
Towards a Knowledge-based Framework for Agents Ιnteracting in the Semantic
Web

Kalliopi Kravari, Efstratios Kontopoulos and Nick Bassiliades
Dept. of Informatics

Aristotle University of Thessaloniki
GR-54124 Thessaloniki, Greece

{kkravari, skontopo, nbassili}@csd.auth.gr

Abstract— The Semantic Web aims at making Web content
understandable both for people and machines. Although
intelligent agents can assist towards this vision, they do not
have to conform to a common rule or logic paradigm. This
paper reports on the first steps towards a framework for
interoperating knowledge-based intelligent agents. A multi-
agent system was extended with defeasible reasoning and a
reusable agent model is proposed for customizable agents,
equipped with a knowledge base and a Jess rule engine. Two
use case scenarios display the integration of these technologies.

Keywords: intelligent agents, multi-agent system, defeasible
reasoning, brokering agents, agent negotiation

I. INTRODUCTION
The Semantic Web (SW) is an evolving extension of

WWW, where the semantics of information and services is
well-defined, making it possible for people and machines to
understand Web content and satisfy their requests [1]. SW
research is currently focusing on logic and reasoning.
Intelligent agents (IAs) can be favored by SW technologies
[2], because of the interoperability SW offers. The
integration of multi-agent systems (MAS) and SW technology
will notably affect the use of the Web – its next generation
will feature groups of intercommunicating agents traversing
it and performing complex actions on behalf of their users.

A core setback in agent interoperation is the variety in
representation and reasoning, as there is still no globally
agreed knowledge representation and reasoning formalism
for agents. The diversity in representation and reasoning
could be confronted through “burdening” agents with their
own reasoning engines. However, since each rule engine
uses a specific formalism, this would pose the need for
interchange languages and/or semantic translation schemes.

This paper reports on the initial steps towards a
framework for interoperating, knowledge-based IAs in the
SW that avoids the drawbacks outlined above and proposes a
simpler approach that does not rely on semantic
interoperability, but on utilizing third-party reasoning
services instead. In our approach, reasoning services are
wrapped by an agent interface (the Reasoner), allowing
communication via ACL messages, whereas SW standards
(RuleML, RDF/S, OWL) will serve as the framework
infrastructure. A JADE MAS was extended with defeasible

reasoning [3], which offers the ability to reason with
incomplete and inconsistent information.

We also propose a generic, reusable agent model for
knowledge-customizable agents (KC-Agents), i.e. agents,
equipped with a Jess rule engine and a knowledge base (KB)
that contains environment knowledge, behaviour patterns
and strategies/policies. By altering the KB, the agent’s
knowledge and/or behaviour is modified accordingly. This
proposal is orthogonal to the reasoning service and offers
declarativeness, modularity, reusability, maintainability, and
eventually, interoperability of behaviour between agents.
Finally, the paper presents a brokering and a negotiation
scenario that illustrate the integration of the above
technologies.

In the rest of the paper, section II briefly presents the
deployed reasoning engine, while section III features the
implemented MAS and KC-Agents. The use case scenarios
are described next, followed by a description of related work
and final remarks as well as directions for future work.

II. DEFEASIBLE REASONING AND DR-DEVICE
Defeasible reasoning [3] constitutes a simple rule-based

approach for efficient reasoning with incomplete and
inconsistent information. When compared to mainstream
non-monotonic reasoning, the main advantages of defeasible
reasoning are enhanced representational capabilities and low
computational complexity.

DR-DEVICE [4] is a defeasible logic reasoner that
employs an OO RDF data model, treating properties as
normal encapsulated attributes of resource objects. This way,
properties are not scattered across several triples, resulting in
increased query performance. DR-DEVICE supports a
RuleML-compatible syntax for defeasible logic rules that
deals with extensions regarding rule types, superiority
relations among rules and conflicting literals, as well as
constraints on predicate arguments and functions.

DR-DEVICE accepts as input the address of a defeasible
logic rule base that contains only rules. The facts for the rule
program are contained in RDF documents, whose addresses
are declared in the rule base. The rule base is submitted and
the designated facts are downloaded. During inference, rule
conclusions are materialized inside DR-DEVICE as objects
and the instances of derived classes are exported as an RDF
document, which includes RDF/S definitions for the
exported derived classes and those instances of the exported

derived classes that have been proved. Finally, results can be
accessed through a web browser or via specialized
visualization software. More details regarding the system
architecture and functionality can be found in [4].

III. KC-AGENTS
This section focuses on KC-Agents that are based on our

customizable, knowledge-based agent model. The other
contribution of the framework, the Reasoner agent that
provides the defeasible reasoning service, is presented
thoroughly in [5] and will be omitted here. KC-Agents are
customizable agents equipped with a KB and a Jess rule
engine. The KB contains the agent’s knowledge (facts) and
behavior pattern (production rules). KC-Agents are described
by an abstract specification portrayed below that contains
facts and rules; the generic rule format is represented by:
result ← rule (preconditions).

The agent’s internal knowledge is essentially a set F of
facts that consists of subset Fu of user-defined facts and
subset Fe of environment-asserted facts:

Fu ≡ {fu1, fu2, …, fuk}, Fe ≡ {fe1, fe2, …, fem}, F ≡ Fu ∪ Fe

Agent behavior is a set P of potential actions, expressed
as Jess production rules. P consists of rules that derive new
facts by inserting them into the KB (subset A) and rules that
lead to the execution of a special action (subset S). Special
actions can either refer to agent communication (subset C) or
Java calls (subset J):

P ≡ A ∪ S, S ≡ C ∪ J

A≡{a| fe←a(fu1, fu2, …, fun)∧{fu1, fu2,..., fun}⊆Fu∧fe ∈Fe}

C≡{c| ACLMessage←c(f1, f2, …, fp)∧{f1, f2,..., fp}⊆F}

J≡{j| JavaMethod←j(f1, f2, …, fq)∧{f1, f2,..., fq}⊆F}

ACLMessage is a Jess template for defining ACL
messages and JavaMethod is a user-defined Java method.
The communication rule syntax specification is:
(defrule Communication_Rule

;;; rule preconditions
=>
(ACLMessage (communicative-act ?c)

(sender ?s) (receiver ?r) (content ?n)))
where communicative-act, sender, receiver and content are
four template parameters of ACLMessage, according to
Fipa2000 description. On the other hand, user-defined Java
methods can be called inside Jess rules to perform a
specialized action, like processing specialized file content. A
generic syntax specification is:
(defrule JavaMethod_Rule

;;; rule preconditions
=>
(bind ?x (new java_class_name))
(bind ?y (?x java_method_name $?a)))

where ?x is bound to a new instance of a specific Java class,
$?a is the list of arguments required by the specific class
method and ?y is the returned result.

IV. COOPERATING AGENTS – USE CASES
Defeasible reasoning is applied in various applications,

like brokering [6], bargaining and agent negotiations [7],
which are also influenced by agent-based technology (e.g.
[8]). Thus, two use cases are described (a brokering and a
negotiation scenario), which are deliberately diverse, in order
to display the ability of KC-Agents to easily adapt to various
applications.

A. Use Case: A Brokering Scenario
The brokering scenario was adopted from [9] and

presented in [5]. It is extended here, in order to introduce the
newly-developed KC-Agents. The scenario involves three
parties: (a) the customer, called Carlo, is a potential renter
that wishes to rent an apartment based on his requirements
(e.g. size, location, floor) and personal preferences, (b) the
broker possesses an RDF database of available apartments;
his role is to match Carlo’s requirements with the apartment
specifications and propose suitable flats to the potential
renter, and, (c) the reasoner is an independent third-party
service that can conduct inference on defeasible logic rule
bases and produce the results as an RDF file.

As described in [5], the scenario is carried out in six
distinct steps and ends up with Carlo finally deciding the
most suitable apartment, based on his requirements and
personal preferences.

1) Agent Specifications: Following the generic
specification for agents (section III), the customer agent’s
description contains a fact, ruleml_path, which is part of its
internal knowledge and represents the rulebase URL.
Moreover, due to the dynamic environment, a new fact with
the agent name (agent_name) is added to the working
memory. Agent behavior is represented by rules; two of
these are “request” and “read”; the former is used for
communication and the latter for Java method calls. Both
rules require a single precondition each: agent_name and
ruleml_path, respectively.

cust
uF ≡ {ruleml_path}, cust

eF ≡ {agent_name}
custC ≡ {(ACLMessage (communicative-act REQUEST)

(sender agent_name) (receiver Broker)
(content “request”)) ← request agent_name)}

custJ ≡ {rule_base_string ←
(bind ((new java_class) read ruleml_path))}

The broker agent’s description contains facts and rules:
url represents its internal knowledge and stands for the URL
of the RDF document containing all apartments, while
reasoner_name (i.e. the Reasoner’s name) is added by the
environment and rules “request” and “read” comprise part
of the agent’s behavior.

brok
uF ≡ {url}, brok

eF ≡ {reasoner_name}
brokC ≡ {(ACLMessage (communicative-act REQUEST)

(sender Broker) (receiver reasoner_name)
(content “request”)) ← request (reasoner_name)}

brokJ ≡ {rule_base_string ←

(bind ((new java_class) read url))}

B. Use Case: A Negotiation Scenario
As soon as the brokering trade ends and Carlo is able to

make a choice, he delegates a new task to his IA (Customer),
to negotiate for the rent of the chosen apartment. The
scenario involves again three agents, where the Reasoner is
substituted by the owner’s agent (Owner). No reasoning
service is deployed here, although the agents could indeed
utilize the Reasoner for applying their negotiation strategies.

Customer’s agent initially has to find out the apartment
owner’s name and, thus, sends a REQUEST message to the
broker’s agent (Broker) containing the chosen apartment and
waits for the owner’s name. The Broker sends back the reply
via an INFORM message. Afterwards, the Customer starts a
negotiation process with the Owner. Meanwhile, the Broker
observes the negotiation and in the end asks for a fee via an
INFORM message, depending on the agreed rent.

1) Negotiation Protocol: A suitable 1-1 negotiation
protocol was implemented, based on FIPA ACL-compliant
performatives. The protocol encodes the allowed sequences
of actions for the automation of the negotiation process
among KC-Agents and is represented as a finite state
machine with discrete states and transitions, obeyed by all
agents. Initially, one agent starts the negotiation by sending
a call-for-proposal (CFP) message to the other agent. After
several rounds, in which proposals are exchanged, the
negotiation ends. This happens when one side either accepts
the other side’s proposal, or just terminates the negotiation
process without any further explanation.

Neither agent is aware of the other’s constraints. The
agents make alternate bids, with the Owner bidding first;
each agent bids only once per round. A bid is represented by

a
ibid , where a is the agent offering the bid and i is the

bidding round. Acceptance/rejection of a bid by agent a
during round i is represented by a

iACCEPT / a
iREJECT ,

respectively. If a rent cannot be agreed on before an agent
runs out of time, the negotiation terminates.

2) Negotiation Strategies: Each agent’s strategy is
designed in line with a particular protocol. There is a
plethora of classified strategies, according to different
criteria. The two agents involved in this use case adopt
strategies that are partially based on [10].

The Customer’s strategy increases the bid gradually,
depending on its interest for the apartment and is constrained
by: (a) ttr (time-to-rent): the number of negotiation rounds
within which the agent has to rent, (b) min_profit: the
amount of min. rent decrement, and (c) interest: the degree
of “how much” the agent wants the apartment (range: 1-10).

The strategy also contains criteria (strategy rules) for
decision making that designate whether the agent rejects or
accepts the offer. The three main rules are:

• IF 1
ownbid THEN 2

custREJECT (the Owner’s first
offer is always equal to the max. rent and is rejected)

• IF 1
own
ibid − > 1

cust
ibid − +10*IN THEN

cust
iREJECT

• IF 1
own
ibid − < 1

cust
ibid − +10*IN AND 1

own
ibid − <MAX

THEN
cust

iACCEPT

where IN=interest+(i–2) and MAX= 1
ownbid –min_profit. If an

offer from the Owner is rejected during round i, the
Customer has to counter-offer a new bid:

1
cust
ibid + =10%*IN*MAX. The rules here are represented via a

generic format; section 4.2.4 displays the rules, according to
the specifications in section 3.1.

The Owner’s strategy is constrained by: (a) tts (time-to-
sell): the number of negotiation rounds within which the
agent has to sell, (b) min_rent: the minimum rent amount, (c)
start_rent: the first offer amount, and (d) L: a timer
parameter, indicating on which round (starting from the end)
the Owner’s offer starts to rapidly decrease. The Owner is
keen to making deals, but, when time is available, it attempts
to get a better deal by delaying commitment by one round.
Additionally, each new offer has a small discount.

The Owner’s decision making rules are:
• IF

cust
ibid >min_rent AND 1

cust
ibid − >min_rent THEN

own
iACCEPT

• IF
cust
ibid < min_rent THEN

own
iREJECT

Moreover, the Owner’s bids are based on two rules:
• IF (tts > L) THEN

own
ibid = 1

own
ibid − –i%* 1

own
ibid −

• IF (tts < L) THEN
own
ibid = 1

own
ibid − –2i%* 1

own
ibid −

Finally, the Broker, who observes the negotiation,
demands a standard 20% of the final rent as his fee.

3) A Negotiation Example: For the example described
here, Table I outlines the agents’ constraints, while Table II
represents the negotiation step by step.

TABLE I. AGENTS’ CONSTRAINTS

Customer Owner
ttr = 5 tts = 8

min_profit = 50 min_rent = 230
interest = 6 start_rent = 350

 L = 3

TABLE II. NEGOTIATION ROUNDS

Round 1 (i=1):

1
ownbid =350, tts=8, ttr=5

Round 2 (i=2):
IN=6+(2–2)=6,

2
custREJECT (reject Owner’s first offer)

MAX=350–50=300,
2
custbid =6*10%*300=180, ttr=4

2
custbid =180 < 230 (=min_rent),

2
ownREJECT

tts=7, L=3, tts > L,
2
ownbid =350–2%*350=343

Round 3 (i=3):
IN=7, 180+7*10=250<343,

3
custREJECT

3
custbid =7*10%*300=210, ttr=3

3
custbid =210 < 230,

3
ownREJECT

tts=6, L=3, tts > L,
3
ownbid =343–3%*343=333

Round 4 (i=4):
IN=8, 210+8*10=290<333,

4
custREJECT

4
custbid =8*10%*300=240, ttr=2

4
custbid =240 > 230 (!),

4
ownREJECT (delay commitment)

tts=5, L=3, tts > L,
4
ownbid =333–4%*333=320

Round 5 (i=5):
IN=9, 240+9*10=330>320, 320>300 (=MAX),

4
custREJECT

5
custbid =9*10%*300=270, ttr=1

5
custbid =270 > 230,

5
ownACCEPT

The negotiation ends successfully after 5 rounds; agreed
rent: 270, Broker’s fee: 54 (=20%*270).

4) Agent Specifications: The rules here refer exclusively
to agent communication (subset C ⊆ S). The two main
communicative-acts are PROPOSE and ACCEPT-
PROPOSAL. The Customer’s description is extended with a
fact containing the Owner’s name (owner_name) and the
parameters in the previous section and its communication
behavior now contains bid proposal and acceptance:

cust
uF ≡ {owner_name, ttr, min_profit, interest }
cust

eF ≡ {agent_name}
custC ≡ {(ACLMessage (communicative-act PROPOSE)

(sender Customer) (receiver Owner)
(content “bid”)) ← propose (bid),

 (ACLMessage
 (communicative-act ACCEPT-PROPOSAL)
 (sender Customer) (receiver Owner)
 (content “price”)) ← accept (price)}

Similarly, the owner agent’s description contains the
parameters in the previous section and its communication
behavior also contains the proposal and acceptance of bids:

own
uF ≡ {customer_name, tts, min_rent, start_rent, L}
own

eF ≡ {agent_name}
ownC ≡ {(ACLMessage (communicative-act PROPOSE)

(sender Owner) (receiver Customer)
(content “bid”)) ← propose (bid),

 (ACLMessage
(communicative-act ACCEPT-PROPOSAL)
(sender Owner) (receiver Customer)
(content “price”)) ← accept (price)}

V. RELATED WORK
DR-BROKERING [11] is a brokering and matchmaking

system that represents offerings in RDF and expresses
requirements and preferences in a deductive logical
language. It features three agent types (Buyer, Seller and
Broker). Also, DR-NEGOTIATE [8], by the same authors,
deploys a negotiation scenario using JADE and DR-
DEVICE. Similarly, our approach identifies distinct roles,
but also provides a defeasible reasoning service and a
reusable knowledge-based agent model that can be used in
various scenarios.

Rule Responder [12] builds a service-oriented
methodology and a rule-based middleware for interchanging
rules in virtual organizations, as well as negotiating about

their meaning. It demonstrates the interoperation of
distributed platform-specific rule execution environments via
Reaction RuleML. Our approach also shares a similar view
of reasoning service for IAs and usage of RuleML and
allows deploying a variety of rule engines. However,
contrary to Rule Responder, our framework is fully FIPA-
compliant.

VI. CONCLUSIONS AND FUTURE WORK
This paper argues that agents are vital in realizing the

Semantic Web vision and presents a JADE MAS designed
for the SW. The system features a defeasible reasoning
service implemented as an agent, as well as a reusable agent
model that allows creating customizable, knowledge-based
agents, equipped with a KB and a Jess rule engine. Via Jess,
agents can insert newly derived facts into their KB, altering
their behavior accordingly. The paper also presents two
diverse use cases that illustrate the technologies presented.

As for future directions, it would be interesting to verify
our model’s capability to adapt to an even wider variety of
scenarios. Another goal is to integrate more reasoning
engines, thus, forming a generic environment for cooperating
agents in the SW. A final direction could be towards trust,
which is essential for making subjective trust judgements
about the services provided by other agents [1].

REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic

web”, Scientific American, 2001, 284(5):34-43.
[2] J. Hendler, “Agents and the semantic web”, IEEE Intelligent

Systems, 2001, 16(2):30-37.
[3] D. Nute, “Defeasible reasoning”, 20th Int. Conference on

Systems Science, IEEE Press, 1987, pp. 470-477.
[4] N. Bassiliades, G. Antoniou, and I. Vlahavas, “A defeasible

logic reasoner for the semantic web”, IJSWIS, 2006, 2(1):1-
41.

[5] K. Kravari, E. Kontopoulos, and N. Bassiliades, “A trusted
defeasible reasoning service for brokering agents in the
semantic web”, IDC’09, unpublished.

[6] R. Benjamins, B. Wielinga, J. Wielemaker, and D. Fensel,
“An intelligent agent for brokering problem-solving
knowledge”, IWANN (2), 1999, pp. 693-705.

[7] G. Governatori, M. Dumas, A.H.M. ter Hofstede, and P.
Oaks, “A formal approach to protocols and strategies for
(legal) negotiation”, ICAIL’01, pp. 168-177.

[8] T. Skylogiannis, G. Antoniou, N. Bassiliades, G. Governatori,
and A. Bikakis, “DR-NEGOTIATE - A system for automated
agent negotiation with defeasible logic-based strategies”,
DKE, 2007, 63(2):362-380.

[9] G. Antoniou and F van Harmelen, A semantic web primer,
MIT Press, 2004.

[10] E.Tsang and T. Gosling, “Simple constrained bargaining
game”, AAMAS-2002, Bologna, Italy, 2002.

[11] G. Antoniou, T. Skylogiannis, A. Bikakis, and N. Bassiliades,
“DR-BROKERING – A defeasible logic-based system for
semantic brokering”, EEE’05, IEEE, 2005, pp. 414-417.

[12] A. Paschke, H. Boley, A. Kozlenkov, and B. Craig, “Rule
responder: RuleML-based agents for distributed collaboration
on the pragmatic web”, 2nd Int. Conf. on Pragmatic Web,
ACM, vol. 280, 2007, pp. 17-28.

