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Abstract

Biomedical question answering (QA) is a challenging task that has not been

yet successfully solved, according to results on international benchmarks, such as

BioASQ. Recent progress on deep neural networks has led to promising results in

domain independent QA, but the lack of large datasets with biomedical question-

answer pairs hinders their successful application to the domain of biomedicine.

We propose a novel machine-learning based answer processing approach that

exploits neural networks in an unsupervised way through word embeddings.

Our approach first combines biomedical and general purpose tools to identify

the candidate answers from a set of passages. Candidates are then represented

using a combination of features based on both biomedical external resources and

input textual sources, including features based on word embeddings. Candidates

are then ranked based on the score given at the output of a binary classification

model, trained from candidates extracted from a small number of questions,

related passages and correct answer triplets from the BioASQ challenge.

Our experimental results show that the use of word embeddings, combined
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with other features, improves the performance of answer processing in biomed-

ical question answering. In addition, our results show that the use of several

annotators improves the identification of answers in passages. Finally, our ap-

proach has participated in the last two versions (2017, 2018) of the BioASQ

challenge achieving competitive results.

Keywords: biomedical question answering, answer processing, supervised

method, word embeddings

2010 MSC: 68T50

1. Introduction

Traditional Information Retrieval (IR) systems, which provide a large amount

of documents as potentially relevant results for posed questions, cannot meet

the expectations of biomedical researchers and physicians to find instantly the

answer they are looking for. The answer is typically buried inside the documents5

and the questioners must go through the documents to find it. In addition, as

the typical input of IR systems is a list of keywords, questioners lose the expres-

sive power of natural language. On the other hand, Question Answering (QA)

systems, a sophisticated form of IR systems [1], are capable of providing precise

and quick answers to textual questions.10

Our work focuses on answering factoid questions which are defined as fact-

based, short answer questions [2]. For example, the factoid question “Treatment

of which disease was investigated in the MR CLEAN study?”, can be answered

by returning the simple fact “acute ischemic stroke”. The typical architecture

of a factoid QA system comprises three phases [3]. The question processing15
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phase is responsible for analyzing and classifying the question and for converting

the question into one or more queries. Next, the document retrieval phase

retrieves a set of documents related to the queries and extracts a set of passages

containing the answer. Finally, the answer processing (AP) phase extracts a

set of candidate answers from passages, ranks them and selects the final answer20

that is presented to the user.

According to [4], two classes of algorithms are mainly used in AP. In the

redundancy-based approach[5], which is mostly applied in web-based QA sys-

tems, unigrams, bigrams and trigrams are extracted as candidate answers, then

they are ranked based on the answer type and finally, some of them are con-25

catenated in order to create a longer answer. On the other hand, pattern-based

extraction methods[6] extract candidate answers based on the answer type to-

gether with regular expression patterns. Next, a classifier ranks the list of can-

didate answers by probability of being correct. We propose a hybrid approach

that combines elements from both of these two classes of algorithms. We fol-30

low the redundancy-based approach in the answer extraction phase. However,

instead of considering every unigram, bigram and trigram as candidate answer,

we extract biomedical terms, nouns and numbers. We also follow the super-

vised learning approach proposed in pattern-extraction methods defining fea-

tures based on both external resources and the input textual sources, including35

word embeddings.

External resources can provide semantic information about the elements

of the input textual sources. For instance, they can tell us that a question
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asks about an enzyme and they can identify enzyme terms in the passages.

Encoding into one or more features this semantic match between a question40

and a candidate answer, is expected to improve the performance of answer

processing. On the other hand, using information from the given input textual

sources, we can extract features that can encode the statistical relationship

between the sources. For example, estimating the textual similarity between

question and passages, we can find the passage that is closer to the question45

and is more probable to contain the answer. Finally, word embeddings have

been used in most successful deep learning approaches to QA. Enriching the set

of features using word embeddings, we expect that the input textual sources

will be enriched by additional semantic information learned in an unsupervised

manner from large collections of biomedical documents.50

Specifically, the main contributions in this paper are:

• A novel representation for the candidate answers of an answer processing

module, combining features based on simple statistics, external resources

and word embeddings. Our results report that word embeddings, when

combined with the rest of the features, improve the overall performance55

of an AP module.

• A novel empirical study showing that the increasing number of incorrect

candidate answers, produced by several general purpose and domain spe-

cific annotators, improve the performance of answer processing system

despite the extreme class imbalance issue.60
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• We experimentally evaluate our system in the BioASQ challenge [7] out-

performing the BioASQ baseline system and achieving promising results

against the other participants.

The rest of the paper is structured as follows. Section 2 reviews related work.

Section 3 describes our approach for solving the AP task. Section 4 describes the65

experimental setup that we used to train and test our approach, while Section

5, presents the results of our approach. Finally, Section 6 concludes this work

and points to future research directions.

2. Literature Review

Several different approaches and architectures have been proposed for biomed-70

ical AP. Those that are most related to this work correspond to approaches

adopted by participants of the BioASQ challenge. Therefore, we discuss here

the systems that participated in the BioASQ challenge from 2013, when the

challenge started, until 2017. In addition, we discuss recent systems that are

based on deep learning in the context of reading comprehension question an-75

swering (RCQA), a task that is very similar to AP.

Most of the current systems assume that potential answers to factoid ques-

tions are the elements which: (a) can be annotated by general purpose and/or

domain specific annotators (e.g. biomedical terms, noun chunks) (b) correspond

to specific hand-written patterns (c) do not meet a specific criterion (e.g. all80

words in related passages). For instance, [8], [9], [10] extract all annotated terms

as candidate answers from a set of passages, containing the correct answer, using
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MetaMap. [11] use PubTator1 to identify biomedical terms. They also extract

nouns, noun chunks and numbers as candidate answers. Using LingPipe [12]

and MetaMap, [13] and [14] extract biomedical terms as candidate answers.85

They also extract tokens produced by specific patterns and tokens annotated

by specific part of speech tags. [15] use PubTator to extract biomedical terms as

candidate answers and they also extract numbers. All words in related passages

and biomedical terms using MetaMap were extracted as candidate answers in

our previous work [16]. [17] extract noun chunks from the related passages.90

[18] extract answer spans using context/type matching heuristic. [19], using

the YodaQA system [20], extract named entities and noun phrases, leveraging

information from knowledge bases, or filtering passages.

Different approaches have been proposed in answer ranking phase. [8] use

logistic regression and define three classes of hand-written features (Prominence,95

Type Coercion, Specificity). The produced formula is used to score the candi-

date answers. [19] learn a classifier using logistic regression and define features

emphasizing on type coercion. In our previous works [10], [16], we combine the

results of a set of feature functions in order to produce the final score for a

candidate answer. [9], [11] rank the candidate answers based on term frequency100

metrics. [13] use 11 groups of features. In the learning process, they use the

questions whose the answers can be produced by their answer extraction ap-

proach. They create a dataset where they assign 1 to each candidate answer

1https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/
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belong to the set of expected correct answers and the candidate answer vari-

ants if it is also contained in the gold standard answer set, and 0 otherwise.105

A similar approach has been adopted by [14] but they also apply a collective

answer reranking to boost the candidate answers that are low in the ranking.

[15] employ cosine similarity between the candidate answers and the passages.

The candidate answer which matches better with the snippets, is extracted as

final answer. A similar approach was adopted by [17]. Nevertheless, the latter110

concatenate the query, produced by the question processing phase, with the can-

didate answers. Then, they estimate the similarity between the new sequence

of tokens with the relevant passages. Furthermore, they estimate the similarity

between candidate answers and a set of ideal answers2 . A different approach

was proposed by [18],[21] who extend the FastQA [22] using biomedical word115

embeddings. The neural model was pre-trained on a large-scale opendomain QA

dataset and then the parameters were fine-tuned on the BioASQ training set

producing as output start and end pointers to tokens in the relevant passages.

A lot of work that is similar to AP has been conducted in the area of RCQA.

AQUAREAS [23] answers questions belonging to one of the five possible types120

what-, when-, who-, where-questions giving a sentence from a story related

with the question. A rule-based Chinese RCQA was proposed by [24] who used

heuristic rules to look for lexical and semantic clues in the question and the

story. [25] use: (a) metadata to represent questions and answer sentences and

2BioASQ defines ideal answers as English paragraph-sized summaries which can be con-

sidered as answers
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(b) answer patterns derived from question-answer pairs from TREC QA, the125

Google search engine and the Web. [26] follow a bag-of-words approach combin-

ing named entity filtering, pronoun resolution and verb dependency matching.

Recently, deep learning approaches have been emerging as state of the art for

RCQA. [27] introduced gated self-matching networks for RCQA. They proposed,

a four-layer neural network that aims to answer questions from a given passage.130

Firstly, a bi-directional recurrent network builds representation for passages

and questions separately. Next, gated attention-based recurrent networks build

a question-aware representation for the passage, matching the question and the

passage. In passage self-matching layer, a passage is enriched with additional

information aggregating evidence from the whole passage and finally, the output135

layer predicts the boundary of the answer span. [28] use dynamic coattention

networks. Firstly, they build a representation matching relevant parts of the

question and the document and then, a dynamic pointing decoder iterates over

potential answer spans to predict the boundary of the expected correct answer

span. [29] preprocess the passage and the question to incorporate contextual140

information into the representation of each token. Next, a match-LSTM layer

applies textual entailment treating the question as a premise and the passage

as a hypothesis. Finally, a pointer network is used to predict the boundary

of the answer span. [30] use skip grams to encode the input textual sources

and a memory network for matching question and passage catching more vital145

information. [31] use convolutional units instead of recurrent units achieving

comparable results in RCQA. [32] propose a reattention mechanism to avoid
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the problems of attention redundancy and attention deficiency.

Our approach borrows many ideas from the aforementioned approaches. We

use word embeddings to encode input textual sources as most of the current150

approaches in RCQA do [33]. However, we also concatenate features that lever-

age biomedical knowledge from external resources, an approach for biomedical

AP that was utilized by many researchers in the BioASQ challenge as described

earlier in this section. Furthermore, we also extract features from the textual

sources, which is another approach used in the BioASQ challenge. The key155

difference from other approaches is that we combine all the above features into

a single representation.

3. Our Approach

Our AP approach comprises three phases (Figure 1). In the answer extrac-

tion phase, a list of candidate answers are extracted from the set of passages160

obtained by the preceding document retrieval phase. Next, the answer represen-

tation phase converts candidate answers to multi-dimensional feature vectors.

Finally, in the answer ranking phase, a machine learning model scores the candi-

date answers and outputs the one with the highest score as the expected correct

answer.165

3.1. Answer Extraction

We follow three steps to extract candidate answers from passages. Firstly,

we use regular expressions to detect and remove: (a) web links, (b) all words,

mathematical equations and symbols in parentheses, excluding abbreviations,
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Figure 1: Architecture of our AP approach.

(c) and citations. We assume that a abbreviation is a single token which could170

contain one or more dashes or numbers. Thus, when we find parenthesis inside

the text, we apply the pattern \s*[a-zA-Z0-9-]*\s*$. Next, we split the passages

into sentences3. Finally, we extract the candidate answers from the sentences.

We assume that candidate answers are nouns, biomedical terms or numbers.

We use a general purpose part-of-speech tagger4 to detect the nouns of each175

sentence. To extract biomedical terms and numbers, we input each sentence

to MetaMap5 [34] and BeCAS6 [35]. BeCAS and MetaMap are named entity

3https://www.nltk.org/api/nltk.tokenize.html
4https://www.nltk.org/api/nltk.tag.html
5https://metamap.nlm.nih.gov/

6http://bioinformatics.ua.pt/becas/
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recongizers (NERs) which can annotate biomedical text with concepts that are

included in biomedical structured resources. MetaMap was developed at the

National Library of Medicine and its purpose is to map biomedical text to the180

Metathesaurus of the Unified Medical Language System using knowledge inten-

sive approach based on symbolic NLP and computational linguistic techniques.

On the other hand, BeCAS is an API for biomedical concept identification that

works by combining the ability to select multiple concept types, reference ex-

ternal databases and automatically annotate nested and intercepted concepts.185

We use both BeCAS and MetaMap due to the fact that each one can locate

different terms, consequently, there will be more candidate answers coverage.

We take the union of the candidates extracted by each tool.

Figure 2 presents four questions along with their correct answers. We ob-

serve that all of the above techniques can help in extracting the correct answer.190

In question (d), UUCCUUAAC was not identified as a biomedical term, but

it was identified and extracted as being a noun. BeCAS and MetaMap locate

different terms. In question (a), MetaMap identifies proprotein convertase sub-

tilisin/kexin type 9 as a term, while BeCAS identifies the term subtilisin, as

well as the term kexin. Similarly, in question (b) BeCAS recognizes the term195

S-adenosyl-L-methionine, while MetaMap identifies only methionine. Finally, in

question (c), BeCAS identifies the term alpha-galactosidase A, while MetaMap

cannot capture the A.
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Figure 2: The effect of MetaMap, BeCAS and POS-TAGGER in answer extraction phase.

3.2. Answer Representation

The answer representation phase converts the extracted candidate answers200

to multi-dimensional feature vectors. We firstly analyze the question to extract

important information for answer representation, such as question elements and

the question’s type. Then, we extract the following three classes of features

based on:

1. Textual Sources (TS), i.e. the question and passage.205

2. Semantic Knowledge (SK), i.e. external resources with semantic annota-

tion capability.

3. Word Embeddings (WE).

3.2.1. Identifying Question Elements and Question Types

The lexical answer type (LAT) of a question is the element revealing what the210

question actually asks for [36]. For example, the LAT of the question “Which

enzyme does MLN4924 inhibit?” is the word enzyme. To identify the LAT of
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a question, we use two simple pattern based extraction methods [8]. In the

first one, LAT falls into the first noun phrase (NP) of a question after the

what/which. In the second one, LAT falls into the second NP of the pattern215

“NP[WHAT | WHICH]VP[BE]NP[*]”. These two patterns are very successful

in identifying the LAT, when it is included in the question, as we see later in the

results section. The patterns fail to identify the LAT in only a few questions,

such as ”Willis-Ekbom disease is also known as?”.

Question properties are question elements that offer additional information220

about the correct answer [37]. For example, the Question property of the ques-

tion “Which enzyme does MLN4924 inhibit?” is the word MLN4924 and offers

the additional information of being a substance that inhibits the enzyme in

question. To extract the properties of a question, we input the question body to

MetaMap, BeCAS. The final set of question properties consists of all identified225

terms excluding the LAT.

Information about the correct answer of a question can be also derived from

the structure of the question. Different structures indicate different question

types [38]. Consider for example the following questions:

1. Is the transcriptional regulator BACH1 an activator or a repressor?230

2. How many genes are imprinted in the human genome?

3. Where in the cell do the proteins S100A4 and p53 interact?

The answer to the first question can be found in the body of the question and

it is an activator and/or a repressor. The second question expects a quantity as

an answer: fewer than 100. The answer to the last question can be found in a235
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prepositional phrase: in the nucleus or in the cell nucleus.

We define the following four question types, which are the most common

ones found in the datasets that we experimented with: CHOICE, QUANTITY,

LOCATION, GENERAL. To classify questions by type, we use simple pattern

based extraction methods. In particular, CHOICE questions start with the240

verb to be and contain a conjunction word. QUANTITY questions start with

the phrase How many or How much. LOCATION questions start with where.

All the other questions are classified as GENERAL.

3.2.2. Features Based on Textual Sources

Prominence: This feature corresponds to the relative frequency of appearance245

of candidate answer, c, in the set of sentences, S, of the retrieved passages:

pr(c) =

∑
s∈S I(c ∈ s)

|S|

where I is the indicator function that returns 1 if candidate answer c is con-

tained in sentence s and 0 otherwise. Intuitively, we expect correct answers to

have a high prominence score. The assumption is based on the fact that the

sentences are strongly related with the question. These sentences contain words250

of the question but also contain some terms that could be considered potential

candidate answers. If a term is included in more than one sentences, then it is

more probable to be the correct answer.

Weighted Prominence: Some of the sentences of the passages match better

with the question than others. To represent this aspect, we compute three255
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features that weight the frequency of a candidate answer, c, with the cosine

similarity, Levenshtein distance and fuzzy similarity respectively between the

question and each sentence, s, in the the set of sentences, S, of the retrieved

passages:

wpri(c) =

∑
s∈S simi(q, s) ∗ I(c ∈ s)∑

s∈S simi(q, s)

where i ∈ {cosine, Levenshtein, fuzzy}.260

We use the above three measures to estimate the distance between the ques-

tion and a sentence due to the fact that each measure computes this distance

from a different aspect. Levenshtein distance [39] computes the cost of the least

expensive set of insertions, deletions or substitutions that would be needed to

transform one string into the other. Fuzzy similarity estimates the matching265

between two strings without counting the order of the words inside them7.

Number of Words in Candidate Answers: This feature corresponds to the

length of the answer in words. Some answers need more details than others,

consequently, these answers contain more words. Using this feature, we inform

our model about the length of a candidate answer.270

Co-existence Score: This boolean feature checks whether the candidate an-

swer co-exists with the LAT in a sentence.

7https://github.com/seatgeek/fuzzywuzzy
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co existence(c, LAT ) =


1, if c and LAT ∈ s.

0, otherwise.

We expect that the correct answer will be close enough to the LAT of the

question.

Question Type: This feature takes values from 0 to 3 according to the type275

of the question. Using this feature, we inform the model about structure of

the question. We expect that the questions of different question types will be

treated differently from the learning model.

Role Feature: This boolean feature checks whether a candidate answer is part

of the question. This feature is uefull for the questions of CHOICE. We expect280

that if the candidate answer is part of the CHOICE question, then it is probable

to be the correct answer. On the other hand, if the question is not a CHOICE

question, then the candidate answer should not be included in the question.

3.2.3. Features Based on Semantic Knowledge

Wordnet: We use WordNet8, a large lexical database of English, to extract285

the synonyms of a candidate answer, assuming that the fewer the synonyms the

higher the chances of a correct answer. WordNet returns synonyms for single

words, however, a candidate answer can consist of more than one words. There-

fore, we define 3 features by considering the maximum, minimum and average

number of synonyms respectively across all words in the candidate answer.290

8https://wordnet.princeton.edu/
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Type Coercion: This boolean feature checks whether the semantic type of the

answer aligns with LAT’s semantic type.

type coercion =


1, if sem types(c) ∩ sem types(LAT) 6= � .

0, otherwise.

To identify the semantic types of these elements, we utilize MetaMap and

BeCAS, which annotate the elements and extract a list of terms along with their

semantic types. The semantic types of textual elements is the unification of the295

semantic types produced by MetaMap and BeCAS.

3.2.4. Features based on Word Embeddings

Each textual source (i.e. question, sentence, candidate answer, LAT) is

a sequence of tokens. We convert each token to a multi-dimensional feature

vector using the Word2Vec framework. To represent the whole source, we make300

the assumption that a source is the centroid of all its tokens vectors. This is

a very common approach for building representations for longer phrases from

single word vectors [40]. Additionally, we use cosine to estimate the similarity

between two centroids. The assumption is that the cosine can estimate the

similarity between two vectors in the vector space, consequently, we expect that305

if we encode question elements and candidate answers as vectors, the cosine

could also estimate the similarity between them. Below, we present the features,

we used, in detail.

Centroids: We create question, answer and LAT vectors. These vectors are
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used as features.310

Cosine Similarity Between Centroids: we extract three features based

on cosine similarity between (1) LAT and candidate answer (2) question and

candidate answer (3) question property and candidate answer. Due to the fact

that a question could have more than one properties, we compare the candidate

answer vector with each of them and we select the property with the highest315

cosine similarity score.

3.3. Answer Ranking

Answer ranking is accomplished by learning a binary classifier that can out-

put a probability or score with respect to the positive class. In Section 5 we

present experimental results using three such learning algorithms: logistic re-320

gression (LR) [41], support vector machines (SVMs) [42] and extreme gradient

boosting (XGBoost) [43]. Given a training set of questions, the set of correct

answers per question, and a set of candidate answers per question, extracted

by our approach, we construct a binary training set as follows. Each candidate

answer of each question becomes a training example represented with the input325

features discussed in Section 3.2. Candidate answers that exist in the set of

correct answers of their question are considered as positive examples, while the

rest of the candidate answers are considered negative examples.

Given a new question and related passages, our approach will first extract

a set of candidate answers, it will represent each of them as a feature vector330

and it will give them as input to the trained binary classifier. The classifier

will output a score, indicative of the correctness of each candidate answer. Our
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system shall then output a ranked list of all candidates according to this score.

4. Experimental Setup

We describe the dataset that we used to train and test our approach, as well335

as the available measures and the learning process.

4.1. Data

BioASQ is an annual challenge in large-scale biomedical semantic indexing

and question answering, running since 2013 [7]. The challenge comprises two

main tasks: a) large-scale semantic indexing, and b) question answering. The340

question answering task further comprises two phases. The first one is focused

on information retrieval. Given a question, participants must respond with a

set of related documents, passages, RDF triplets, and concepts. In the second

phase, for each question participants are also given the gold (correct) documents

and passages containing the answer and must respond with exact answers and/or345

ideal answers, meaning whole paragraphs summarizing the most relevant infor-

mation from the given passages. Questions fall into one of the following four

types: list, factoid, summary, yes/no. We focus on the second phase of this

challenge on factoid questions.

BioASQ organizers provide the participants with a dataset of questions,350

related documents and passages along with the corresponding answers9. 619

questions out of 2251 questions in this dataset are factoid questions. We also

9http://participants-area.bioasq.org/general information/Task6b/

19



participated to BioASQ 2018 and our approach was evaluated on 5 test batches.

Particularly, each test set contains 100 questions. The test set from the first

test batch contains 31 factoid questions, the second one contains 21, the third355

one contains 32, the forth one contains 33 and the last one 44.

Due to the method that we used to extract candidate answers (i.e. nouns,

biomedical terms) our approach can only answer 307 of the 619 questions. We

decided to experiment both for keeping all questions in training set and keeping

only the questions that can be answered. Making these experiments, we will360

show: (a) the overall performance of our approach in the dataset of 619 questions

(b) the performance of our approach ignoring the negative results of answer

extraction phase in the dataset of 307 questions (c) the significance of features

in learning process (d) the performance of the answer extraction phase using

several annotators in the dataset of 619 questions. From now on, we call the365

dataset with 619 questions as D1 and the dataset with 307 as D2.

We also use the dataset of word vectors provided by BioASQ10 to create the

centroid vectors for each textual source as described in section 3. The dataset

contains word vectors for 1,701,632 distinct words extracted from a collection of

10,876,004 English abstracts of biomedical articles from PubMed. Particularly,370

they applied word2vec with the dimensionality of the vector space set to 200

using the continuous bag of words (CBOW) model [44].

10http://participantsarea.bioasq.org/tools/BioASQword2vec/
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4.2. Measures

To evaluate our system we use the measures proposed by BioASQ for factoid

QA. In detail,375

1. strict accuracy (Sacc): counts a question as correctly answered if the

extracted answer is the first element of the returned list

Sacc = c1/n

where n is the total number of questions and c1 is the number of factoid

questions that have been answered correctly when only the first element

of each returned list is considered.

2. lenient accuracy (Lacc): counts a question as correctly answered if the

candidate answer is included, not necessary as the first element, in the

returned list.

Lacc = c5/n

where c5 is the number of questions that have been answered correctly in

the lenient sense.380

3. mean reciprocal rank (MRR): for each question q we search the re-

turned list looking for the topmost position that contains the candidate

answer. If the topmost position is the j − th one then r(i) = j; otherwise

r(i)→ +∞, i.e., 1/r(i) = 0

MRR =

∑n
i=1

1
r(i)

n
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4.3. Evaluation Process

We use k-fold cross validation where k depends on the size of dataset. The

purpose of this validation is to split the dataset in k independent datasets where

the size of each dataset will be equal to 10. The evaluation is finished after k

iterations selecting in each iteration a different dataset as test set. Using this385

process, the training set is bigger and we can get more estimations for our

approach. Two kinds of results, we present.

Firstly, we present results on the D1 and D2 using LR in order to show

the impact of several annotators in answer extraction phase and the impact

of different classes of features in answer ranking. We use LR because many390

participants use this machine learning algorithm in the learning phase and the

obtained results were promising. Each produced learning model was evaluated

using the k-fold cross validation. We also used paired t-test to estimate the

significance of our results.

Next, we present results from our participation to the BioASQ Challenge395

using a voting scheme and tuning. Particularly, we focus on three algorithms

(LR, SVMs and XGBoost) and we finally call a voting scheme. We tune each

algorithm separately and we also tune the weights of the algorithms in the

voting scheme. The produced learning models are evaluated based on MRR

and the final learning model is chosen when the MRR has the highest score.400

As dataset, we used a subset of the D1. Particularly, we use the questions

provided by BioASQ(2013-2015)(324 questions) keeping the questions which

can be answered by our system (147 questions). For each model produced by
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changing its parameters, we applied k-fold cross validation.

5. Results405

In this section, we present results on both D1 and D2. Firstly, we mention

some descriptive statistics in the D1 emphasizing on the absence of correct

answers in the list of candidate answers. Next, we present results for the answer

extraction phase using the D1. Particularly, we show the impact of different

annotators in the extraction of candidate answers from passages. Afterwards,410

we report the results for answer representation phase using both the D1 and D2

and applying undersampling in D2. Making the latter experimentation, we will

observe: (a) the effect of the noisy D1 dataset, (b) the effect of underasampling

in the overall performance of our approach, (c) the most useful features in

ranking phase and (d) the impact of word embeddings in ranking phase. Finally,415

we present the results of the tuning process and the results against the other

participants in BioASQ Challenge (2017-2018).

5.1. Limitations in Our Approach

The AP is a difficult task in biomedical domain. We present some descrip-

tive statistics of the training set that indicates the limitations, we have, in our420

approach.

Figure 3c presents the frequency of correct answers in the passages. To

identify the correct answers in the passages, we seek an answer as normalized

substring into normalized passages and we count the number of occurrences of

substring in them. As an example, NCX and (NCX) and NCX1-heterozygous425
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(a) (b)

(c) (d)

Figure 3: Descriptive statistics on D1 dataset. (a) presents the number of candidate answers

per question. (b) shows the length of the answers calculating the number of the included

words comparing to the length of candidate answers extracted by our approach ,(c) presents

the frequency of each correct answer in the passages for each question. (d) reports the number

of passages that are available for each question

count 3 for the correct answer NCX. We count each occurrence of substring in

passages despite the fact that some substrings concatenate with other words or

symbols. The assumption here is that we can apply different methods in pre-

processing phase to isolate the candidate answer. For instance, we could ignore

the parenthesis in (NCX) in order to keep the abbreviation NCX as candidate430

answer. Furthermore, some questions have more than one answers, however,

we count the frequency of all and we assume that this frequency corresponds
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to one answer. The main observations are: (a) most of the correct answers

(58%) are very rare. Indeed, there are 139 answers where the frequency is one

or two and the rest 206 answers do not exist exactly in passages. Consequently,435

the approaches that extract candidate answers only from passages, can achieve

at most 67% accuracy in this dataset (b) 11% of answers occur more than 20

times in the passages. Approaches that rank candidate answers based on term

frequency could achieve good results on the 11% of the questions.

The distribution of answers frequency in the dataset indicates the limitations440

of current approaches in answer extraction. An another limitation which is

observed during our analysis, is the number of words in the correct answers. In

Figure 3b, most of the correct answers contain at most 5 words. However, 19%

of the questions contain more. Consequently, many approaches, including ours,

can not answer these questions correctly (our answer extraction method can not445

identify answers that contain more than 4 words).

These limitations are crucial in our AP approach. Nevertheless, the perfor-

mance of our approach is not only affected by the dataset, it is also affected by

the extraction of candidate answers without applying any kind of filtering and

the multiple annotators, we use. After the execution of the answer extraction450

phase, 76920 candidate answers were produced. Figure 3a shows the number

of candidate answers per question. The high number of candidate answers is

justified due to the fact that there are many passages for some questions (Figure

3d). The number of correct answers is 730 in the dataset (619 plus the answers

variants contained in dataset). Consequently, the 99.1% of the candidate an-455
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swers are not the expected correct answers. Mentioning the analysis, we made

previously, this rate is bigger. However, as we will see later, the number of anno-

tators improve the performance of the AP despite the creation of an imbalance

dataset. Furthermore, although the limitations are significant, our approach is

competitive against other state of the art approaches in this task.460

5.2. Results on Training Sets

We experimented with the identification of LAT in the D1 dataset. We

observed that using the two patterns described earlier, we can identify the LAT

in 88% of the questions. Particularly, 47% of the questions fall into the first

pattern and the rest 41% fall into the second one. The rest 12% of the questions465

either do not include LAT or do not fall into the two proposed patterns. In this

12% of the questions, 3% are QUANTITY questions, 2% LOCATION questions

and 2% CHOICE questions. The rest 4% of the questions can not be interpreted

by our system correctly.

In the answer extraction phase, we proposed several annotators to identify470

candidate answers resulting in a very large amount of candidate answers. Thus,

it is necessary to evaluate our answer extraction method in terms of the overall

performance of the answer representation. Table 1 indicates the impact of the

annotators to the overall performance of the AP. We observe that using several

annotators, the performance is better despite the increment of wrong answers.475

Furthermore, part of speech tagging increases the performance when it is used

together with biomedical annotators. Finally, BeCAS can answer more ques-

tions than MetaMap, though, the results are worse in terms of MRR and Sacc.
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To the best of our knowledge, BeCAS has not already been used in biomedi-

cal answer extraction, consequently, we applied statistical tests to estimate the480

impact of using this tool. The results of the tests are included in Table 1.

Annotators
D1 Dataset D2 Dataset

MRR Lacc Sacc MRR Lacc Sacc #Questions

MetaMap + BeCAS + POS-TAGGER .2553 .3639* .2033 .5149 .7500* .4167 307

MetaMap + POS-TAGGER .2509 .3410 .2082 .5041 .6840 .4165 273

BeCAS + POS-TAGGER .2360* .3459* .1836 .4758* .6974* .3702 280

MetaMap + BeCAS .2218 .3262* .1656 .4472 .6577* .3301 273

MetaMap .2067 .2787 .1672 .4103 .5618 .3371 217

POS-TAGGER .2063 .2590 .1872 .4143 .5222 .3709 182

BeCAS .1902 .2738 .1475 .3835 .5521 .2974 220

* significant at p < 0.05.

Table 1: Results on data sets D1 and D2, sorted by MRR, using different combinations of

annotators. The last column presents the number of questions for which the correct answer

was extracted. Statistical significance is estimated between pairs of models with and without

the BeCAS tool, i.e. line 1 vs line 2, line 3 vs line 6 and line 4 vs line 5.

Despite that nouns add noise (non-biomedical terms) to our dataset, we ob-

serve that the best results in all measures (MRR, Lacc, Sacc) are obtained when

using both biomedical terms and nouns. Intuitively, we can explain this situa-

tion making reference to the performance of the biomedical NERs. Some of the485

correct answers which are named entities, can not be identified as biomedical

terms by NERs. For instance, some terms are not included in the vocabularies

of the NERs, however, these terms could be considered as potentially correct

answers. On the other hand, the most probable word class for the one-word
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expected answer is noun. Consequently, if a term is not included in the vocabu-490

laries of the biomedical tools, is probable to be considered as noun. Thus, using

both nouns and terms, we can achieve better performance in answer extraction.

Classes Of Features
D1 Dataset D2 Dataset

MRR Lacc Sacc MRR Lacc Sacc

TS + SK + WE .2553 .3639 .2033 .5149 .7500 .4167

TS + WE .2546 .3656 .1951 .5163* .7400* .4100

TS +SK .2376 .3508 .1721 .4839 .7167 .3567

TS .2243 .3377 .1639 .4557 .6833 .3367

WE + SK .1265* .2328* .0705* .2588* .4800* .1500*

WE .1201 .2213 .0689 .2511 .4667 .1467

SK .0887 .1574 .0525 .2381 .4333 .1333

* significant at p < 0.05.

Table 2: Results on classes of features in datasets D1 and D2. The statistical significance is

estimated between models that use word embeddings with models that do not use them.

To evaluate the utility of word embeddings in answer representation phase,

we present coarse-grained results. Coarse-grained results come from the 3 classes

of features mentioned in section 3 (1) Textual Sources (TS) (2) Semantic Knowl-495

edge (SK) and (3) Word Embeddings (WE). In table 2 we observe that word

embeddings improve the results in all cases. Furthermore, features based on

TS are significant for system’s accuracy. Combining both of three classes we

achieve the highest scores. The impact of SK is greater in D1 dataset rather
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than in D2 when SK is combined with the other two classes of features.500

To investigate more the impact of word embeddings in AP, we compared the

returned list of candidate answers ranked using word embeddings and those can-

didate answers ranked without word embeddings. We observe an interesting fea-

ture of word embeddings. They capture lexical semantics and have been shown

that are effective in word analogy task [45]. Although, we use them in a different505

task (i.e. answer processing), we observe that they capture lexical semantics in

the list of candidate answers. For instance, the answer of a question ”Inhibition

of which transporter is the mechanism of action of drug Canagliflozin?” is the

”sodium glucose co-transporter 2”. The top-5 elements in the list of candidate

answers after ranking phase are ”diabetes melitus”, ”SGLT2”, ”Sodium glucose510

co-transporter 2”, ”sodium-glucose co-transporter 2” and ”sodium glucose con-

traporter 2”. The candidate answers except the first one, are lexical variants.

In the most cases, when the correct answer has lexical variants, we observe the

same pattern. On the other hand, without using word embeddings the answers

of the same question are ”SLGT2”, ”inhibitors”,”inhibitor”,”sodium” and ”type515

2 diabetes mellitus”.

Thus, we believe that word embeddings improve the performance of AP

because they capture similar candidate answers. On the other hand, without

using word embeddings, we may capture the correct answer, however, the re-

turned answer could be a lexical variant of the expected correct answer. For520

instance the answer SLGT2 could be considered correct answer, however, in a

string matching evaluation, it is considered wrong against the sodium glucose
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co-transporter 2.

Figure 4: The effect of removing candidate answers in the performance of AP using different

classes of features in the D2 dataset

As we described earlier, answer extraction technique produces a big list of

candidate answers in which the number of correct one is limited. Consequently,525

the dataset which is used in answer ranking phase contains much more negative

instances than positive. Due to this extreme class imbalance issue, we expect

that the system performance is affected. To address this problem, we applied an

under-sampling method in order to achieve a more balanced class distribution

[46]. Particularly, we experimented on removing candidate answers from the530

D2 using k-fold validation. In the training set, we randomly removed 10%,

30%, 50% and 70% of candidate answers per question. On the other hand,

the test set was not changed. We also experimented using different classes of

features. Figure 4 reports results applying under-sampling. We observe that

using 10% less candidate answers per question, the results are quite better.535

Reducing more candidate answers, the results are worse. However, the number
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of negative examples do not significantly affect the performance of the AP.

5.3. Comparing with other Systems

In our participation to the BioASQ Challenge, we called ensemble methods

and we also tuned their parameters.540

(a) (b)

(c) (d)

Figure 5: The tuning process on Logistic Regression, SVMs and eXtreme Gradient Boosting.

In detail, we tuned the C parameter that estimates the inverse of regular-

ization strength both for LR (Figure 5a) and SVM (Figure 5b) (Table 3). The

smaller the value of C, the stronger the regularization is. Furthermore, we tested

on different LR solvers and different kernels for SVM. For XGBoost algorithm,

we tuned the learning rate that determines the effect of each tree on the final545

result and the number of estimators (Figure 5c)(Table 4). We also parametrized

31



the boosting parameters, min child weight and maximum depth of a tree (Fig-

ure 5d)(Table 5). The default estimated parameters defined in the scikit-learn11

package in python for SVM and LR. For the default XGBoost parameters details

provided in the website12. Finally, we used the above three tuned algorithms in550

a voting scheme that is also tuned on the weights of each algorithm in the final

model.

C parameter
SVMs LR

rbf linear poly newton-cg lbfgs liblinear sag

0.001 .1969 .4210 .0464 .1767 .1767 .0523 .213

0.01 .3040 .4632 .0946 .3776 .3776 .3213 .3495

0.1 .4485 .4626 .2762 .4973 .4962 .4780 .3994

1 .4739 .4729 .2980 .5033 .5315 .5205 .4042

10 .4700 .4063 .3373 .4615 .4990 .4688 .4045

100 .4730 .3969 .3590 .4494 .4956 .4504 .4055

Table 3: MRR score for each algorithm tuning the C parameter along with the solvers for LR

and kernels for SVMs.

We summarize our observations as follows: (1) the lbfgs solver with C = 1

indicates the highest MRR (approximately 53%) against the SVMs and the other

solvers of LR. (2) The liblinear solver is close enough to lbfgs (52% MRR) (3)555

11http://scikit-learn.org/
12http://xgboost.readthedocs.io
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#estimators
Learning Rate

0.001 0.01 0.1 0.2 0.3

20 .3015 .3758 .4182 .4731 .4924

40 .3485 .393 .454 .4885 .4868

60 .3744 .4049 .4998 .5089 .4725

80 .3726 .4058 .5101 .4993 .4548

100 .3726 .4177 .5027 .4914 .4698

120 .3756 .4313 .4798 .4806 .4723

Table 4: MRR score of XGBoost for the pair of parameters Learning Rate and number of

estimators

The poly kernel seems to increase the results for greater values of C, however,

the highest MRR is approximately 36%. (4) XGBoost indicates better results

when learning rate is equal to 0.1 (default value) and the number of estimators

is 80 (51% MRR score). Giving the most appropriate combination of estimators

and learning rate based on their values (i.e. 80 and 0.1 respectively), we tuned560

the min child weight and maximum depth of a tree. We observe that using

maximum depth of a tree equals to 7, for each min child weight the MRR is

better in most of cases. The highest MRR 56% is observed when maximum

depth is equal to 7 and the min child weight is 8. (5) Giving greater weight to

XGBoost, the voting scheme achieves the highest MRR 58% (Table 6).565

LR models are affected by the existence of outliers compared to SVM models.
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Min Child Weight
Maximum Depth

3 5 7 9

1 .5101 .5055 .5206 .5138

3 .4936 .4983 .5187 .4865

4 .4923 .5008 .5173 .5169

5 .4939 .5102 .5187 .52

6 .4986 .5438 .5333 .5323

8 .5146 .5454 .5614 .5411

10 .5293 .527 .5456 .5226

12 .4999 .5382 .5461 .5474

Table 5: MRR score of XGBoost for the pair of parameters min child weight with maximum

depth of a tree.

However, we observe that most of the generalized linear models produced by LR

using different solvers achieve better results than SVMs which are not affected

by outliers. Furthermore, the non-linear kernel Radial Basis Function (RBF) is

controlled by the C parameter, however, the results are still worse than linear570

models. We believe that the improved results of LR are due to the probabilistic

outputs produced by the LR models. The LR models have been used for this

purpose as we described in literature review section and the obtained results

were promising. As XGBoost is an ensemble method, its improved performance

compared to the single models of LR and SVM was an expected result.575
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Voting Scheme Tuning

Weights
MRR Lacc Sacc

SVMs LR XGBoost

1 1 1 .5568 .7357 .4500

2 1 1 .5627 .7500 .4500

2 1 2 .5768 .7500 .4643

2 2 1 .5529 .7286 .4500

1 1 2 .5826* .7643* .4786*

1 2 1 .5614 .7357 .4571

* significant at p < 0.05.

Table 6: A voting scheme using SVMs, LR and XGBoost with their weights. The statistical

significance is estimated between the best model with all the other models.

We submitted results from 3 variations of our approach. The fa1 system

is our basic approach as described in section 3. The fa2 system removes some

candidate answers that it couldn’t be considered as correct answers after the

ranking phase. Particularly, we remove answers that have more than one syn-

onyms based on WordNet.580

Both of two systems use the training set described above. The model is

tuned as described earlier. The fa3 system is our basic approach using the D2.

We also used the same parameters in the learning process as in fa1 and fa2

systems.

Due to the fact that D2 dataset contains questions from the BioASQ 2017,585
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we do not use the fa3 system in the comparison with the participants of BioASQ

2017. Furthermore, because the automated evaluation can miss some correct

answers, we also present the results of fa1 which are produced by manual eval-

uation. The system’s answers, we assume that is correct, are presented in Ap-

pendix.590

Table 7 summarizes the results of our approach against the top approaches

in BioASQ 2017. The quality of the systems is evaluated by the MRR score.

The results of our approach are better comparing with the BioASQ baseline

and competitive against the top 2 systems. Lab Zhu, Fudan system [11] uses

PubTator to extract the candidate answers and term frequency to rank them.595

We observe that this approach can beat the neural network based approach

(Deep QA) in test batches 2 and 5 using a simpler approach than Deep QA.

However, we overcame this approach in batch 1. We expect that Lab Zhu, Fudan

system will be very limited in real QA applications because as we mentioned in

the limitations of our approach section, the frequency of the correct answer in600

passages is very low in a larger dataset which contain questions from 5 years of

BioASQ Challenge. On the other hand, Deep QA [18] is based on current state

of the art approaches which use word embeddings to encode the input textual

sources and a neural network model to predict the boundaries of the answer into

the passages. However, the performance of Deep QA system doesn’t explicitly605

depend on the neural model, but, it also depends on the assumptions that the

authors made. They proposed a context/type matching heuristic technique as

a backbone of their approach. The proposed rules are strongly related with the
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dataset. These rules can identify fewer candidate answers than our system, but,

these candidate answers are more probable to be the correct answers. However,610

due to the fact that the rules were proposed to fit on the provided dataset,

we do not expect that this approach will also be the state of the art for other

datasets. Finally, after the manual evaluation of our approach, we observed that

our system can overcome the Deep QA in the 5th test batch.

Table 8 summarizes the results of our approach against the BioASQ 2018615

participants. We observe that the AP Task in biomedical domain is a difficult

task. The highest scores, MRR, Lacc and Sacc are approximately 43%, 62%

and 33% respectively. Our approach overcomes the others in 3/5 test batches.

Furthermore, we achieve the highest results based on Lacc. On the other hand,

using Sacc, our approach is worse than the system 2 in 4/5 test batches. System620

3 has higher Sacc score in test batch 2. Systems 4 and 5 are lower in the ranking.

Finally, our approach overcomes the baseline system in all test batches.
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6. Conclusions and Future Work

This work addressed the challenge of AP in the context of biomedical QA.625

We showed that despite the increasing number of candidate answers, produced

by several annotators, and the class imballance issue do not influence the per-

formance of answer processing. In addition, we introduced a novel answer repre-

sentation technique based on word embeddings and external resources. Finally,

we experimented with several supervised learning algorithms to build a learning630

model for ranking the candidate answers.

In the answer extraction phase, we assumed that a candidate answer is a

a noun, a biomedical term or a number. This assumption affects the system’s

performance. For further work, we can extend the list of candidate answers

by employing various answer forms (e.g. noun phrases, prepositional phrases,635

bigrams, trigrams etc.). The bigger the set of candidate answers, the more

probable to contain the correct answer.

Simple answer extraction techniques entail complex answer ranking meth-

ods. The type coercion score determines whether the candidate answer satisfies

the answer-type requirements of the question. Nevertheless, this scoring func-640

tion returns a value only if the semantic type of the candidate answer aligns

with the semantic type of LAT. We can change this score to compute the simi-

larity between semantic types [47]. Thus, we can estimate the semantic distance

between the answer and the answer type. Furthermore, we observed that word

embeddings can improve the accuracy of an AP model, despite the use of a sim-645

ple technique for the conversion of question elements, sentences, and candidate
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answers to vectors. In the future, we can use embeddings produced by other

frameworks (e.g. GloVe [48]) or embeddings that focus on sentence level rather

than word level.

Semantic Role Labeling (SRL) can be used both in answer extraction and650

answer ranking phase. Particularly, in answer extraction phase, we can extract

answers based on how well the candidate answers match the predicted answer

type. This approach matters only if the the system’s accuracy is not affected by

incorrect matches. Furthermore, in answer ranking phase, we can use an SRL

tool, like BioSMILE [49] to generate semantic features, as described in [50].655
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Appendix A Manual Evaluation on BioASQ 2017 Dataset

Question Which enzyme is inhibited by niraparib?

Gold Answer Poly(ADP-ribose) Polymerase

System’s Answer PARP

Comment PARP is the abbreviation.

Question How many cysteines have alpha-defensins?

Gold Answer Alpha defensins contain six conserved cysteines

System’s Answer six

Comment Question expects a number as answer.

Question What is trichotillomania?

Gold Answer Trichotillomania is a hair pulling disorder.

System’s Answer hair pulling disorder

Comment The first part of the answer is redundant

Question Viliuisk encephalomyelitis is diagnosed in which geograph-

ical area?

Gold Answer Northeast Siberia

System’s Answer Siberia

Comment Northeast is extra detail and it is not required.

Question Which ApoE isoform is associated with hyperlipoproteine-

mia?

Gold Answer ApoE2 isoform

System’s Answer ApoE2
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Comment Isoform is redundant word.

Question Which is the largest metabolic gene cluster in yeast?

Gold Answer The DAL cluster

System’s Answer DAL

Comment cluster is redundant word.

Question What fruit causes Jamaican vomiting sickness?

Gold Answer Ackee fruit

System’s Answer Ackee

Comment Fruit is redundant word

Question What condition is usually represented by the acronym

SUDEP?

Gold Answer Sudden Unexpected Death in Epilepsy (SUDEP)

System’s Answer Sudden Unexpected Death in Epilepsy

Comment SUDEP is not required.

Question Which is the main cause of the Patau syndrome?

Gold Answer Trisome 13

System’s Answer Trisomy 13

Comment Trisomy is found in the passages.

Question Which mutated gene causes the Ch0̆0e9diak2̆013Higashi

Syndrome?

Gold Answer LYST gene

System’s Answer LYST
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Comment Gene is redundant word.

Question What is a miR?

Gold Answer MiRs are small ( 23 nt) noncoding RNAs”

System’s Answer MicroRNa

Comment MicroRNA corresponds to MiR.

Question What organism causes tularemia?

Gold Answer Francisella tularensis

System’s Answer F. tularensis

Comment The system’s answer is a variation of the gold.

Question Which disease is treated with lucinactant?

Gold Answer respiratory distress syndrome

System’s Answer RDS

Comment RDS is the abbreviation.

Question Which mushroom is poisonous, Amanita phalloides or

Agaricus Bisporus

Gold Answer Amanita phalloides

System’s Answer Amanita

Comment Phalloides is redundant word.

Question Which is the most common gene signature in Rheumatoid

Arthritis patients?

Gold Answer IFN signature

System’s Answer IFN
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Comment Signature is redundant word.

Table 9: Manual Evaluation on BioASQ 2017. Each row contains the question body along

with the expected correct answer (gold answer). In addition, the system’s output is presented

along with a comment that justifies why the system’s output is a variant of the gold answer.
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