
1

TRANSLATING WEB SERVICES COMPOSITION PLANS TO

OWL-S DESCRIPTIONS

Eva Ziaka, Dimitris Vrakas, Nick Bassiliades
Department of Informatics, Aristotle University of Thessaloniki, Greece

{evziaka, dvrakas, nbassili}@csd.auth.gr

Keywords: web services composition, AI planning, semantic web services, OWL-S, PDDL.

Abstract: Web Services technology has led to simpler and more rapid development of Web Applications with

improved functionality by which several platforms through the globe can communicate to exchange data

and cooperate for problem solving. Methods for automated web services composition are studied so as to

enhance this type of software development. Many studies focus on converting the composition problem to a

planning problem and solving it using known planning algorithms. This paper suggests a method for

translating the produced PDDL plans of the above algorithms to OWL-S descriptions of the final composite

web services. The result is a totally new web service that can later be discovered and invoked or even take

part in a new composition.

1 INTRODUCTION

Nowadays, many different systems all over the

globe can communicate with each other through the

Internet. The need for supporting interoperability of

web applications so that they can be used by all

platforms, no matter their implementation, has led to

web services technology and a new, web-service-

oriented way of programming. This new technology

is based on open protocols, such as the XML and the

well known HTTP transfer protocol.

There is often the need to execute more complex

tasks that simple web services do not have the

potential to complete on their own. In such cases,

simple web services must cooperate so as to

combine their functionalities to create a new

complex web service that will hold the desirable

functionality. Semantic information about all the

available atomic web services is very important for

their cooperation in web services composition field,

so as to be able to understand the meaning of their

inputs and outputs and to match them to achieve

cooperation.

During the past decade a large number of

approaches for composing web services have been

proposed, some fully automated, other partially

automated, whereas a lot of them are even

completely manual. A promising way that aims at

fully automated web services composition is the use

of AI planning technology. Each web service is

represented as a planning operator and the desired

composite service‟s inputs and outputs form the

initial state and the goals respectively. The plans that

arise are encoded in languages such as PDDL

(Ghalab, 1998) that describe the actions, that is the

web services, that must be executed and the order of

their execution.

The contribution of this paper focuses on the

automatic translation of the plans, expressed in

PDDL, to OWL-S descriptions (Martin et al, 2004)

that take advantage of the OWL-S control constructs

and facilitate the automatic invocation of the

composite service. Specifically, information from

the PDDL descriptions of the domain, the

composition problem, and the plan is used to create

a functional representation of the composition. This

representation describes with a specific syntax the

way each atomic web service is connected to each

other in order to produce the final output. In a

second phase, this functional representation is

utilized to generate the OWL-S descriptions of the

new composite web service.

In terms of functionality, the method described in

this paper is merely based on the PDDL descriptions

of the planning operators and does not explicitly

deal with semantic information of the initial atomic

services. Therefore, it can be applied to

compositions arising from both syntactic and

semantic matching of inputs and outputs of the

atomic services. However, since the final expression

will be encoded in OWL-S language, we will use the

notion of semantic web service throughout the rest

of the paper.

In the sections to follow, the relative research

field is explored. The suggested technique is

analyzed in detail and some conclusions along with

future directions are given. Specifically, the rest of

the paper is organized as follows:

In section 2, the field of automated web services

composition using AI Planning techniques is

presented and some studies on the field are exposed.

In section 3, the developed method for translating

the PDDL plans to OWL-S descriptions is analyzed.

This section is divided into two sub-sections,

reflecting the two phases of the method; in the first

sub-section, the algorithm that creates the functional

representation describing the composition is

presented, whereas in the second sub-section, the

method for converting this representation to OWL-S

description is described. Finally, in the last section,

conclusions of the research so far are given along

with some ideas on how the developed algorithms

and the web services composition procedure could

be enhanced.

2 RELATED WORK

The process of automated web services composition

by the point of view of planning has been studied

extensively. The most important advantage of this

approach is the dynamic character that is offered to

the composition process, which reduces a lot the

interference of the user.

One of the most known systems in the field of

web services composition via planning is SHOP2

(Simple Hierarchical Ordered Planner), (Sirin,

2004). It is based on HTN planning (Hierarchical

Task Network) methods (Sacerdoti, 1975). One

basic difference between SHOP2 and the other HTN

systems is that it locates all the actions of the plan in

the same order that they will be later executed. In

this way, the current state of the system in every step

of the planning procedure is known and inference

mechanisms or heuristic techniques can be used to

augment the effectiveness and the efficiency of the

whole process.

The functionality of SHOP2 consists of three

basic steps. In the first one, the domain is

constructed by the process OWL-S files of the

available web services. The atomic services are

represented by operators and methods for analyzing

the complex services to simpler ones are

constructed. In the second step, the composition

problem is transformed to planning problem. This is

realized by describing the problem as an abstract

composite process that need decomposition with the

use of methods so as to obtain simple processes that

refer to web services. In the third step, the problem

is solved by decomposing the tasks and creating the

plan, i.e. is the description of the final composite

service.

Another technique, analyzed in (Peer, 2005), is

based on situation calculus, where the states are not

considered as instances of the environment but as

sequences of actions that were executed in the past

and resulted to this state. This technique uses also

the language Golog (alGOL in LOGic), which is

based on logic and the problems that are encoded in

it can be solved by methods that use logic. For the

appropriate representation of the planning problem

in Golog, the language was extended so as to be able

to contain constraints on the composition process

defined by the user. These constraints in essence

reflect the desired outputs. The OWL-S descriptions

are used as requirements of the processes that must

be executed and also as descriptions of the actions

that are provided by the web services. The

composition problem is transformed into the

problem of finding the appropriate Golog program

that when executed, all the defined constraints will

be satisfied. In the solution process, intelligent

agents are used whom knowledge base contains the

preconditions and the results of the services,

encoded in situation calculus terms. The available

web services correspond to operators, primitive or

composite. The role of the agents is the inference on

the web services, in order to discover, execute and

compose them.

A different and quite simple web services

composition method is presented in (Zhang, 2008).

It is based on regression in a state space. The

algorithms belonging to this category start from

exploring the goals that must be succeeded and seek

for the actions that lead from the goals to the initial

state. The method proposed introduces a new

structure called SLM (Semantic Links Matrix) and is

a table containing the values of semantic relevance

between the parameters of the web services. For the

construction of this table, the process models and the

relative ontologies of the atomic services are used.

Generally, the SLM structure groups the candidate

web services based on their semantic relevance and

in the same time provides information on their

quality characteristics so as to ease the choice

among them. The algorithm begins from the goals,

but because of the SLM structure it does not need to

calculate the previous states. In the step of locating

the actions that satisfy the current goals, all the

services that have a positive value in the relevance

function are considered as candidates. The best

service is chosen based on the QoS characteristics.

The process continues until it reaches the initial

state.

Another approach described in (Yu, 2006) uses

model checking techniques for producing the plan.

The algorithm consists of four steps. In the first step,

the goal and the initial states are defined. In the

second step, the model of the process on which the

checks will be running is extracted. The web

services that could be used for the domain are

automatically detected and the state space where the

solution is searched is constructed. Information on

the services is retrieved by the ontologies and is

inserted to the model. In the third step, the search

algorithm in the plan space is executed and some

plans that satisfy the goals are collected. In the

fourth and last step, the best plan is chosen and is

converted in a composite web service, encoded in

BPEL.

A system which was developed recently and is

analyzed in (Hatzi, 2009) is the system PORSCE.

The approach is based on transforming the web

services composition problem to a planning

problem. The straight forward mapping of these two

fields is exploited and the OWL-S descriptions of

the available web services are used to construct

PDDL plan files. The initial state is derived by the

data given as input to the final web service by the

user, whereas the goals are reflected by the desired

outputs. The operators of the problem correspond to

the available atomic web services that can be used.

Their preconditions are mapped to the inputs of the

services and theirs results to the outputs.

Simultaneously, the ontologies that are connected to

the types of the parameters of the available web

services are used so as for the semantics of the

concepts to be provided. The system starts by

representing the composition problem with planning

terms. Then, a solution to the problem is provided by

an external planner, such as LPG-td (Gerevini et al,

2004; 2005) or JPlan (JPlan), according to the user‟s

selection. Finally, the quality of the produced plan is

measured based on some quality measures selected

by the user at the beginning of the process and the

results are provided to the user. There is also the

possibility of replacing instantly some of the web

services in the plan with other relevant, as they are

discovered during the planning process.

Another approach that exploits the similarities

between the AI planning and semantic web services

composition research fields is the OWLS-Xplan

(Klusch, 2005). This system uses the OWL-S

descriptions of the available web services, the

relevant OWL ontologies that define the types of the

parameters in the descriptions and a planning query

as input. After some preprocessing of the above data

and the execution of the Xplan planning algorithm,

the result is a plan describing the sequence of

composed services that satisfies the goals.

The OWLS-Xplan approach consists of two

basic parts. The first one is an OWLS2PDDL

converter which converts the OWL-S descriptions

along with the OWL ontologies to the equivalent

PDDL domain and problem of the composition.

Specifically, the conversion results to descriptions of

the domain and problem in a XML dialect of PDDL

(developed by the authors), referred to as PDDXML,

that simplifies parsing, reading and communicating

the descriptions using SOAP. An atomic operator is

directly related to a service profile as they both

provide a general description of their instances,

actions and web services, respectively. A complex

action can be linked to a service model that

describes how simpler actions should cooperate to

result to the composite one. Finally, the methods

used in HTN planning are related to composite web

services and may be used by the planner as a

hierarchical task network during the planning

process.

The second part of OWLS-Xplan is the

developed heuristic hybrid Xplan AI planner that

combines the benefits of the action-based FF-

planner (Hoffman et al, 2001) with HTN planning.

Xplan always finds a solution, if it exists in the state

space, over the space of possible plans, in contrast to

HTN approaches. It combines guided local search

with graph planning and a simple form of

hierarchical task networks to produce a plan. Also, a

re-planning component is included to improve

flexibility is cases changes happen in the world

during planning, a property well needed in semantic

web services composition field.

The solution analyzed in (Yang, 2009) also

translates the composition problem to PDDL

descriptions and suggests that in this way an

appropriate planner could be found each time

according to the problem so as to provide an

improved solution. The paper presents a three step

technique for the creation of a composite web

service with the first step being the translation of the

OWL-S descriptions and OWL ontologies to PDDL

domain and problem descriptions; the second one is

the creation of a plan that solves the problem with

the execution of a planner; the third one is the

translation of the plan to a new OWL-S description

of the resulting composite web service. However,

the paper focuses only on the first step of the

procedure. Some assumptions are made to ease the

translation function, such as considering that each

atomic process has either effects or outputs but not

both simultaneously. Also, the authors of the paper

do not deal with OWL-S process models that have

composite process using Repeat-While and Repeat-

Until or Any-Order and Split-Join constructs. The

algorithm proposed, deals separately with the OWL-

S process model, the atomic and simple processes,

the sequence, if-then-else, choice and split processes

and with the OWL-S target service description to

create the domain and problem descriptions. The

process of choosing the appropriate planner for each

problem and the translation of the plan to OWL-S

description of the new service are not elaborated in

the paper.

The aforementioned methods tackle the problem

of web services composition using a variety of fully

or partially automated techniques. However, they

don‟t deal with the task of expressing the resulting

composite service in OWL-S, taking advantage of

the supported control constructs.

3 TRANSLATING PDDL TO

OWL-S

This section analyzes the method for translating a

composite web service expressed in the PDDL

language to the corresponding OWL-S description.

The translation completes in two phases. The first

one concerns the extraction of all the required

information from the plan for the creation of a

composite web service‟s functional representation.

The second is about the conversion of this

representation to an OWL-S description of the

resulting composite web service.

3.1 Constructing the Composite WS

The first step in the creation of an OWL-S

description based on data derived from a PDDL plan

is the manipulation of these data and their

conversion to a composite web service functional

representation. This representation refers to the

available simple or atomic web services and the

order in which they should be executed and is

structured using the OWL-S control constructs

sequence, split and split-join.

In the following algorithm the functional

representation of a composite web service C is

represented as a predicate f(a0,a1,...,an), where f is

the control construct used to describe the

composition structure and a0,a1,…,an stand for the

simple web services that participate in the

composition. Each ai could be another composite

service or, in a simpler case, an atomic process,

which is represented as atomic(ai).

The developed algorithm consists of three

general steps, as shown in Figure 1. The first step

concerns the parsing of the files associated with the

composition planning problem and the extraction of

all the information needed in the next steps. In the

second step, a web service composition graph is

created. The nodes of the graph are the actions of the

plan and the edges are the links that express the

order constraints among the actions. The creation of

the graph is based on the information collected from

the previous step. Finally, in the last step, the

composite web service functional representation is

formed using the ordering constraints that are

extracted from the composition graph. In the

following paragraphs, these three steps are described

in more detail.

Figure 1: Converting a PDDL plan to a composite web

service functional representation.

The initial available information is derived from

the PDDL domain and problem files of the

composition problem. For the parsing of these files,

an external library, called PDDL4J, (Pellier, 2008) is

used. The types of information that are required by

the translation process are the following: a) the name

of the operator, b) the parameters list, c) the

preconditions list, d) the effects list, e) the initial

state and f) the goals of the problem. Finally, the

resulting plan is parsed in order to extract

information concerning the actions of the plan.

Exploiting the syntax of this file, information on the

actions used can easily be extracted. The data that

are needed in the later steps of the algorithm involve

the timestamp of each action, which is the time step

when the action will be executed and the name,

parameters and duration of it. The actions are read in

the order that they are presented in the plan, so the

procedure keeps track of this order.

When all these data are retrieved, the procedure

continues combining them so as to create objects

representing the steps of the plan. Every step

contains the name of the action that will be

executed, the parameters with which the action is

called, the timestamp and duration of the action, the

operator from which the action is derived, the

substitution imposed on the operation, the list of

preconditions that must hold for the action to be

executed and the list of the effects, the facts that will

change due to the execution of the action.

The second step creates the web service

composition graph. The nodes list is identical to the

list of actions of the plan. In essence, the

contribution of this step is the computation of the

edges, that is, the links between the actions. The

general idea is to traverse all the actions and locate

cases where one precondition of an action matches

one effect of another. This ought to happen in theory

because of the causal links that are present among

the actions of the plan, which imply that the

preconditions of the later actions will appear as

effects of other previous actions. An order constraint

link is then created between the two actions.

Algorithm 1 (Graph): Computes the web services

composition graph

Inputs: P = {a0,a1,…,an}, the plan

Output: G = (P,E), web services composition graph

E =
for i = n down to 1

 for each c prec(ai)
 for j = i-1 down to 0

 for each p add(aj)

 if (c = p)

 E = E U {(aj,ai)}

return G = (P,E)

The algorithm that discovers such kinds of links

is called Graph and starts from the last elements of

the action list. Each one of its preconditions is then

examined so as to discover a previous action in the

plan that produces this fact. This means to discover

an action that contains this fact in its effect list. So,

another loop is needed to access all the previous

possible producers of this imminent link. When such

a previous action is found, a link is created among

the two actions. This link illustrates an order

constrain and ensures that the action that produces

the fact will be executed before the one that

consumes it in its preconditions list.

A simple example of the above procedure is

depicted in Figure 2. In this example there are two

actions in the plan, the actions Drop Ball B with

which a robot puts down the ball B and the action

Grab Ball A that results in a state where the robot is

holding the ball A. The algorithm examines first the

action Grab Ball A and loops on its preconditions. In

this case there is only one precondition, declaring

that for executing this action, the robot‟s gripper

must be free. So, somewhere in the plan there should

be an action that realizes this fact. Exploring the

previous actions of the plan, the algorithm confronts

the action Drop Ball B and matches the fact under

consideration with the second result of this action.

Automatically, an order constraint link is created

between the two actions meaning that the robot

should definitely perform first the action Drop Ball

B so as to be able then to perform the action Grab

Ball A.

Figure 2: Example on discovering links

When all the edges and the corresponding order

constraints are discovered in the plan, the procedure

can continue and exploit these relationships in order

to construct a composite web service functional

representation that illustrates in a more formal way

how the actions of the composite service relate to

each other. This representation is built upon the

control constructs that OWL-S uses to describe the

different possible connections between web services.

In the algorithm we use three basic control

constructs: sequence, split and split-join. The control

sequence declares that all its members should be

executed in the exact order they appear. The control

split is used to describe cases of parallel execution of

web services. The last control, split-join, describes

the case where a split occurs in the plan and the

parallel executions connect again in a next step in

one web service. It is important that the web services

that happen to be last in the parallel executions, have

to synchronize their outputs to supply the web

service following the connecting point with the

sufficient inputs.

The general algorithm that constructs the

composite web service‟s functional representation

consists of 2 basic steps, presented in Algorithm 2

(Basic) and Algorithm 3 (Join). Before the execution

of these algorithms, a manipulation of the data

gathered so far is needed. First, the order constraints

list is reduced by removing all the constraints not

needed. Then the algorithm Basic is called, locates

the web services that will be invoked first and

creates functional representations of the sub-

compositions that start from these services. All these

representations are then added to an empty split

control. Up to this point, the first version of the

requested functional representation is ready. But

some refinement steps should be performed in order

to provide a more concise representation. So, next in

the developed algorithm, a process named Join takes

place and simplifies the functional representation by

replacing split controls with split-join where

possible. The generated functional representation of

algorithm Basic contains null expressions and

unnecessary controls, such as a split control with

only one parameter. In the following paragraphs a

more detailed description of the translation

procedure is provided.

The output of Graph algorithm may contain

some unnecessary ordering constraints, so the first

step is about locating such constraints and removing

them from the set. Unnecessary constraints are the

ones that can be implied by others, so there is no

need for their existence in the set. One order

constraint A can be inferred by others if there exists

another constraint B with the same left part as A and

a constraint C whose left part is identical to the right

part of constraint B and its right part is identical to

the right part of constraint A. An example will

clarify more the above situation. Let the set {A<C,

A<B, B<C} be the set of constraints of the

composition problem. Examining the need of

existence of the first order constraint, which is

interpreted as „the web service A must be executed

before the execution of the service C‟, the constraint

Α<Β has the same web service at the left part. The

process continues by exploring the set for constraints

that have service B in the left part, because this is the

right part of the constraint A<B. Such a constraint

exists and is the third of the set. Also, this constraint

has identical right part with the first constraint that is

examined in the process. This means that the

constraint A<C is unnecessary because it can be

inferred by the constraints A<B and B<C, so it is

removed from the set.

The next procedure that takes place is the Basic

procedure, shown in Algorithm 2. The first step of

this algorithm is the location of the so called „clear‟

services, the web services that are executed first in

the plan. The main characteristic of these services is

that they are not consumers in any causal link, which

means that there is no need for another web service

to be executed before them. Such services can be

located by searching for the existence of each web

service in the plan as a right part of an order

constraint. If this search returns no results, then the

service can be marked as “clear”. For example,

having the set of web services {A, B, C} and the

order constraints {A<B, B<C} it can be easily

inferred that only the service A is clear, because it

does not appear as a right member of any order

constraint. For each clear web service, the

construction of sub-representations of the desired

composition takes place. In essence, the relationship

among a clear web service and all its children, all the

services that can be executed after the completion of

the clear service, is revealed.

Algorithm 2 (Basic): Computes an initial composite

service with Sequence and Split constructs

Inputs: G = (V,E), the web service graph

Output: C, a composite service

// R is the set of root nodes in G

set R {rV: x V, (xr)E }

if R = 0 then return NULL

if R = 1 then

 set G’ the tree in G with rR
 as the root

 return sequence(r, Basic(G’-{r}))

set c {}

for each r in R

 set G’ the tree in G with rR
 as the root

 set c c Basic(G’-{r})
return Join(split(c))

In the next steps of the algorithm Basic, the

number of clear services is examined. In the trivial

case, where there are no such services, a null value

is returned. If there is only one clear service, then

the only representation that can be constructed is a

simple sequence of the clear service and the

composition of the child. So in this point, the

algorithm calls recursively itself with the rest of the

graph as a parameter. This is because the expression

beginning from the clear service must contain all the

information about the expressions that can be built

from the children of this service.

If there are more than one clear services, then an

empty composite web service is created and for

every clear service the Basic procedure is invoked

having as parameter the Graph without the service

in question. All the returned functional

representations are then added to a split control. The

resulting split expression is simplified by an

algorithm that will be analyzed later in the paper. A

short example is given to clarify the procedure.

Suppose there are a clear service A and two children

B and C. The functional representation returned

from the algorithm, in terms of control constructs,

will be seq(A,split(Basic(B),Basic(C))). Supposing

that there are no other web services in the plan, the

final result will be seq(A,split(B,C)).

Algorithm 3 (Join): Replaces split with split-join

where possible in a composite service

Inputs: C=f(a0,a1,…,an), a composite service with

sequence and split constructs

Output: C, a composite service with sequence, split

and split-join constructs

do

 for each (ai,aj): i,j in [0,n]

 Set L(ai,aj) = 0

 if ai = ai’k, aj = aj’k then
 L(ai,aj) = |k|

)),(max(arg
),(

),(jiaa aaL
ji aa

yx

 Lxy = max(Lij)

 if Lxy > 0 then

 Let fax(ax0,ax1,...,axn) the

 construct containing k in ax

 Let fay(ay0,ay1,...,ayn) the

 construct containing k in ay

 k1=k2=k

 if fax = split then

 k1 = fax(ax0,ax1,...,axn)

 if fay = split then

 k2 = fay(ay0,ay1,...,ayn)

 C= C–{ax,ay}

 C=Cseq(s+j(ax’,ay’),s(k1,k2))
while Lxy > 0

return C

Next, the composition representation that

resulted from the clear services (algorithm Basic) is

simplified by the algorithm Join (Algorithm 3). The

main function of this algorithm is to replace the split

controls with split-join, wherever this is possible. In

every step, two parameters of the functional

representation are examined for the existence of a

common part. If one such part is found, it is

removed from both the parameters and the results

are added to a new split-join relationship. Finally, a

new sequence control is created, the split-join is

added as the first parameter and the common part is

added as a second parameter.

For each pair (ai,aj) of parameters, the size of

their common part is stored in the structure L(ai,aj).

The size of x is expressed as |x| and refers to the

number of simple web services that take part in the

functional representation of x. When all the pairs are

traversed, the one with the largest common part is

selected, that is the pair (ax,ay). If the size is a

positive number, then the next step checks whether

the common part is in a split control in the two

parameters of the selected pair. If so, the split

expression must not be divided instead it should be

completely removed.

Since this procedure is performed twice, once for

every parameter of the couple, the results are two

new common parts that should be removed

respectively from the parameters. This is realized in

parameters ax’ and ay’. The resulting expressions are

added as members of the split-join control,

symbolized as „s+j‟, which in turn is added as a

parameter of the sequence control. Then, the

common parts are combined in a split control,

symbolized as „s‟ and the result becomes the second

parameter of the sequence control. Finally, this new

sequence representation replaces the two parameters

in the initial composite web service, ax,ay. All the

previous steps are repeated for the altered composite

web service C until no common part exists between

its‟ parameters. Then, C is returned, as was formed

from the procedure and represents a composition

having sequence, split and split-join control

constructs that functionally represents the data flow

among the participating simple web services.

After the completion of Join, the null parameters

of the functional representation created so far are

cleared and the pointless control constructs are

removed, e.g. the expression split(A) becomes A.

Finally, the duplicate references to control constructs

are eliminated This means, that the expression

seq(seq(A,B),C) is transformed to the equivalent one

seq(A,B,C).

Figure 3: Composition example

A short example of the whole procedure is given

to clarify its workings. In Figure 3 a web services

composition plan is depicted in a graphical way. The

clear service is only the service A, so the result of

the Basic algorithm, before calling the algorithm

Join, will be seq(A,split(seq(B,D),seq(C,D))). The

Join algorithm will notice that the parameters

seq(B,D) and seq(C,D) have the service D as a

common part, so the split control construct can be

replaced by a split-join one. By removing the

common part from each parameter, the results are

the representations seq(B,null) and seq(C,null) and

they are added as parameters in a new split-join

control. Since the common part is not in a split

expression in none of the two parameters, the

resulting common part is just the service D and the

new sequence representation is constructed as

follows: seq(split-join(seq(B,null),seq(C,null)),D).

This representation replaces the split of the initial

expression and the result is the representation

seq(A,seq(split-join(seq(B,null),seq(C,null)),D)).

After the completion of the clearing algorithm

the functional representation is transformed to

seq(A,seq(split-join(B,C),D)) which finally becomes

seq(A,split-join(B,C),D) at the last step, which is an

accurate functional representation of the

composition.

3.2 Creating OWL-S Descriptions

Up to this point, a functional representation has been

constructed that supplies sufficient information on

the data flow of the composition. But, for the

procedure to be complete so as to provide the user

with a new semantic web service ready for

execution, the OWL-S description has to be

constructed. This is done based on this

representation. The descriptions that are constructed

by the algorithm are the process and the profile

descriptions. The OWL-S API, which can be found

at (OWLSAPI), was used for their creation. This

OWL-S API is a JAVA library providing functions

that facilitate the creation of OWL-S descriptions.

Algorithm 4 (OWLSProcess): Creates the OWL-S

process description

Inputs: C = f(a0,a1,..an)

Output: The OWL-S process description of C

if f = atomic then

 A = OWLSAPI.AtomicProcessElement

 LI = LO = {}

 for each pi prec(a0)
 ki = OWLSAPI.InputElement(pi)

 LI = LI + {ki}

 OWLSAPI.hasInput(LI)

 for each oi add(a0)
 mi = OWLSAPI.OutputElement(oi)

 LO = LO + {mi}

 OWLSAPI.hasOutput(LO)

 PE = OWLSAPI.PerformElement

 return PE.add(A)

else

 CC = OWLSAPI.ControlContruct(f)

 CC.add(CLO(C))

 return CC

First, the process file is created by the algorithm

4, OWLSProcess. The algorithm takes as input

parameter the composite web service representation

C, as formed by the previous algorithms and

discerns two cases. If C is an atomic service, then

the appropriate parts of the OWL-S process

description are created that describe the service

along with its inputs and outputs. Specifically, for

every input of the atomic service, an input element is

created by calling the InputElement function of the

OWL-S API. All the input elements are gathered in

a list which is then set as the value of the hasInput

field of the OWL-S process description. The same

steps are followed for the creation of the output list

which is the value of the hasOutput field in the

description.

If C is not just an atomic service, but instead a

composite one, then the appropriate control

construct element is created (seq, split, split-join)

according to f and the algorithm CLO is called to

create the list of the services that takes part in this

element. Then, this list is added to the control

construct element and this is the object that the

OWLSProcess algorithm returns. In fact, this object

contains all the information about the OWL-S

process description of C.

Algorithm 5 (CLO): Creates the List Object

containing the atomic services of the composite one

Inputs: C = f(a0,a1,..an)

Output: LO: the List Object

if n = 0 then

 return null

LO = OWLSAPI.ListObjectElement

LO.First = OWLSProcess(a0)

LO.Rest = CLO(f(a1,a2,…,an))

return LO

The algorithm CLO has as input a composite web

service functional representation, which is in essence

a functional representation with OWL-S control

construct connecting the participants services, and

creates using the OWL-S API a List Object element

with the atomic services as parameters. The list

object is a structure with First and Rest parts and

could be described by an expression like:

First(a0,Rest(First(a1),Rest(…))).

In CLO algorithm, the first parameter of the

expression is examined and the OWLSProcess

algorithm is called for this. The result becomes the

head of the constructing list, because it is the service

or the composition of services that will be executed

first. Then, the CLO algorithm is called recursively

for C’, the composite web service C with a0 omitted.

The result of this call is set as the Rest part. Finally,

the constructed list object is returned.

The last step in converting the composite web

service functional representation to OWL-S

description is the creation of the profile description.

Here, the composite web service is treated as an

atomic service with specific inputs and outputs. The

construction of this description is merely based on

the methods provided by the OWL-S API‟s

functions.

4 CONCLUSIONS AND FUTURE

WORK

Web services are playing an important role in the

web applications development field, with which

many different systems through the globe can

communicate and exchange data using the World

Wide Web. Users that need a specific functionality

can retrieve the desired web services from the UDDI

registries and use them to create the output they are

looking for.

SOA architecture has contributed to the rapid

and easy web applications development, using as

units the web services and combining them to create

new, complex services of advanced functionality

that can serve even as complete business models.

The composition methods studied in this paper differ

on user‟s involvement level. Some initial solutions,

of limited autonomy, use workflows and leave the

details regarding the location the appropriate

services execution and their order to the user. In

some more creative solutions, the user doesn‟t have

to find the exact services that will be used, but just

provides a description of them. The discovering of

services that match with the descriptions and the

execution of the resulting workflow are

automatically performed without the intervention of

the user.

In later studies, the autonomy of the composition

procedure is increased. Semantic information

concerning the web services is used to describe in a

semantic level their functionality. Languages such as

OWL-S are used for this purpose. In this way,

concept matching becomes possible and so is the

check whether two or more services can cooperate.

The semantic information is used also by automatic

web services composition via planning methods,

which are examined in this paper. The composition

problem is treated as a planning problem and solved

by algorithms of the field.

The result is a plan encoded in planning

languages, such as PDDL+ that describes the

services that will be used for the composition and

the way in which they will be combined to create the

desired composite web service. But, for this final

service to be available to other users too and to be

published in a UDDI registry as an atomic web

service and take part to possible future

compositions, semantic description of the service

have to be created.

The contribution of this paper focuses on

converting the PDDL+ plans that constitute the

composite web service to OWL-S descriptions of the

new web service. Information extracted from the

domain of the composition problem is used to

construct a composite web service functional

representation that describes sufficiently the

composition. Then, this representation is used to

create the OWL-S profile description of the

composite web service, containing information on its

inputs and outputs. Also, the OWL-S process

description is constructed, that analyzes the way the

atomic services are used for the production of the

final composite web service.

As for future plans, a complete system could be

developed as an extension to the already existing

automatic web services composition systems, taking

advantage of the algorithms proposed by this paper

to construct new semantic web services and publish

them in UDDI registries so as to be available to

everyone who could be seeking such functionality.

In this way, an integrated solution to the

composition problem would be provided. Already

developed solutions could be used to this direction,

such as the system SiTra described in (Bordbar et al,

2007), which transforms the OWL-S description of a

web service to BPEL, the execution language for

web services.

Also, the possibility of creating the grounding

OWL-S descriptions of the composite web service

could be explored. In this description, the exact data

flow among the atomic services will be described

and the result will be an even more automated

solution. So far, our approach provides the order and

the way of the execution of the services taking part

in the composition. However, the information of

which output is offered as input to the next service is

not provided from the OWL-S descriptions of the

composite service. This procedure is left to the

system that tries to execute the resulting service. It is

obvious that by providing this kind of information

through the grounding description, the development

of systems that execute complex services is greatly

simplified.

Moreover, characteristics concerning the quality

could be considered for the composite web service.

In case there is such data in the semantic

descriptions of the atomic web services, procedures

that take advantage of them could be developed to

construct the quality characteristics of the resulting

composite service.

Finally, we aim at integrating web service

composition via planning into a decision support

system for industrial risk reduction, which represents

risk case studies via domain dependent ontologies

including the mechanism for building up the risk as

a composition of simple physical processes

(Angelides and Xenidis 2007).

ACKNOWLEDGEMENTS

This work has been supported by the Project
“Integrated European Industrial Risk Reduction
System (IRIS)” (7th Framework Programme,
Theme: 4 – NMP, FP7-NMP-2007-LARGE-1, CP-
IP 213968-2).

REFERENCES

Angelides D. and Xenidis, Y. “Fuzzy vs. Probabilistic

Methods for Risk Assessment of Coastal Areas” In:

Environmental Security in Harbors and Coastal Areas:

Management using Comparative Risk Assessment and

Multi-Criteria Decision Analysis, Edited by Linkov, I.,

Kiker, G.A. and Wenning, R.J., p.p. 251-266, NATO

Security through Science Series (Series C:

Environmental Security), Springer-Verlag Berlin

Heidelberg New York, ISBN: 978-1-4020-5801-1,

2007.

Bordbar B., Howells G., Evans M. and Staikopoulos A.,

2007. Model Transformation from OWL-S to BPEL

Via SiTra. In D.H. Akehurst, R. Vogel, and R.F. Paige

(Eds.) ECMDA-FA 2007, LNCS 4530, pp. 43-58.

Gerevini, A., Saetti, A., Serina, I., 2004. LPG-TD: a Fully

Automated Planner for PDDL2.2 Domains, (short

paper). In 14th Int. Conference on Automated

Planning and Scheduling (ICAPS-04), booklet of the

system demo section, Whistler, Canada.

Gerevini, A., Saetti, A., Serina, I., 2005. LPG-td planning

system, http://zeus.ing.unibs.it/lpg/.

Ghalab, M., Howe, A., Knoblock, C., McDermott, D.,

Ram, A., Veloso, M., Weld, D., Wilkins, D, 1998.

PDDL – the Planning Domain Definition Language.

Technical report. Yale University, New Haven, CT.

Hatzi, O., Meditskos, G., Vrakas, D., Bassiliades, N.,

Anagnostopoulos, D., Vlahavas, I., 2009. Semantic

Web Service Composition using Planning and

Ontology Concept Relevance with PORSCE II,

Proceeding of the 2009 Web Intelligence and

Intelligent Agent Technology, pp 418-421, Milan,

Italy.

Hoffman, J., Nebel, B., 2001. The FF Planning System:

Fast Plan Generation Through Heuristic Search,

Journal of Artificial Intelligence Research, Vol 14,

253-301.

JPlan: Java Graphplan Implementation,

http://sourceforge.net/projects/jplan.

Klusch, M., Gerber, A., Schmidt, M., 2005. Semantic Web

Service Composition Planning with OWLS-XPlan,

Proceedings of the AAAI Fall Symposium on Semantic

Web and Agents. Arlington VA, USA, AAAI Press.

Martin, D., Burstein, M., Lassila, O., McIlraith, S.,

Narayanan, S., Paolucci M., Parsia, B., Payne, T.,

Sirin, E., Srinivasan,N., Sycara, K., 2004. OWL-S:

Semantic Markup for Web Services,

http://www.daml.org/services/owl-s/1.1/.

OWL-S API, http://www.daml.ri.cmu.edu/owlsapi/

Peer, J., 2005. Web Service Composition as AI Planning –

a Survey, Technical report. University of St. Gallen,.

Pellier, D., 2008. PDDL4J,

http://sourceforge.net/projects/pddl4j

Sacerdoti, E., 1975. The nonlinear nature of plans, Proc.

of the International Joint Conference on AI, pg 206-

214.

Sirin, E., Parsia, B., Wu, D., Hendler, J. and Nau, D.,

2004. HTN planning for web service composition

using SHOP, Journal of Web Semantics, 1(4) 377–

396.

Yang, B., Qin, Z., 2009. Composing semantic web

services with PDDL, Inform. Technol. J., 9: 48-54.

Yu, H. Q., Reiff-Marganiec, S., 2006. Semantic Web

Services Composition via Planning as Model

Checking. Technical Report.CS-06-003, University of

Leicester.

Zhang, P., Huang, B. and Sun, Y., 2008. Automatic Web

services composition based on SLM, Workshop on

Semantic Web and Ontology (SWON 2008).

http://eracle.ing.unibs.it/lpg/pubblications/lpg-ipc4.pdf
http://eracle.ing.unibs.it/lpg/pubblications/lpg-ipc4.pdf

