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Abstract: This study examines the presence of either linear or nonlinear relationships be-
tween a number of popular sea-water quality indicators such as water temperature, pH, amount 
of dissolved oxygen and turbidity. The data are obtained from a set of sensors in an underwater 
measurement station. The neural networks with active neurons are applied to the prediction of 
each one of the above four indicators and their performance is compared against a benchmark 
prediction method known as the random walk model. The random walk model is the simpler 
prediction method, which accepts as the best prediction for a variable its current value. The 
neural network with active neurons is a black box method, which contrary to neural networks 
with passive neurons does not require a long set of training data. The results show that for daily 
predictions the neural network with active neurons is able to beat the random walk model with 
regard to directional accuracy, namely the direction (upward or downwards) of the modelling 
object in the next day. 
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1. INTRODUCTION 
The objective of this report is to investigate if it is possible to predict a number of 

water quality variables produced by an under-water measurement set-up. A set of sen-
sors is used to record the sea-water temperature, pH, conductivity, salinity, amount of 
dissolved oxygen and turbidity and their measurements are stored in a database. The 
data form time series and a number of modelling methods could be used to reveal the 
information hidden within the data. However, this study will focus only on the develop-
ment of prediction models for the temperature, pH, amount of dissolved oxygen and tur-
bidity due to their higher importance in terms of commercial exploitation. 

A variety of linear and nonlinear modelling techniques could be applied but in this 
study we focus on applying neural networks with active neurons since it is believed to 
be a more appropriate prediction algorithm for noisy and short time series. Their predic-
tion ability is shown by comparing their performance against the random walk model, 
which serves as a benchmark model in prediction tasks. The random walk model simple 
states that the future value of a variable will be equal to its current value supporting in 
that way the unpredictability of the modelling object. However, due to the correlation 
and interactions between the water quality variables it is interesting to investigate if 
there is an underlying mechanism governing the data and therefore prove the predict-
ability of these variables. The identification of such models is particular useful for ecolo-
gists and environmentalists since they will be able to predict in advance the pollution 
levels in the sea water and therefore instruct all the necessary precaution measures. 



2. DATA ANALYSIS 
The data in this study are produced by the Andromeda-analyser, for more details 

check [1] and [2], which measures water temperature, pH, conductivity, salinity, amount 
of oxygen and turbidity in sea-water. The original data were collected on July and early 
August of 2004 at an hourly basis with a sampling interval of 9 seconds. This study fo-
cus on the interactions between four of the most important water quality measurements, 
the temperature, pH, amount of dissolved oxygen and turbidity and therefore the rest of 
the measured variables are excluded from this study. The data are characterised by 
some outliers and a number of missing values due to temporary inefficiency of the ana-
lyser as well as problems in the transmission of the data. Furthermore, it is observed 
that the variation of the measurements during the day is very small and therefore it was 
decided to average the data over one day. As a result the corresponding models will 
perform the one step ahead prediction of the four water quality variables. The existence 
of missing values was overcome by using a linear interpolation method to replicate their 
values. Despite the limitation of such approach it was decided that since the variation of 
the variables is very small the linear interpolated values could be seen as close enough 
to its real value. 

The data are split into two sets: one for estimating the model unknown coefficients 
and the second for validating the model performance. The first set corresponds to the 
80% of the initial data set producing 25 observations (from 03/07/04 to 27/07/04) and 
are used to the subsequent data analysis methods and the model estimation procedure. 
The second set (the remaining 20% of the initial data set) is known as the testing set 
and consists of the last 8 observations of the initial data set (from 28/07/04 to 04/08/04). 
The testing set does not take part at any stage of the modelling approach and thus can 
be seen as a valid set for testing the model generalisation performance. 

Table 1 shows the cross-correlations together with their significance between the 
four variables. The correlations are calculated from the one-month data set collected 
from the 03rd of July 2004 to the 27th of July 2004 (i.e. training set). It is expected that 
all four variables will be strongly correlated to each other since it is believed that 
changes in water temperature and water clarity can affect the amount of oxygen in wa-
ter. In addition the water of low clarity could contain organisms, which can also affect 
the acidity of the water. However, as it can be seen in table 1, the turbidity is not signifi-
cant correlated with any of the other water quality factors and although the presence of 
a significant correlation does not show causality it is rational to exclude turbidity from 
the modelling procedure of the remaining three variables. 
 
Tab. 1: Correlation coefficients amongst the four sea-water quality variables. 
   Water Temperature pH Oxygen Turbidity 
Water Temperature Correlation 1 0.904(**) 0.678(**) 0.208 
  Sig. (2-tailed) . 0.000 0.000 0.318 
pH Correlation 0.904(**) 1 0.794(**) 0.105 
  Sig. (2-tailed) 0.000 . 0.000 0.616 
Oxygen Correlation 0.678(**) 0.794(**) 1 0.234 
  Sig. (2-tailed) 0.000 0.000 . 0.259 
Turbidity Correlation 0.208 0.105 0.234 1 
  Sig. (2-tailed) 0.318 0.616 0.259 . 

** Correlation is significant at the 0.01 level (2-tailed). 
 

The above table shows the correlation between the variables at time t and hence it 
is not particular useful for showing the effect of past values of the variables at time t. 



Such information can be obtained by examining the autocorrelation (ACF) and cross 
correlation function (CCF) for all four variables. Figures 1, 2, 3, 4, 5 and 6 demonstrate 
that temperature, pH and oxygen are correlated to each other while reconfirm that tur-
bidity is not an influential factor to the other three variables. Additionally the autocorrela-
tion function of all the variables is also plotted in figures 7, 8, 9 and 10 respectively. It is 
shown that past values of temperature and pH can be considered as potential inputs to 
an auto regression model for each one of these variables. Oxygen and turbidity seems 
to be uncorrelated, which implies that it could be very difficult to perform one-day ahead 
predictions for these two variables. 
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Fig. 1: Cross-correlation between water tempera-

ture and pH 
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Fig. 2: Cross-correlation between water tempera-

ture and oxygen 
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Fig. 3: Cross-correlation between water tempera-

ture and turbidity 
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Fig. 4: Cross-correlation between pH and oxygen 
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Fig. 5: Cross-correlation between pH and turbidity 
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Fig. 6: Cross-correlation between oxygen and tur-

bidity 

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Lag Number

-1.0

-0.5

0.0

0.5

1.0

A
C

F

Coefficient
Upper 
Confidence 
Limit
Lower 
Confidence 
Limit

Water Temperature

 
Fig. 7: Autocorrelation for water temperature 
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Fig. 8: Autocorrelation for pH 
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Fig. 9: Autocorrelation for oxygen 
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Fig. 10: Autocorrelation for turbidity 

3. NEURAL NETWORKS WITH ACTIVE NEURONS 
Neural networks with active neurons were developed as an appropriate modelling 

method for noisy and short time series, check [3] and [4]. Such neural networks follow 
the principles of self-organisation and induction and let the data themselves decide on 
the number of hidden layers, neurons as well as input variables. On the contrary neural 
networks with passive neurons make subjective decisions for the number of hidden neu-
rons and layers, while the algorithms applied to identify the optimum set of input vari-
ables are affected by the initial learning conditions. Finally, they require long time series 
to sufficiently identify the underlying laws governing the data and therefore are not ap-
propriate for modelling objects characterised by noisy and short time series. 

For every pair of inputs an individual neuron is created. However, its activation func-
tion (instead of fixed) is optimally found amongst a variety of different functions starting 
with the simpler linear function of the two inputs and evolving until the complete second 
order activation function in equation (1) is estimated. The final activation function is cho-
sen as the one, which minimises the accuracy criterion on an external set of data. 

(1)  y = α0 + α1 x1 + α2 x2 + α3 x1 x2 + α4 x1
2+ α5 x2

2 

After the activation functions in every neuron for every pair of inputs are computed 
the neurons are classified according to their performance on the external set of data. A 
pre-specified number of the best performing neurons is selected to continue in the mod-
elling procedure while the remaining are deleted. Then the outputs of the new active 
neurons form the input vector for the second layer of the neural network and the above 
procedure is repeated. The optimum number of layers is decided by finding the mini-
mum in the plane complexity (i.e. number of layers) vs. performance criterion on the ex-
ternal set of data. A variety of external criteria exist but in this study the Prediction Error 
Sum of Squares (PESS) is used. In addition, due to the small number of data the cross-
validation method is used to compute the neurons’ prediction performance. According to 
that every single datum is used to compute the model prediction performance and 
therefore the data are not divided into training and validation data. 

4. RESULTS 
The conclusions driven from the correlation and autocorrelation analysis are used to 

create the input vector for the models. For each one of the four water quality variables 
three different models are considered. The first one is the naïve random walk model, 
which assumes that the model prediction is equal to its current value as equation (2) 
shows, where εt is white noise. 



(2)  yt=yt-1+εt 
The second is an autoregressive model where only past values of the variable itself 

are used in the input vector (AR-model). The number of past values is derived from the 
autocorrelation function. In this study since the neural networks with active neurons are 
able to identify the optimum number of inputs it is decided to extend the set of potential 
inputs beyond those indicated by the autocorrelation function and hence for each one of 
the four quality variables three past values are considered. Finally, in the third model the 
number of inputs is increased by considering past values of the other water quality vari-
ables as well (MI-model). The number of past values is again three and based on the 
cross-correlation analysis it is proposed to exclude turbidity from the set of potential 
predictors. As it is shown in table 1 as well as figures 3, 5 and 6 turbidity is not corre-
lated with the other three variables so it is preferred to exclude it from the input vector. 
Furthermore, tests have shown that its inclusion is not significantly improving model 
prediction performance. 

The model performance is estimated according to three different performance 
measures. First, the R squared is computed which is a measure of accuracy that illus-
trates the percentage of data variance explained by the model. It takes values between 
0 and 1 where a value of 1 shows that the derived model is able to explain 100% of the 
data variance. Second, the normalised mean square is computed, which is also a 
measure of accuracy but it is perhaps better than R squared for comparing model per-
formance because it takes into account the bias and error variance. Finally the percent-
age of correctly predicting the direction in the daily movements of the variables is com-
puted. From table 2 where the final set of input variables for every model is presented it 
is seen that the autoregressive models show high similarity with the random walk 
model. In all four variables the current value of the variables is chosen as the most sig-
nificant influential factor to determine its future value. The similarity is also obvious by 
looking at table 3 where the model performance on the testing set is presented. With 
regard to accuracy measures the random walk model seems to be either better are at 
least as good as its autoregressive counterpart. However, looking at the model’s ability 
to predict the direction of the future movements (i.e. the variable’s value moving either 
upwards or downwards) the autoregressive models is significant better.  

In case that a multivariate model (i.e. MI-model) is considered table 2 shows that 
past values of the other variables are also important factors to determine the model’s 
future state. Table 3 shows that the R2 is higher for the pH and oxygen models than it is 
at the corresponding autoregressive model while the model ability to correctly identify 
the direction in the movement of the variable future values remains either same (oxy-
gen) or better than that of either the random walk model or the autoregressive models 
(water temperature and pH). It is clear that despite the low marginal accuracy of the 
model, their ability to predict the trend of the future values is significantly better than that 
of the random walk model. Finally, figures 11, 12 and 13 shows the in-sample (1 to 22 
days) and out-of-sample (23 to 30 days) performance of all three models for the water 
temperature, pH and oxygen, while figure 14 shows the model performance for the tur-
bidity. In the latter only the random walk and autoregressive model are shown. 
 
Tab. 2: The set of initial inputs to take part in the prediction models for the four water quality variables. 
Model \ Inputs Temperature pH Oxygen Turbidity 
AR-model Temp.: t-1, t-3 pH: t-1 Oxygen: t-1 Turbidity: t-1 
MI-model Temp.: t-1, t-3 Temp.: t-1, t-2, t-3 

Oxygen: t-2, t-3 
Oxygen: t-3 
Temp.: t-1, t-2, t-3 
pH: t-1, t-2, t-3 

- 



Tab. 3: The marginal and directional accuracy of the models estimated on the testing set of data. 
 Temperature pH Oxygen Turbidity 
Model NMSE R2 % NMSE R2 % NMSE R2 % NMSE R2 % 
RW 0.0391 0.8164 25 0.0577 0.7872 25 0.1044 -0.050 50 0.1137 0.0737 37.5 
AR 0.0508 0.6887 50 0.0545 0.7872 50 0.0949 -0.050 50 0.1261 0.0737 75 
MI 0.0508 0.6887 50 0.1372 0.8618 75 0.2712 0.2222 50 - - - 

 

Fig. 11: In- and out-of-sample performance for wa-
ter temperature 

Fig. 12: In- and out-of-sample performance for pH 

 
Fig. 13: In- and out-of-sample performance for dis-

solved oxygen 
Fig. 14: In- and out-of-sample performance for tur-

bidity 

5. CONCLUSIONS AND FUTURE WORK 
This study has focused on building both autoregressive and multivariate one step 

ahead prediction models for four main sea-water quality variables, namely the water 
temperature, pH, amount of dissolved oxygen and turbidity. Neural networks with active 
neurons were chosen since they do not require a large number of training data and they 
are also thought to perform better for under determined and noisy tasks such as the 
measurement of water quality variables. Their models’ performances were compared 
against that of the random walk model for both marginal and directional accuracy pre-
diction measures. With regard to marginal accuracy measures it was found that the ran-
dom walk model is better but this shouldn’t surprise us since the daily variation of all 
variables is extremely low. However, looking at the prediction of the future movement of 
the variables it was found that neural network models with active neurons are perform-
ing better than the random walk model. For water temperature, pH and turbidity the im-
provement in sign prediction is significant while no change is found for the case of the 
oxygen. The ability to correctly identify the direction of future changes is important for 
scientists since it would allow them to take the appropriate measures to eliminate the 
effects of higher pollution levels in sea-water. 



Future study will concentrate on improving the data acquisition and producing more 
accurate measurements. By doing that it will be possible to create a longer time series, 
which will allow the experimentation with more, modelling techniques. Having a longer 
time series will allow us to find data with similar characteristics to those close in the pre-
diction period and using these data in the training of the neural network with active neu-
rons could improve further the model prediction performance. The variation of the daily 
measurements is very small so it would be also interesting to increase the sampling pe-
riod to either weekly or monthly data and then estimate the performance of the neural 
networks in such volatile data. 
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