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Abstract

Certain business environments, like health-care or customer service, host
complex and highly variable business processes. In such situations, we expect
fluctuating process behavior, which is difficult to attribute to specific causes,
at least automatically. This work aims to provide process analysts with an
additional tool to discover factors that affect the process flow. To this end,
we propose a three-stage methodology to deal with the several challenges of
this goal.

Adhering to the process mining paradigm that suggests for evidence-based
process analysis and improvement, we introduce a horizontal partitioning ap-
proach to identify elements of process behavior during the first stage. Then,
during the second stage, we discuss how log manipulations can yield charac-
teristics that reflect various perspectives of the process. Finally, we propose a
multi-target feature evaluation step to deliver insights about the associations
between characteristics and process behavior.

The proposed methodology is designed to tackle challenges related to
the general correlation problem of process mining, like dealing with general
process behavior (not just local decisions) and relaxing the independence
assumption among the elements of behavior. We demonstrate our approach
step by step through a case study on a real-world, open dataset.
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1. Introduction1

Business process models, an essential tool for organizations to manage2

their processes [1], can be designed by experts or automatically discovered3

through event log files, i.e., records in an information system that provide4

detailed information about the activities that have been performed during a5

business process execution. Given the growing availability of event logs, an6

equally growing interest is drawn on automated process discovery. However,7

there are certain environments, like health-care or customer service, where8

processes are inherently complex [2]. Moreover, process variability may occur9

for a plethora of reasons. As indicative examples we can consider business10

rules that govern the process behavior (e.g., loyal customers can skip some11

steps); established habits (e.g., clients visit a particular office first, even12

if they should start from a different point); or even contingencies (a new13

employee did not know what task he or she should perform next).14

In order to help in understanding such complex and highly variable pro-15

cesses, the goal of this paper is to propose a methodology that would consis-16

tently and effectively discover characteristics that affect process flow. This17

is part of the general problem of “relating any process or event characteristic18

to other characteristics associated with single events or the entire process”19

that in [3] is termed as the “general correlation problem” of process mining20

(not to be confused with the “case id correlation” problem [4], which refers21

to identifying a unique case id for each event). Assuming one achieves to22

correlate characteristics to process behavior, she can legitimately expect to23

deliver valuable insights [3]. This kind of insights can, for instance, be effec-24

tively used for off-line prediction (e.g., to predict tasks’ load by examining a25

particular attribute of customers’ profiles), or for on-line monitoring (e.g., to26

trigger an alert that a case will violate its Service Level Agreement (SLA) for27

duration, because it has performed a special ensemble of steps). The general28

correlation problem itself, can be viewed as a version of the issues related29

to the definition of Context in Business Process Management (BPM) since30

it involves what Rosemann et al. [5] call context-aware business processes,31

which can be defined as processes that can sense and react to changes in the32

context, leading to diversificated process executions. In addition, as Car-33

valho et al. [6] point out, the analysis of contextual information in business34

processes might indicate the need for their modification and exploit “learning35

from the past to support decision making”. Overall, it is a matter of making36

evidence-based decisions for the process improvement and redesign endeav-37
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ors. Of course, the “Context” thematic in BPM is a far broader area which38

can bring various contributions to process management (see for instance the39

summarizing Table 12 in [7]). This work focuses on the general correlation40

problem of process mining, which is still far from being a trivial issue. In41

the following, we enlist several reasons that make it a hard and challenging42

problem. We label them as “Challenge 1”;“Challenge 2”, etc. to facilitate43

the cross-references during the later sections.44

First, the characteristics may refer to various process perspectives (Chal-45

lenge 1) [8], like the control-flow perspective (e.g., what was the customer’s46

last action?), the data-flow perspective (e.g., is this an emergency case?),47

and the organizational perspective (e.g., is a specific employee prone to tak-48

ing shortcuts?). Second, characteristics may not be evident in the log file,49

thus they must be derived (Challenge 2)[9, 10, 3]. For example, when the50

analyst is interested in the number of loops performed during a case, or in51

the total duration spent on the five last activities, she can not find directly52

this information in the event log, which typically has the shape of a flat file,53

each row being the record of one event.54

Other reasons concern how process behavior is defined. Hence, the third55

reason is actually a common pitfall, namely to consider too granular or too56

inclusive behavior (Challenge 3) [11, 12]. It’s clear that a too granular view57

will generate irrelevant variability, as well as that a too inclusive behavior58

will lead to a fake homogenization. Moreover, a fourth challenge is posed59

by the fact that the emphasis is not limited to identifying the discriminating60

power of features, but there is also a great interest in connecting them with61

the process flows (Challenge 4). While the above reasons are related to the62

process behavior definition, two further challenges emerge from the scope of63

the behavior. The one is the typical process stakeholders’ desire to interpret64

not just the local decision (e.g., the conditions of a decision point), but more65

general process behavior (Challenge 5). The other, a follow-up actually,66

poses a critical question (Challenge 6): Given the will to have insights on67

the general process behavior, what constructs or variables can reflect it, and68

what operations would be necessary to measure them?69

Furthermore, the elements of behavior that we are trying to explain are70

not necessarily mutually exclusive, as well as they are rarely independent71

to each other (Challenge 7). As parts of the same process, these elements72

can interact in various ways, so trying to explain any of them in isolation73

involves a risk of missing certain aspects of reality, resulting in fragmented74

process knowledge [13]. Finally, a last challenge (Challenge 8), is that any75
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methodology with an ambition to propose a generic solution, should be based76

mainly on the observation of the event log, and should not rely on the pro-77

cess analyst’s skills and instincts to anticipate which variables are the most78

influentials and which ones should be involved in hypotheses formulations.79

In this work, we propose a methodology to respond to all the above chal-80

lenges. To this end, we developed an approach that consists of three stages.81

During the first stage, we present how a horizontal partitioning of the event82

log can tackle the challenges related to the general behavior, i.e., defining83

“Goldilocks” behavior which is neither too granular nor too inclusive; inter-84

preting general process behavior and not just the local decisions; proposing85

constructs or variables that reflect the notion of process behavior, as well86

as the operations that are necessary to measure them. During the second87

stage, we discuss how we can acquire case characteristics from the event log,88

and how it is possible to address various perspectives. Finally, during the89

third stage, we demonstrate how to connect the characteristics to the process90

behavior by using algorithms that do not assume independence among the91

elements of behavior and can handle heterogeneous characteristics.92

The rest of this article is organized as follows. In Section 2 we briefly93

review relevant works, and contrast them with the novelties of our approach,94

while the proposed methodology is presented in detail in Section 3. Next,95

in Section 4, we apply the methodology to a real world process log and we96

examine the results. Finally, a short discussion concludes the paper in Section97

5.98

2. Related work99

A first attempt to address the general correlation problem in the con-100

text of process mining was Decision Mining [14], where authors use decision101

trees to analyze how data attributes influence the choices on decision points102

(XOR gateways). Decision trees are popular in process mining to discover103

causes for a particular dependent variable (e.g., process delay) [15], one of104

the pioneer work being [16]. Mining of decision rules is also addressed in105

[17, 18, 19]. There are two main differences of our work with that family of106

methods. First, as these methods seek to discover conditions for the branch-107

ing points, they focus on local process behavior. They were not developed108

to support situations when the interest is on more general behavior, like a109

long sequence of steps. Second, it is clear that these methods, in order to110

discover branching conditions, require the process model as input. Therefore,111
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these methods inherit the relevant process discovery bias, and the model’s112

representation bias. Moreover, this requirement enforces the process analyst113

to discover a model early in her analysis, a fact that is not always desirable.114

An interesting solution to this problem is given in [20], although the authors’115

motivation in that work is in process discovery and not in the correlation116

problem. They propose to consider data during the discovery method, so117

the delivered model is data-aware. This way they achieved to eradicate the118

a-priori process model requirement, however, their approach still focuses on119

local process behavior and it exploits only the data perspective characteris-120

tics. A different approach, which also does not require a process model as121

input, is to take a declarative approach to model business processes. Declar-122

ative techniques [21, 22, 23, 24] introduce constraints in models as rules that123

have to be followed, i.e., they summarize complex behavior in a compact124

set of behavioral constraints on activities [25]. However, existing techniques125

(e.g., [19, 26, 27]) target the discovery of constraints based on a set of Declare126

templates (e.g., the “response(A,B)” template that requires that whenever127

activity A happens, activity B should happen after A), therefore they are128

limited to the control-flow perspective. In [28] authors try to address this129

limitation by discovering correlations, which are defined over event attributes130

and linked through relationship operators between them. In particular, they131

look into the generated set of constraints for three special event-based char-132

acteristics, namely property-based, reference-based, or moving time-window133

correlations between every two events.134

To be able to correlate any characteristic, belonging to virtually any per-135

spective, with any other characteristic, a general framework is proposed in136

[3]. In particular, the authors propose the use of decision or regression trees137

to test a number of characteristics against a dependent variable (a charac-138

teristic acting as a class attribute). The dependent variable as well as the set139

of the independent characteristics have to be explicitly defined by the ana-140

lyst. In addition, the correlations tests must be run on a one-by-one basis,141

meaning that, it is not practical to check the interactions’ effects.142

The general correlation problem is tightly related to business process de-143

viance mining, where the aim is to discover and explain deviances in business144

process executions. Deviance mining problems are usually treated as super-145

vised problems, where there is a target variable that defines the deviancy146

(e.g., delays in performance), a classifier that assigns cases to classes, and147

outputs of classifiers in terms of patterns or rules that cater insights to busi-148

ness process analysts [29]. Nguyen et al. [30] provide a taxonomy of the149
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techniques proposed for deviance mining, distinguishing between approaches150

that use individual activities, frequent sets of activities, or sequences of events151

as features.152

An emerging need, concerning the classifiers that shall be used through-153

out the general correlation problem, is the simultaneous handling of multiple154

elements of behavior. Modeling multiple elements of behavior at the same155

time, falls into what is called multi-target prediction in the machine learning156

literature. Multi-target prediction is concerned with the simultaneous predic-157

tion of multiple target variables of diverse type, such as binary [31], nominal,158

ordinal, real-valued [32] or even mixed. Often, these multiple target variables159

are related either explicitly, for example, they could represent a ranking, be160

nodes of a graph, or have a spatial, temporal or spatio-temporal relationship,161

or implicitly, for example, via hidden mutual exclusion, or parent-child rela-162

tionships. The main challenge in the area of multi-target prediction is the163

exploitation of such relationships for improved prediction accuracy.164

The novelties of this work are that we do not require any process model165

as input and that we follow a conceptually unsupervised approach, since we166

do not require from the process analyst to define any dependent variable. In167

addition, our method can handle heterogeneous characteristics and involve168

them in patterns that can deliver insights, even when the behaviors that we169

want to explain are dependent to each other. In the following, we present170

how this challenging task can be performed.171

3. Methodology172

We propose a methodology that unfolds in three stages. The aim of the173

first stage is to address the challenges (mentioned in the Introduction) related174

to the general behavior:175

• Challenge 3: To propose a compelling way to recognize elements of be-176

havior that balance between being too granular or being too inclusive.177

• Challenge 5: To suggest a technique that will allow interpretation of178

the flows with a broader scope than local decision points, i.e., richer179

insights than the conditions of a decision point.180

• Challenge 6: What constructs or variables can reflect the general pro-181

cess behavior, and what operations are necessary to measure them,182

namely, how to introduce an effective operationalization of the general183

process behavior.184

6



Figure 1: The general idea of horizontal partitioning. Adapted from [33] and [34].

We advocate that the points above can be tackled by horizontally partitioning185

the event log. A horizontal partitioning splits the event log into several sub-186

logs, while each sub-log contains all events that correspond to a particular187

subset of activities. This way, each case appears potentially in all sub-logs.188

The intuition of horizontal partitioning, illustrated in Figure 1, is to discover189

a process fragment per sub-log, which corresponds to the behavior that is190

defined by the activities included in the sub-log. Hence, the challenge is to191

group together coherent sets of activities since these sets should be able to192

i) reflect general behavior, as well as to ii) not provide an overly fragmented193

view.194

The second stage is designed to address the challenges of dealing with195

characteristics that could be about various perspectives, i.e., control-flow,196

data, etc. (Challenge 1), and that should be derived through the log (Chal-197

lenge 2). To this end, we present a guided procedure to build a case log.198

The third stage conveys a feature evaluation approach that responds to199

the following challenges:200

• Challenge 4: The outputs should not be limited to identifying the dis-201

criminating power of characteristics, but they should also suggest their202

effects on the process behavior.203

• Challenge 7: The characteristics as well as the elements of behavior are204

not independent, so it is not enough trying to explain any of them in205

isolation.206

• Challenge 8: The analysts is not required to state any a-priori hypothe-207

ses for the effects of characteristics, namely there is no need to define208

a dependent variable.209

In the following subsections we present analytically the steps of the pro-210

posed methodology, which are concisely illustrated in algorithm 1.211
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Let us first define the basic notions relevant to our methodology. Ac-212

tivities in every process are going through states of their life-cycle. Every213

life-cycle transition performed in the context of a business process generates214

an event e. Transactional models for activities (e.g., as the one described215

in the XES standard [35]) can include various states such as “assign”, “sus-216

pend”, “resume”, with the “start” and the “complete” states being the most217

common. Events have attributes rn ∈ R, n ≥ 3, since there are three manda-218

tory attributes: the time-stamp, the case identifier, i.e., an attribute that219

uniquely correlates the event to a process instance (or case), and the activity220

label (when no attribute for the transition type exists, we can assume the221

“complete”). We shall use the operator #ri(e) to get the value of attribute ri222

for event e. An event log L is a collection of events, which we assume to be-223

long to a single process. Table 1 illustrates a sample event log of a healthcare224

process which contains the three mandatory attributes (the case identifier -225

the patient code; the activity that generates the event; the time that the226

activity’s completion actually happened) and one additional attribute that227

states the Clinic where that particular activity took place. Such kind of data,228

i.e., timestamped events, likely characterized by additional attributes readily229

exist in process-aware information systems [36, p.3-8] like workflow manage-230

ment systems, ERP systems, enterprise application integration platforms. In231

addition, as noted in [37, p.3-10] there is now-days an abundance of event232

logs due to the logging potentials of e.g., IoT systems and customer journeys.233

Case
ID

Activity Time-
stamp

Clinic

1226 Administrative Rate - First Pole 11/2/16 Radiotherapy
1226 Follow-up counseling outpatient 5/16/17 Obstetrics & Gy-

naecology clinic
1227 Follow-up counseling outpatient 5/18/15 Obstetrics & Gy-

naecology clinic
1228 Follow-up counseling outpatient 5/18/15 Obstetrics & Gy-

naecology clinic
1228 Thorax 9/13/05 Radiology
1228 Immunopathological assessment 9/15/05 Pathology

Table 1: A sample event log with four attributes: The case identifier, the activity label,
the time-stamp, and the clinic where the activity is performed.
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Let A be the set of all the possible activities that can occur during the234

process. Then a horizontal partitioning [33] is an assignment of each ai ∈ A235

to one or more of k subsets AP ⊂ A.236

A case c ∈ C, uniquely identified by an identifier, is a process instance237

and may comprise several events. It is characterized by characteristics hm ∈238

H,m ≥ 1, while #hm(c) returns the value of characteristic hm for case c. Since239

cases are uniquely identified, it is clear that #caseID(c) 6= #caseID(c′),∀c, c′ ∈240

C. If we order chronologically the events of every case, we get a sequence of241

events, which we call a trace τ . Finally, a case log LC can be treated as a242

relation whose relation scheme is specified by the set of case characteristics243

[38], and it is a matrix |C| × |H|, like the one illustrated in Table 2.244

Case ID Age Number of visits Received Treatment
1226 65 11 No
1227 82 5 Yes
1228 67 5 Yes
1229 74 9 No

Table 2: A sample case log with three characteristics: The patient’s age, the number of
visits, a flag that indicates if she has received the treatment

3.1. Horizontal partitioning of the event log245

The aim of horizontally partitioning the event log L is to end up with246

clusters of activities that correspond to clean-cut, recognizable fragments of247

process behaviors. Of course, the fundamental underlying assumption here is248

that process behavior is explained by activities’ occurrences. One could argue249

that process behavior, in order to be explained, needs a process model and250

not just a set of activities, but this argument does not refute the plausibility251

of our assumption, since, given a set of activities (and the corresponding252

horizontal partition of the event log), it is trivial to discover a process model.253

Indeed, our method is agnostic to the process discovery technique that may254

be used for this purpose. Therefore, we operationalize process behavior as255

activities occurrences, and in particular, we will consider as an element of256

process behavior a finite set of activities.257

On the grounds of the above operationalization, to deliver an effective258

horizontal partition of the event log, aiming at identifying distinct behaviors,259
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we shall consider the following quality requirements. An effective partition-260

ing should allow frequent patterns to be represented within single clusters,261

namely, it should deliver coherent clusters wherein activities are strongly con-262

nected to each other. The favorite situation is to have clusters with clean-cut263

borders, i.e., the connections among activities of different clusters should be264

as weak as possible. Well separated clusters (strong connections of activities265

within the same cluster and weak inter-cluster connections) would not let266

process behaviors to be spread on more than one cluster, as well as they267

would favor different behaviors per cluster. Moreover, as we have already268

mentioned in section 1, we do not want to consider too granular or too inclu-269

sive behaviors, therefore, there is an additional requirement to balance the270

size of the clusters.271

As a way to derive coherent groups of activities with respect to process272

behavior discovery, we need a “connectivity” metric which will expose the273

network structure among the activities of the process. A connectivity metric274

should return high values for two activities when there is a frequent path275

connecting these activities in traces of an event log and low values when276

there is no such path (or it is faint). Therefore, in order to discover this kind277

of paths, we confine ourselves to direct dependencies of two activities.278

In particular, let279

wij =
number of traces where i and j are directly connected

total number of traces
(1)

be the connectivity metric between activities i and j. Notice that at this280

stage we do not care about which activity is successor or predecessor, since281

what is important is to group together activities that are strongly connected.282

Let us denote as W = (wij) a form of an “adjacency” matrix for all283

activities ai ∈ A that are registered in the event log. The matrix elements284

wij declare the dependencies (connectivity) among activities, hence a form of285

adjacency. Since while measuring the connectivity metric we did not consider286

the ordering of the activities, W is symmetric, and it has a complete set287

of real eigenvalues. Let us also denote an |A| × 1 indicator vector vk =288

[· · · vik · · · ]T whose elements vik are given by289

vik =

{
1, if activity i is assigned to cluster k

0, Otherwise
(2)

The indicator vector vk denotes which activities comprise the kth cluster.290

Each cluster is described by a distinct indicator vector, resulting in totally291

K different vectors.292
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Let us also denote D = diag(· · · di · · · ) as the diagonal matrix, whose293

elements di, i = 1, 2, ..|A| express the cumulative connectivity degree of the294

activity i with all the other activities. That is295

di =
∑
j

wij (3)

As it is proved in [34], the optimal vectors v̂k, namely, a horizontal parti-296

tioning of the event log that delivers well separated clusters which are capable297

to expose general process behavior, can be calculated by minimizing the con-298

nections among activities of different clusters, like the following:299

v̂k,∀k : min
K∑
k=1

vT
k (D−W)vk

vT
kDvk

(4)

The indicator vectors are binary vectors (the ith row of a vector v̂k is 1 if300

ith activity is assigned to the kth cluster and 0 otherwise). Unfortunately, the301

optimization of (4) subject to the binary representation of the indicator vec-302

tors is an NP hard problem. However, if we relax the indicator vectors to take303

values in continuous domain, then we can solve the problem in polynomial304

time through the equation305

V̂K = D−1/2V (5)

where V is a |A|×K matrix the columns of which are the eigenvectors of the306

K largest eigenvalues of matrix D−1/2WD−1/2, and V̂K is the relaxed version307

of the indicator matrix V = [v1 · · ·vK ], the columns of which refer to the308

K activities’ subsets, while the rows to the activities ai ∈ A. Still however,309

we need to round the continuous values of the relaxed matrix into a binary310

format. More specifically, each row of V̂K must contain one element equal311

to 1 and the rest equal to zero. To this end, in [39], the k-means algorithm is312

proposed, however, since our overall goal is to identify clusters of activities313

that expose meaningful process behaviors, as it is suggested in [34], their314

grouping should not only allow coherent clusters, but it should deliver groups315

of balanced sizes as well. Nevertheless, due to the noise or to the infrequent316

behavior in the event log, the k-means algorithm will likely return one or two317

big groups, while the remaining groups will be small. Therefore, we need a318

more robust clustering technique, like the method proposed in [40], which319

handles different cluster scatter constraints. So, we consider the rows of V̂K320
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as the population to be clustered in K classes. Essentially, the output of this321

stage is a variable that indicates the cluster membership of every activity322

class in a way that activities of the same cluster are as much as possible323

connected to each other, revealing coherent sets of activities that co-occur324

during process execution, in a way that they exhibit elements of the process325

behavior. We should note that since the clusters’ size is balanced, and since326

we optimize for well separated clusters, we expect to observe behaviors that327

are neither too granular, nor too inclusive.328

3.2. Transforming an Event Log into a Case Log329

Information in an event log, as specified in the XES standard [35], may330

refer either to the level of the log itself, or to the case level, or to the atomic331

event level. In principle, attributes of any level could affect the process behav-332

ior. Therefore, the choice of granularity of the attributes is a key parameter333

for the general correlation problem. For instance, a popular approach is to334

focus on the atomic event level (e.g., [14]), while in [7] authors argue that335

since a process comprise several activities, it is difficult to determine an ade-336

quate focus of attention, so they introduce a broader focus of reference that337

they call process essence. The approach we present in this work supports338

the analysis at the case level. The intuition behind our choice follows actu-339

ally a common marketing practice: to segment a heterogeneous population340

based on profile characteristics. In particular, we want to guide the correla-341

tion problem by cases’ profiles as expressed by cases’ characteristics and to342

propose a relevant operationalization of the general process behavior.343

Therefore, the event log should be aggregated by case, and get trans-344

formed into a matrix, whose every row will be a distinct case, and every345

column a case-wise feature. These features may refer to every perspective346

(e.g., control-flow, data, time) and must be derived through the event log.347

It is important to notice that characteristics can be measured by any scale348

(nominal, ordinal, numeric, etc.). In [3], authors provide several log manip-349

ulations that can return such kind of features (first event in a case; average350

value of a variable for all events in one case; duration; etc.), yet the number351

of potential manipulations can be limited only by the creativity of scholars.352

We shall also note that even when the event log contains just the mandatory353

fields (case id, activity, time-stamp), it is still possible to derive several char-354

acteristics for cases, e.g., the number of activities performed, its duration, if355

it is performed on weekdays or on weekends, the last event (exit point) of356

the flow, etc.357
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We additionally propose to attach the clusters discovered during the pre-358

vious stage as collateral (control-flow) features. More specifically, following359

the graph partitioning approach of section 3.1, we expect to get granular360

elements of process behavior as clusters of (strongly connected) activities.361

Let us call every set of clustered activities a region. If a case’s trace com-362

prises one region’s activities, it would signify that this particular case exhibits363

that particular element of process behavior. Specifically, we assume that the364

occurrence of a particular set of activities within a certain case exposes a365

particular behavior for that case. For example, when we observe that a case366

comprises events relevant to anesthesia, we can assume that this case ex-367

poses surgical procedures. To operationalize this assumption, we propose368

three options:369

• A binary scale: If a case has visited any of the region’s activities, we370

put a 1 in the corresponding cell of the matrix, otherwise we put a zero.371

• Percentage of cluster: In every “region” column we put the percentage372

of the region’s activities that were visited by the corresponding case.373

• Percentage of trace: In every “region” column we put the ratio of the374

number of the case’s trace elements that belong to that region, over375

the total number of trace elements.376

The output of this stage is a matrix that has at every row a distinct case377

and at every column a case characteristic. The “region” columns are included378

in this matrix to enable the next step of the method. Every cell contains the379

evaluation of its row case to its column characteristic (or region).380

3.3. Discovering the influence of case characteristics381

The rationale of this stage is to connect the process behavior (as expressed382

by a case performing activities that belong to regions) to the case character-383

istics. To this end, an approach based on multi-target feature evaluation is384

employed. In particular, we consider as features of a predictive model the385

case characteristics and as targets of the model the regions, which portray the386

process behavior. In machine learning, feature selection is commonly used387

to produce simpler, more interpretable and more precise predictive models388

while avoiding the curse of dimensionality and overfitting. The selection is389

usually performed by evaluating different subsets of the features and by esti-390

mating the quality or score of each attribute. In our case, feature evaluation391

can also be used to correlate the case characteristics to process behavior.392

13



Thus, in the third stage of our process we treat the problem of discovering393

the influence of characteristics to process behavior as the feature evaluation394

problem of the machine learning field. Because we do not embrace the as-395

sumption of the independence of characteristics, we calculate the score and396

the rank of each case characteristic using the Relief family of algorithms [41].397

These algorithms were chosen since besides being aware of the dependence398

between characteristics, they are also efficient, as well as they can offer a399

comprehensible interpretation of the results [41]. Specifically, we use the Re-400

liefF method when the binary scale option for the regions is selected, and401

the RReliefF method when the regions are represented as percentages. We402

shall note that although typically, the quality estimates of attributes (char-403

acteristics) are interpreted as equation 6 suggests, i.e., the difference of two404

probabilities, when the problem space is dense, as [41] proved, the quality es-405

timate of the characteristic can be interpreted as “the ability of the attribute406

to explain the changes in the predicted value”.407

W [h] =P (different value of h|nearest case with different prediction)

−P (different value of h|nearest case with same prediction)
(6)

The final scoring or ranking list is produced by evaluating the charac-408

teristics against each region-target separately and then averaging the score409

and rank of each feature across the different targets. The higher the aver-410

age score or rank of a feature, the stronger the connection between the case411

characteristic and the region.412

4. Application413

4.1. Case description414

In order to assess the proposed methodology, we applied it to a real life415

event log of a Dutch academic hospital [42], originally intended for use in416

the first Business Process Intelligence Contest (BPIC 2011). The original log417

contains data for 1143 cases who are patients of the Gynecologist department,418

but they may visit different departments of the hospital to perform any set419

of the more than six hundred available activities. For each event, among420

others, the log records the patient ID, a description of the activity that421

generated the event, its timestamp, a flag indicating whether it that was an422

urgent activity, the age of the patient at that time, the department where423
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Algorithm 1: Method to discover characteristics that affect process
flow
Input : An event log L, a set of relevant characteristics H

1 Stage 1: Horizontal partitioning
2 Find unique activities of the process ai ∈ A;
3 Calculate connectivity metric wij,∀i, j ∈ A;
4 Create a non-directed graph with activities as nodes and metrics

wij as the weighted edges;
5 Partition the graph into K clusters by optimizing intra-cluster and

inter-cluster connectivities, and by balancing clusters sizes ;
6 return cluster membership for every ai ∈ A;

7 Stage 2: Building a case log
8 Create a matrix LC with |C| rows;
9 foreach h ∈ H do

10 Derive h through log L manipulations;
11 Add a column in LC for h;

12 end
13 Add one columns in LC for each clusters of stage 1 (K columns) ;
14 return a cases’ profile matrix P = ||C| × (|H|+K)|;
15 Stage 3: Case characteristic evaluation
16 Set as X the |H| first columns of P ;
17 Set as Y the |K| last columns of P ;
18 Create zero matrices Sr and Ss with |X | rows;
19 foreach y ∈ Y do
20 Ss = Ss+ReliefScore(X , y);
21 Sr = Sr+ReliefRank(X , y);

22 end
23 return Ss/|Y|, Sr/|Y|
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the activity was performed, and several diagnosis and treatment codes. We424

select this log because a) it is freely available and ii) because it contains many425

characteristics for each event. We pre-processed the dataset as we describe426

below.427

To correlate events with cases, we found that the patient ID was not a428

convenient variable, because a patient may visit the hospital many times, yet429

in disjoint sessions (e.g., a series of visits during January and another series,430

several months later, at a different clinic). Therefore, we assumed that if the431

same patient does not visit the hospital for one week, for her future visits,432

she is considered as a different case (this concept is also followed by [43]).433

Then, we eliminated cases that contained just one event, to end up with a434

case log LC of 4640 cases that account for 147,888 events. Recall from section435

3 that if we order chronologically all the events that belong to a single case436

we get the case’s trace τ , i.e., #τ (c) = 〈e1, . . . , ei, ei+1, . . . , et〉, t being the437

number of events relevant to that case.438

4.2. Horizontal partitioning439

Following the method described in section 3.1, we began by identifying440

the unique activities of the process. Since we assume that all we can observe441

is the event log, it is possible that there exist some activities that are part of442

the process, yet they were not registered to the log. This is the known issue443

of completeness that is inherent in every process mining problem. Therefore,444

we shall proceed with the activities observed in the log. There is however,445

the following issue on identifying the unique activities in the original log L:446

We expect the name of the activity and its code to be unique. However,447

none of them is. Consequently, to end up with a set of unique activities A,448

we combined the two fields. This combination returned a set of 677 unique449

elements. The corresponding connectivity matrix W (see eq. 1) is a 677×677450

symmetric matrix with 7,571 non-zero elements.451

The critical decision of this stage is about the number of clusters. To452

make such a decision, we performed an exploratory analysis with visual aids453

of figure 2. More specifically, in figure 2a, we present a clustergram [44],454

which illustrates the number of clusters at the x-axis, and the cluster centers455

multiplied by the first component of the principal components of the original456

data at the y-axis. Then the cluster means are connected with parallelograms457

that indicate how many activities from a cluster are assigned to a cluster in458

the subsequent clustering test. In practice, when an increase to the number459
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Figure 2: Selecting the number of clusters

of clusters brings a “split”, that is an indication that the increment is mean-460

ingful, and when it does not, it is a recommendation to stop. In figure 2b,461

we plot the eigenvalues of the matrix D−1/2WD−1/2, and we expect to see a462

sudden drop in the plot.463

Both figures suggest that seven is an informed choice for the number of464

clusters. Therefore, we applied the procedure described in section 3.1 to465

obtain the seven clusters. A concise description of the results is presented in466

table 3.467

4.3. Building a case log468

To build the case log LC we added a characteristic h (a column) for each
diagnosis variable and for each treatment variable of the original event log.
In particular, the event log L related every event to a set of diagnosis and to
a set of treatment variables. All variables of this kind are binary variables
(1 if that diagnosis/treatment code was noted, 0 otherwise). To derive the
corresponding case characteristics we applied the existential quantifier. In
other words, if any of the events relevant to a case had a “true” value for the
reference variable, the case characteristic was taking the value “true”, other-
wise we assigned the value “false”. For instance, for the variable “Diagnosis
M13”:

#Diag−M13(c) =

{
1, ∃e ∈ #τ (c) : #Diag−M13(e) = 1

0, otherwise
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Region Size Description
1 215 Surgical procedures. Perioperative diagnostic and

supportive care (anesthesia, histology)
2 173 Diagnostic and interventional radiology and related

procedures
3 78 Investigation of kidney and urinary tract related dis-

orders (baseline and immunological work-up)
4 64 Short clinic for chemotherapies and minor (surgical)

interventions
5 60 Microbiological (infection-related) work-up
6 44 Screening for short hospitalization, or day-clinic pro-

cedures
7 43 Anemia investigation and general outpatient work-up

Table 3: Describing the activities composition of regions. The descriptions were made by
a medical doctor by checking the activities in every region.

After this manipulation, we dropped the characteristicsDiag−X822, Diag−
X821, Diag −X106, Diag −X823, Diag −X839 because they were “false”
for all the cases. We applied the same existential quantifier for the variable
“Urgent”. Next, we exploited the organizational perspective to derive four
additional characteristics, one to indicate the department where the case was
initiated, one to indicate where the case ended, one to count the number of
different departments that were visited, and one to display and the most
frequently visited department during each case. In particular:

#Start.Dep(c) = #Dep(e1 ∈ #τ (c))

and likewise

#End.Dep(c) = #Dep(et ∈ #τ (c))

The number of unique departments visited was calculated as the cardinality
of the set of the departments that were involved in the activities of the trace:

#N.Dep.V isited(c) = |{#Dep(e),∀e ∈ #τ (c)}|

and the most frequently visited department as:

#MostFreqDep(c) = #Dep(ei ∈ #τ (c)) : ei = arg max
#Dep(ei∈#τ (c))

Freq(Dep)
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where Freq(Dep) =
∑t

i=1 [#Dep(ei) = Dep].469

The age case characteristic was calculated as the arithmetic mean of the470

values of the corresponding event variable for all the events of the case.471

Finally, we added to LC one column for each cluster that we discovered472

by following the procedure we describe in section 3.1 and we exemplify in473

section 4.2, and we labeled them as “region” plus an integer value to mark474

the specific cluster. Following the binary scale option, to assign the value475

to these variables (region1, region2, etc.), we put 1 if any of the activities476

that is member of the corresponding cluster is also member of the trace,477

and 0 otherwise. When following the options “percentage of cluster” or478

“percentage of trace” (see section 3.2), we put the calculated percentages479

to those variables. Therefore, actually, we created three datasets that are480

identical in everything except their values of the “region” variables.481

4.4. Case characteristics evaluation482

During the Stage 3 of our application, we evaluated the case characteris-483

tics using the dataset with the regions as “percentage of cluster”. We used484

the ReliefF attribute evaluator implemented in the Weka platform [45]. We485

computed the scores and ranks for each attribute independently for each486

region-target. For each region we performed a 10-fold cross validation and487

we set the number of neighbors k = 10 of the evaluator. The final results is488

a list of ranks and a list of scores for each characteristic per region.489

Hence, we can calculate the average rank for each characteristic per re-490

gion. Then, by taking the minimum value of the average rank for each491

characteristic across the different regions, we shall get an indicative ranking492

list of the importance of the characteristics with respect to their connection493

to the process behavior. Figure 3 shows the top-30 characteristics and their494

ranks in the different regions. The ranks are represented as circles, where the495

darker and the larger circle indicates the higher rank of the characteristic for496

the corresponding region.497

4.5. Insights498

Following the procedures of the proposed approach, the output (a matrix499

with the scores/ranks of characteristics per region) is subject to qualitative500

interpretations. Although it is clear that the interpretations will always be501

case specific, we can provide several guidelines to decipher the results (which502

will expectedly take the shape of Figure 3.503
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Figure 3: The average rankings of the top-30 features for every region. The darker and
the larger the circle, the higher the rank of the feature.

The most intuitive explanation can be derived by looking at characteris-504

tics that have detectable “high” performance in any particular region. For505

instance, in our case study, the characteristics labeled “Treat 813” (i.e., when506

a patient receives the treatment with code 813) associates with regions 2 and507

4, namely with a process behavior that drives the patient to perform activi-508

ties related to radiology and chemotherapies (see Table 3). Similarly, we can509

associate “Treat 102” with screening activities for short hospitalization, and510

“Treat 104” to short clinics. We can even observe characteristics that are511

associated with sets of regions, like for example, “Treat 81” which directs512

patients to regions 1, 2 and 3.513

The point of view can be reversed so as to derive insights by looking514

at regions and identifying the characteristics that exhibit a high relevance.515

For example, we observe that activities related to the microbiological work-516

up (region 5) occur when cases are characterized by having “Treat 31”,517

“Treat 3303”, “Treat 706”, “Treat 4301”, “Treat 9102”, “Treat 816”, and518

“Treat 5201”.519

An additional guideline to parse the results for insights is to inverse the520

logic, and look for characteristics that “avoid” regions. To get this potential-521

ity across, we shall look at the characteristic “Treat 62” (the second column522

in Figure 3). This characteristic is strongly associated with all regions, ex-523

cept 2 and 5. Therefore, we could support a claim that this characteristic524

puts off the behaviors implied by region 2 and region 5.525

Finally, two extra guidelines refer to looking for characteristics that prompt526

similar (or dissimilar!) behavior. For instance, in our case study, we regard527

the characteristics “Treat 1101”, “Treat 3103”, and “Treat 806” to stimulate528
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similar behavior (regions 3, 4, and 6) or the characteristic “Treat 62”, to be529

quite unique in its associations’ pattern.530

5. Conclusions531

This paper contributes to the general correlation problem by providing532

process analysts with an additional potential to relate process instances char-533

acteristics to their flows. This is a hard and challenging task on the visionary534

path of evidence-based process improvement and redesign. A three-staged535

methodology is proposed to address a number of challenges.536

Starting with an horizontal partitioning technique, we devised regions of537

strongly connected activities to define process behavior that are neither too538

inclusive nor too granular, and can reflect more general behaviors. Then,539

through a set of guided log manipulations, we presented how an appropriate540

case log can be built to host various perspectives of the characteristics. It541

is important to recall that no additional data is required during this stage542

(as well as in no other stage) from process stakeholders, since characteristics543

can be seamlessly derived through the event log. During the third stage, we544

leverage the attribute estimation problem of the machine learning field, and545

treat it in a multi-target prediction setting, to connect characteristics with546

process flows, and thus to discover their influence in process behavior.547

Since this is essentially a process mining approach, it inherits the issues548

related to this paradigm. Of particular relevance for this work is the issue549

of completeness or the so-called “snapshot” problem. This refers to the550

situation where cases may have a lifetime longer than the time-window of551

the event log, hence it is possible that some activities are not logged (i.e., the552

event log only provides a snapshot of the process). Certainly, if this occurs,553

the assumption that we can assess the process behavior by considering the554

finite set of activities that is recorded in the log, does not hold. However, if555

the average duration of the cases is significantly smaller than the duration556

of the recorded period, the “snapshot” issue is not expected to get raised.557

Continuing with the inherent limitations of our approach, we shall briefly558

discuss the noise effects. Noise can refer both to incorrect logging, as well559

as to the fact that the event log contains rare and infrequent behavior not560

representative for the typical behavior of the process [46]. The latter can only561

be partially addressed by the robust clustering approach described in section562

3.1, while for the former (incorrect logging), since this is an evidence-based563
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approach, if evidence (data) are not of good quality, we are afraid that there564

are not much that the method can do.565

Another limitation of the proposed approach is that it is confined to the566

analysis phase. As we exemplified in Section 4, the proposed approach is567

suitable for a so-called post-mortem analysis of a business process, since the568

ultimate outcome is a set of off-line recommendations. To unmask or to569

augment its value, it will be necessary to integrate it in the entire BPM570

life-cycle. To this end, a need for a relevant framework emerges, which will571

provide an all-embracing position of the elements of the process through a572

meta-model, similarly to the work of [47], to globally promote adaptation and573

responsiveness to the contextual elements. This is actually a part of future574

work, on the way to deliver a comprehensive tool not just for the general575

correlation problem, but for business process management in general.576
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