENT schema (#PCDATA)>
<!ELEMENT schemaversion (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT resource (metadata?, file+,
dependency*)>
<!ATTLIST resource
 identifier ID #REQUIRED
 type CDATA #REQUIRED
 href CDATA #IMPLIED>
<!ELEMENT resources (resource*)>
<!ELEMENT file (metadata?)>
<!ATTLIST file
 href CDATA #REQUIRED>
<!ELEMENT dependency EMPTY>
<!ATTLIST dependency
 identifierref CDATA #IMPLIED>

Appendix B. X-DEVICE OBJECT SCHEMATA FOR EDUCATIONAL M ETADATA

This appendix contains the object schemata in X-DEVICE for the DTDs of the various

educational objects that are used throughout this chapter (see Appendix A). Notice that, due to

space limitations, only a small part of the object schema for the LIP DTD is actually shown,

which is necessary for understanding the XML document of Appendix C and Appendix D.

LOM
xml_seq lom
 attributes
 general (general, single, optional)
 lifecycle (lifecycle, single, optional)
 metametadata (metametadata, single, optional)
 technical (technical, single, optional)
 educational (educational, single, optional)
 rights (rights, single, optional)
 relation (relation, list, optional)
 annotation (annotation, list, optional)
 classification (classification, list, optional)
 meta_attributes
 elem_ord [general, lifecycle, metametadata, technical, educational, rights,
 relation, annotation, classification]
xml_seq general
 attributes
 identifier (string, single, optional)
 title (string, single, optional)
 catalogentry (catalogentry, list, optional)
 language (string, list, optional)
 description (string, list, optional)
 keyword (string, list, optional)
 coverage (string, list, optional)
 structure (structure, single, optional)
 aggregationlevel (aggregationlevel, single, optional)
 extension (string, single, optional)
 meta_attributes

 35

 elem_ord [identifier, title, catalogentry, language, description, keyword,
 coverage, structure, aggregationlevel, extension]
xml_seq lifecycle
 attributes
 version (string, single, optional)
 status (status, single, optional)
 contribute (contribute, list, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [version, status, contribute, extension]
xml_seq metametadata
 attributes
 identifier (string, single, optional)
 catalogentry (catalogentry, list, optional)
 contribute (contribute, list, optional)
 metadatascheme (string, list, optional)
 language (string, list, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [identifier, catalogentry, contribute, metadatascheme, language,
 extension]
xml_seq technical
 attributes
 format (string, list, optional)
 size (string, single, optional)
 location (location, list, optional)
 requirement (requirement, list, optional)
 installationremarks (string, single, optional)
 otherplatformrequirements (string, single, optional)
 duration (duration, single, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [format, size, location, requirement, installationremarks,
 otherplatformrequirements, duration, extension]
xml_seq educational
 attributes
 interactivitytype (interactivitytype, single, optional)
 learningresourcetype (learningresourcetype, list, optional)
 interactivitylevel (interactivitylevel, single, optional)
 semanticdensity (semanticdensity, single, optional)
 intendedenduserrole (intendedenduserrole, list, optional)
 context (context, list, optional)
 typicalagerange (string, list, optional)
 difficulty (difficulty, single, optional)
 typicallearningtime (typicallearningtime, single, optional)
 description (string, single, optional)
 language (string, list, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [interactivitytype, learningresourcetype, interactivitylevel,
 semanticdensity, intendedenduserrole, context,
 typicalagerange, difficulty, typicallearningtime,
 description, language, extension]
xml_seq rights
 attributes
 cost (cost, single, optional)
 copyrightandotherrestrictions (copyrightandotherrestrictions, single, optional)
 description (string, single, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [cost, copyrightandotherrestrictions, description, extension]
xml_seq relation
 attributes
 kind (kind, single, optional)
 resource (resource, single, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [kind, resource, extension]
xml_seq annotation
 attributes
 person (person, single, optional)
 date (date, single, optional)
 description (string, single, mandatory)
 extension (string, single, optional)
 meta_attributes
 elem_ord [person, date, description, extension]
xml_seq classification

 36

 attributes
 purpose (purpose, single, optional)
 taxonpath (taxonpath, list, optional)
 description (string, single, optional)
 keyword (string, list, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [purpose, taxonpath, description, keyword, extension]
xml_seq catalogentry
 attributes
 catalog (string, single, mandatory)
 entry (string, single, mandatory)
 extension (string, single, optional)
 meta_attributes
 elem_ord [catalog, entry, extension]
xml_seq contribute
 attributes
 role (role, single, mandatory)
 centity (centity, list, optional)
 date (date, single, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [role, centity, date, extension]
xml_seq requirement
 attributes
 type (type, single, optional)
 name (name, single, optional)
 minimumversion (string, single, optional)
 maximumversion (string, single, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [type, name, minimumversion, maximumversion, extension]
xml_seq rights
 attributes
 cost (cost, single, optional)
 copyrightandotherrestrictions (copyrightandotherrestrictions, single, optional)
 description (string, single, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [cost, copyrightandotherrestrictions, description, extension]
xml_seq resource
 attributes
 identifier (string, single, optional)
 description (string, single, optional)
 catalogentry (catalogentry, list, optional)
 extension (string, single, optional)
 meta_attributes
 elem_ord [identifier, description, catalogentry, extension]
xml_seq taxonpath
 attributes
 source (string, single, optional)
 taxon (taxon, single, optional)
 meta_attributes
 elem_ord [source, taxon]
xml_seq taxon
 attributes
 id (string, single, optional)
 entry (string, single, optional)
 taxon (taxon, single, optional)
 meta_attributes
 elem_ord [id, entry, taxon]
xml_seq langstring
 attributes
 content (string, single, mandatory)
 xml_lang (string, single, optional)
 meta_attributes
 elem_ord [content]
 att_lst [xml_lang]
xml_seq location
 attributes
 content (string, single, mandatory)
 type (string, single, optional)
 meta_attributes
 elem_ord [content]
 att_lst [type]

 37

 Classes structure, aggregationlevel, status, role, type, name, inter-
activitytype, learningresourcetype, interactivitylevel, semantic-
density, intendedenduserrole, context, difficulty, cost, copyrightand-

otherrestrictions, kind, purpose have the following structure:
xml_seq ClassName
 attributes
 source (source, single, mandatory)
 value (value, single, mandatory)
 meta_attributes
 elem_ord [source, value]

 Classes date, duration, typicallearningtime have the following structure:
xml_seq ClassName
 attributes
 datetime (string, single, optional)
 description (description, single, optional)
 meta_attributes
 elem_ord [datetime, description]

 Classes centity, person have the following structure:
xml_seq ClassName
 attributes
 vcard (string, single, mandatory)
 meta_attributes
 elem_ord [vcard]

LIP
xml_seq learnerinformation
 attributes
 comment (comment, single, optional)
 contentype (contentype, single, optional)
 learnerinformation_alt1 (learnerinformation_alt1, list, optional)
 xml_lang (string, single, optional)
 meta_attributes
 elem_ord [comment, contentype, learnerinformation_alt1]
 att_lst [xml_lang]
 alias [identification-learnerinformation_alt1,
 goal-learnerinformation_alt1, qcl-learnerinformation_alt1,
 activity-learnerinformation_alt1,
 competency-learnerinformation_alt1,
 transcript-learnerinformation_alt1,
 accessibility-learnerinformation_alt1,
 interest-learnerinformation_alt1,
 affiliation-learnerinformation_alt1,
 securitykey-learnerinformation_alt1,
 relationship-learnerinformation_alt1,
 ext_learnerinfo-learnerinformation_alt1]
xml_alt learnerinformation_alt1
 attributes
 identification (identification, single, optional)
 goal (goal, single, optional)
 qcl (qcl, single, optional)
 activity (activity, single, optional)
 competency (competency, single, optional)
 transcript (transcript, single, optional)
 accessibility (accessibility, single, optional)
 interest (interest, single, optional)
 affiliation (affiliation, single, optional)
 securitykey (securitykey, single, optional)
 relationship (relationship, single, optional)
 ext_learnerinfo (string, single, optional)
xml_seq activity
 attributes
 typename (typename, single, optional)
 comment (comment, single, optional)
 contentype (contentype, single, optional)
 date (date, list, optional)
 status (status, single, optional)
 units (units, single, optional)
 activity_alt1 (activity_alt1, list, optional)
 description (description, single, optional)
 activity (activity, list, optional)
 ext_activity (string, single, optional)
 meta_attributes

 38

 elem_ord [typename, comment, contentype, date, status, units,
 activity_alt1, description, activity, ext_activity]
 alias [learningactivityref-activity_alt1, definition-activity_alt1,
 product-activity_alt1, testimonial-activity_alt1,
 evaluation-activity_alt1]
xml_alt activity_alt1
 attributes
 learningactivityref (learningactivityref, single, optional)
 definition (definition, single, optional)
 product (product, single, optional)
 testimonial (testimonial, single, optional)
 evaluation (evaluation, single, optional)
 att_lst [xml_lang]
xml_seq contentype
 attributes
 comment (comment, single, optional)
 contentype_alt1 (contentype_alt1, list, mandatory)
 ext_contentype (string, single, optional)
 meta_attributes
 elem_ord [comment, contentype_alt1, ext_contentype]
 alias [referential-contentype_alt1, temporal-contentype_alt1,
 privacy-contentype_alt1]
xml_alt contentype_alt1
 attributes
 referential (referential, single, optional)
 temporal (temporal, single, optional)
 privacy (privacy, single, optional)
xml_seq referential
 attributes
 referential_alt1 (referential_alt1, single, mandatory)
 meta_attributes
 elem_ord [referential_alt1]
 alias [sourcedid-referential_alt1, indexid-referential_alt1,
 sourcedid-referential_alt1_seq1, indexid-referential_alt1_seq1]
xml_alt referential_alt1
 attributes
 sourcedid (sourcedid, single, optional)
 indexid (indexid, single, optional)
 referential_alt1_seq1 (referential_alt1_seq1, single, optional)
 meta_attributes
 alias [sourcedid-referential_alt1_seq1,
 indexid-referential_alt1_seq1]
xml_alt referential_alt1_seq1
 attributes
 sourcedid (sourcedid, single, mandatory)
 indexid (indexid, single, mandatory)
 meta_attributes
 elem_order [sourcedid, indexid]
xml_seq definition
 attributes
 typename (typename, single, optional)
 comment (comment, single, optional)
 contentype (contentype, single, optional)
 definitionfield (definitionfield, list, optional)
 description (description, single, optional)
 definition (definition, list, optional)
 ext_definition (string, single, optional)
 meta_attributes
 elem_ord [typename, comment, contentype, definitionfield, description,
 definition, ext_definition]
xml_seq sourcedid
 attributes
 source (source, single, mandatory)
 id (id, single, mandatory)
 meta_attributes
 elem_ord [source, id]
xml_seq typename
 attributes
 tysource (tysource, single, optional)
 tyvalue (tyvalue, single, mandatory)
 meta_attributes
 elem_ord [tysource, tyvalue]
xml_seq evalmetadatafield
 attributes
 fieldlabel (fieldlabel, single, mandatory)
 fielddata (fielddata, single, mandatory)
 xml_lang (string, single, optional)

 39

 meta_attributes
 elem_ord [fieldlabel, fielddata]
xml_seq definitionfield
 attributes
 fieldlabel (fieldlabel, single, mandatory)
 fielddata (fielddata, single, mandatory)
 meta_attributes
 elem_ord [fieldlabel, fielddata]
xml_seq fieldlabel
 attributes
 typename (typename, single, mandatory)
 meta_attributes
 elem_ord [typename]
xml_seq tysource
 attributes
 content (string, single, mandatory)
 sourcetype (string, single, optional)
 e-dtype (string, single, mandatory)
 meta_attributes
 elem_ord [content]
 att_lst [e-dtype, sourcetype]
xml_seq tyvalue
 attributes
 content (string, single, mandatory)
 xml_lang (string, single, optional)
 e-dtype (string, single, mandatory)
 meta_attributes
 elem_ord [content]
 att_lst [e-dtype, xml_lang]

 Classes comment, source , id , fielddata , indexid have the following structure:
xml_seq ClassName
 attributes
 content (string, single, mandatory)
 e-dtype (string, single, mandatory)
 meta_attributes
 elem_ord [content]
 att_lst [e-dtype]

CP
xml_seq manifest
 attributes
 metadata (metadata, single, optional)
 organizations (organizations, single, mandatory)
 resources (resources, single, mandatory)
 manifest (manifest, list, optional)
 identifier (string, single, mandatory)
 version (string, single, optional)
 meta_attributes
 elem_ord [metadata, organizations, resources, manifest]
 att_lst [identifier, version]
xml_seq metadata
 attributes
 schema (string, single, optional)
 schemaversion (string, single, optional)
 meta_attributes
 elem_ord [schema, schemaversion]
xml_seq organizations
 attributes
 organization (organization, list, optional)
 default (string, single, optional)
 meta_attributes
 elem_ord [organization]
 att_lst [default]
xml_seq organization
 attributes
 title (string, single, optional)
 item (item, list, optional)
 metadata (metadata, single, optional)
 identifier (string, single, mandatory)
 meta_attributes
 elem_ord [title, item, metadata]
 att_lst [identifier]
xml_seq item
 attributes
 title (string, single, optional)

 40

 item (item, list, optional)
 metadata (metadata, single, optional)
 identifier (string, single, mandatory)
 isvisible (string, single, optional)
 parameters (string, single, optional)
 identifierref (string, single, optional)
 a-dtype (string, list, optional)
 meta_attributes
 elem_ord [title, item, metadata]
 att_lst [identifier, isvisible, parameters, identifierref, a-dtype]
xml_seq resources
 attributes
 resource (resource, list, optional)
 meta_attributes
 elem_ord [resource]
xml_seq resource
 attributes
 metadata (metadata, single, optional)
 file (file, list, mandatory)
 dependency (dependency, list, optional)
 identifier (string, single, mandatory)
 type (string, single, mandatory)
 href (string, single, optional)
 meta_attributes
 elem_ord [metadata, file, dependency]
 att_lst [identifier, type, href]
 empty [dependency]
xml_seq dependency
 attributes
 identifierref (string, single, optional)
 meta_attributes
 elem_ord []
 att_lst [identifierref]
xml_seq file
 attributes
 metadata (metadata, single, optional)
 href (string, single, mandatory)
 meta_attributes
 elem_ord [metadata]
 att_lst [href]

Appendix C. XML D OCUMENT EXAMPLE

This appendix presents an example of an XML document that conforms to the LIP DTD (see

Appendix A).

<learnerinformation>
 <comment>An example of LIP Activity information.</comment>
 <contentype>
 <referential>
 <sourcedid>
 <source>IMS_LIP_V1p0_Example</source>
 <id>2001</id>
 </sourcedid>
 </referential>
 </contentype>
 <activity>
 <typename>
 <tysource sourcetype="imsdefault"/>
 <tyvalue>Education</tyvalue>
 </typename>
 <contentype>
 <referential>
 <indexid>activity_1</indexid>
 </referential>
 </contentype>
 <definition>
 <typename>
 <tysource sourcetype="imsdefault"/>
 <tyvalue>Course</tyvalue>
 </typename>
 <contentype>

 41

 <referential>
 <indexid>DegreeCourse</indexid>
 </referential>
 </contentype>
 <definition>
 <typename>
 <tysource sourcetype="imsdefault"/>
 <tyvalue>Curriculum</tyvalue>
 </typename>
 <contentype>
 <referential>
 <indexid>Year1</indexid>
 </referential>
 </contentype>
 <definition>
 <typename>
 <tysource sourcetype="imsdefault"/>
 <tyvalue>Module</tyvalue>
 </typename>
 <contentype>
 <referential>
 <indexid>Electronics_101</indexid>
 </referential>
 </contentype>
 <definitionfield>
 <fieldlabel>
 <typename>
 <tyvalue>Lecture1</tyvalue>
 </typename>
 </fieldlabel>
 <fielddata>BooleanLogic</fielddata>
 </definitionfield>
 <definitionfield>
 <fieldlabel>
 <typename>
 <tyvalue>Lecture2</tyvalue>
 </typename>
 </fieldlabel>
 <fielddata>Transistors</fielddata>
 </definitionfield>
 </definition>
 <definition>
 <typename>
 <tysource sourcetype="imsdefault"/>
 <tyvalue>Module</tyvalue>
 </typename>
 <contentype>
 <referential>
 <indexid>Maths_101</indexid>
 </referential>
 </contentype>
 <definitionfield>
 <fieldlabel>
 <typename>
 <tyvalue>Lecture1</tyvalue>
 </typename>
 </fieldlabel>
 <fielddata>BooleanLogic1</fielddata>
 </definitionfield>
 <definitionfield>
 <fieldlabel>
 <typename>
 <tyvalue>Lecture2</tyvalue>
 </typename>
 </fieldlabel>
 <fielddata>BooleanLogic2</fielddata>
 </definitionfield>
 </definition>
 </definition>
 </definition>
 </activity>
</learnerinformation>

 42

Appendix D. OBJECT-ORIENTED REPRESENTATION OF AN XML D OCUMENT

This appendix presents the X-DEVICE object-oriented representation for the XML document

of Appendix C.

object 0#source
 instance source
 attributes
 content 'IMS_LIP_V1p0_Example'
 e-dtype 'string'
object 1#id
 instance id
 attributes
 content '2001'
 e-dtype 'string'
object 2#tysource
 instance tysource
 attributes
 content ''
 e-dtype 'string'
 sourcetype 'imsdefault'
object 3#tyvalue
 instance tyvalue
 attributes
 content 'Education'
 e-dtype 'string'
 xml_lang 'en'
object 4#indexid
 instance indexid
 attributes
 content 'activity_1'
 e-dtype 'string'
object 5#tyvalue
 instance tyvalue
 attributes
 content 'Course'
 e-dtype 'string'
 xml_lang 'en'
object 6#indexid
 instance indexid
 attributes
 content 'DegreeCourse'
 e-dtype 'string'
object 7#tyvalue
 instance tyvalue
 attributes
 content 'Curriculum'
 e-dtype 'string'
 xml_lang 'en'
object 8#indexid
 instance indexid
 attributes
 content 'Year1'
 e-dtype 'string'
object 9#tyvalue
 instance tyvalue
 attributes
 content 'Module'
 e-dtype 'string'
 xml_lang 'en'
object 10#indexid
 instance indexid
 attributes
 content 'Electronics_101'
 e-dtype 'string'
object 11#tyvalue
 instance tyvalue
 attributes
 content 'Lecture1'
 e-dtype 'string'
 xml_lang 'en'

object 12#fielddata
 instance fielddata
 attributes
 content 'BooleanLogic'
 e-dtype 'string'
object 13#tyvalue
 instance tyvalue
 attributes
 content 'Lecture2'
 e-dtype 'string'
 xml_lang 'en'
object 14#fielddata
 instance fielddata
 attributes
 content 'Transistors'
 e-dtype 'string'
object 15#indexid
 instance indexid
 attributes
 content 'Maths_101'
 e-dtype 'string'
object 16#fielddata
 instance fielddata
 attributes
 content 'BooleanLogic1'
 e-dtype 'string'
object 17#fielddata
 instance fielddata
 attributes
 content 'BooleanLogic2'
 e-dtype 'string'
object 18#sourcedid
 instance sourcedid
 attributes
 source 0#source
 id 1#id
object 19#typename
 instance typename
 attributes
 tysource 2#tysource
 tyvalue 3#tyvalue
object 20#referential
 instance referential
 attributes
 referential_alt1 21#referential_alt1
object 21#referential_alt1
 instance referential_alt1
 attributes
 indexid 4#indexid

 sourcedid ∅
 referential_alt1_seq1 ∅
object 22#typename
 instance typename
 attributes
 tysource 2#tysource
 tyvalue 5#tyvalue
object 23#referential
 instance referential
 attributes
 referential_alt1 24#referential_alt1
object 24#referential_alt1
 instance referential_alt1
 attributes
 indexid 6#indexid
 sourcedid ∅

 referential_alt1_seq1 ∅

 43

object 25#typename
 instance typename
 attributes
 tysource 2#tysource
 tyvalue 7#tyvalue
object 26#referential
 instance referential
 attributes
 referential_alt1 27#referential_alt1
object 27#referential_alt1
 instance referential_alt1
 attributes
 indexid 8#indexid
 sourcedid ∅

 referential_alt1_seq1 ∅
object 28#typename
 instance typename
 attributes
 tysource 2#tysource
 tyvalue 9#tyvalue
object 29#referential
 instance referential
 attributes
 referential_alt1 30#referential_alt1
object 30#referential_alt1
 instance referential_alt1
 attributes
 indexid 10#indexid

 sourcedid ∅

 referential_alt1_seq1 ∅
object 31#typename
 instance typename
 attributes

 tysource ∅
 tyvalue 11#tyvalue
object 32#typename
 instance typename
 attributes

 tysource ∅
 tyvalue 13#tyvalue
object 33#referential
 instance referential
 attributes
 referential_alt1 34#referential_alt1
object 34#referential_alt1
 instance referential_alt1
 attributes
 indexid 15#indexid
 sourcedid ∅

 referential_alt1_seq1 ∅
object 35#referential
 instance referential
 attributes
 referential_alt1 36#referential_alt1
object 36#referential_alt1
 instance referential_alt1
 attributes

 indexid ∅
 sourcedid 18#sourcedid

 referential_alt1_seq1 ∅
object 37#contentype
 instance contentype
 attributes

 comment ∅
 contentype_alt1 [38#contentype_alt1]

 ext_contentype ∅
object 38#contentype_alt1
 instance contentype_alt1
 attributes
 referential 20#referential

 temporal ∅
 privacy ∅

object 39#contentype
 instance contentype
 attributes

 comment ∅
 contentype_alt1 [40#contentype_alt1]

 ext_contentype ∅
object 40#contentype_alt1
 instance contentype_alt1
 attributes
 referential 23#referential

 temporal ∅
 privacy ∅
object 41#contentype
 instance contentype
 attributes

 comment ∅
 contentype_alt1 [42#contentype_alt1]

 ext_contentype ∅
object 42#contentype_alt1
 instance contentype_alt1
 attributes
 referential 26#referential

 temporal ∅
 privacy ∅
object 43#contentype
 instance contentype
 attributes

 comment ∅
 contentype_alt1 [44#contentype_alt1]

 ext_contentype ∅
object 44#contentype_alt1
 instance contentype_alt1
 attributes
 referential 29#referential

 temporal ∅
 privacy ∅
object 45#fieldlabel
 instance fieldlabel
 attributes
 typename 31#typename
object 46#fieldlabel
 instance fieldlabel
 attributes
 typename 32#typename
object 47#contentype
 instance contentype
 attributes

 comment ∅
 contentype_alt1 [48#contentype_alt1]
 ext_contentype ∅
object 48#contentype_alt1
 instance contentype_alt1
 attributes
 referential 33#referential

 temporal ∅
 privacy ∅
object 49#contentype
 instance contentype
 attributes

 comment ∅
 contentype_alt1 [50#contentype_alt1]

 ext_contentype ∅
object 50#contentype_alt1
 instance contentype_alt1
 attributes
 referential 35#referential

 temporal ∅

 privacy ∅
object 51#definitionfield
 instance definitionfield
 attributes
 fieldlabel 45#fieldlabel
 fielddata 12#fielddata

 44

object 52#definitionfield
 instance definitionfield
 attributes
 fieldlabel 46#fieldlabel
 fielddata 14#fielddata
object 53#definitionfield
 instance definitionfield
 attributes
 fieldlabel 45#fieldlabel
 fielddata 16#fielddata
object 54#definitionfield
 instance definitionfield
 attributes
 fieldlabel 46#fieldlabel
 fielddata 17#fielddata
object 55#definition
 instance definition
 attributes
 typename 28#typename

 comment ∅
 contentype 43#contentype
 definitionfield [51#definitionfield,
52#definitionfield]

 description ∅
 definition []

 ext_definition ∅
object 56#definition
 instance definition
 attributes
 typename 28#typename
 comment ∅
 contentype 47#contentype
 definitionfield [53#definitionfield,
54#definitionfield]
 description ∅
 definition []

 ext_definition ∅
object 57#definition
 instance definition
 attributes
 typename 25#typename

 comment ∅
 contentype 41#contentype
 definitionfield []

 description ∅
 definition [55#definition,
56#definition]

 ext_definition ∅
object 58#definition
 instance definition
 attributes
 typename 22#typename

 comment ∅
 contentype 39#contentype
 definitionfield []

 description ∅
 definition [57#definition]

 ext_definition ∅

object 59#activity
 instance activity
 attributes
 typename 19#typename
 comment ∅
 contentype 37#contentype
 date []
 status ∅

 units ∅
 activity_alt1 [60#activity_alt1]
 description ∅
 activity []

 ext_activity ∅object
 60#activity_alt1
 instance activity_alt1
 attributes
 learningactivityref ∅
 definition 58#definition

 product ∅
 testimonial ∅

 evaluation ∅
object 61#comment
 instance comment
 attributes
 content 'An example of LIP Activity
information.'
 e-dtype 'string'
 xml_lang 'en'
object 62#learnerinformation
 instance learnerinformation
 attributes
 comment 61#comment
 contentype 49#contentype
 learnerinformation_alt1 []
 xml_lang 'en'
object 63# learnerinformation_alt1
 instance learnerinformation_alt1
 attributes

 identification ∅

 goal ∅
 qcl ∅
 activity 59#activity
 competency ∅

 transcript ∅
 accessibility ∅

 interest ∅
 affiliation ∅

 securitykey ∅
 relationship ∅

 ext_learnerinfo ∅

Appendix E. X-DEVICE RULE LANGUAGE SYNTAX

This appendix contains the syntax of the X-DEVICE deductive rule language in BNF notation.

<rule> ::= if <condition> then <consequence>
<condition> ::= <inter-object-pattern>
<consequence> ::= {<action> | <conclusion> | <derived_attribute_template>}
<inter-object-pattern> ::= <condition-element> ['and' <inter-object-pattern>]
<inter-object-pattern> ::= <inter-object-pattern> 'and' <prolog_cond>
<condition-element> ::= ['not'] <intra-object-pattern>
<intra-object-pattern> ::= [<inst_expr>'@']<class_expr>['('<attr-patterns>')']
<attr-patterns> ::= <attr-pattern>[','<attr-patterns>]

 45

<attr-pattern> ::= <attr-expr>['.'<path_expr>] {':'<variable> | <predicates>
 | ':'<variable> <predicates>
 | <list-operator> <variable>}
<path_expr> ::= <nt-attr-expr> ['.'<path_expr>]
<attr-expr> ::= {<nt-attr-expr>|<t-attr>|<normal-attr>' ↑'}
<nt-attr-expr> ::= <nt-attr>[{'*'|<integer>}]
<nt-attr-expr> ::= {'*'|'+'}
<nt-attr> ::= {<normal-attr>|<system-attr>}
<t-attr> ::= {<xml-attr>|<empty-attr>}
<normal-attr> ::= <attr>
<system-attr> ::= '!'<attr>
<xml-attr> ::= '^'<attr>
<empty-attr> ::= ' ∅'<attr>
<attr> ::= {<attribute>|<variable>}
<predicates> ::= <rel-operator> <value> [{ '&' | ';' } <predicates>]
<predicates> ::= <set-operator> <set>
<rel-operator> ::= '=' | '>' | '>=' | '=<' | '<' | '\=' | '$' | <date-operator>
<date-operator> ::= '$'{'y'|'m'|'d'}

<set-operator> ::= ' ⊂' | ' ⊄' | ' ⊆' | ' ∈' | ' ∉' | ' ⊃' | '\ ⊃' | ' ⊇'
<list-operator> ::= ' ∋' | '\ ∋'

<list-operator> ::= ' ∋'<order_expr>
<order_expr> ::= {<abs_order>|<rel_order>|'{'<rel_order>','<abs_order>'}'}
<abs_order> ::= <rel-operator><integer> | <integer>
<rel_order> ::= { 'before' | 'after' }'('<variable>')'
<rel_order> ::= 'between' '('<variable>','<variable>')'
<value> ::= <constant> | <variable> | <arith_expr>
<set> ::= '['<constants>']'
<prolog_cond> ::= 'prolog' '{'<prolog_goal>'}'
<action> ::= <prolog_goal>
<conclusion> ::= <derived_class_template>
<conclusion> ::= {'xml_result' | 'shallow_result'}'('<elem_expr>')'
<conclusion> ::= {'xml_sorted' | 'shallow_sorted'}'('[<group_list>
 ['-'<order_list>]',']<elem_expr>')'
<elem_expr> ::= <derived_class_template>
<elem_expr> ::= <derived_class>'('<derived_class_template>')'
<derived_class_template> ::= <derived_class>'('<templ-patterns>')'
<derived_attribute_template> ::= <variable>'@'{<class>}'('<templ-patterns>')'
<templ-patterns> ::= <templ-pattern> [',' <templ-pattern>]
<templ-pattern> ::= {<normal-attr>|<system-attr>|<xml-attr>}':'{<value> | <aggregate_expr>}
<templ-pattern> ::= <empty-attr>
<aggregate_expr> ::= <aggregate_function>'('<variable>')'}
<aggregate_expr> ::= 'ord_list('<variable>['-'<group_list>['-'<order_list>]]')'
<aggregate_function> ::= 'count'|'sum'|'avg'|'max'|'min'|'list'|'string'
<group_list> ::= '['<variable>[','<variable>]']'
<order_list> ::= '['<ord_symbol>[','<ord_symbol>]']'
<ord_symbol> ::= {'<' | '>'}
<inst_expr> ::= {<variable>|<class>}
<class_expr> ::= {<variable>|<class>}
<class_expr> ::= <inst_expr>'/'<class>
<class> ::= an existing class or meta-class of the OODB schema
<derived_class> ::= an existing derived class or a non-existing base class of the OODB schema
<attribute> ::= an existing attribute of the corresponding OODB class
<prolog_goal> ::= an arbitrary Prolog/ADAM goal
<constants> ::= <constant>[','<constants>]
<constant> ::= a valid constant of an OODB simple attribute type
<variable> ::= a valid Prolog variable
<arith_expr> ::= a valid Prolog arithmetic expression

