
Collecting University Rankings for Comparison Using
Web Extraction and Entity Linking Techniques

Nick Bassiliades

Department of Informatics, Aristotle University of Thessaloniki,

Thessaloniki, Greece
nbasssili@csd.auth.gr

Abstract. University rankings are rankings of institutions in higher education,
ordered by combinations of factors. Rankings are conducted by various
organizations, such as news media, websites, governments, academics and
private corporations. Due to huge financial and other interests, the rankings of
universities worldwide recently received increasing attention. The rankings are
based on different criteria and collect data in various ways. As a result, there is
a large divergence in the specific rankings of different institutions. In order to
compare rankings so that safe conclusions about their reliability are drawn, data
from the sites of different such ranking lists must be collected. In this paper we
present this first step for university ranking comparison, namely we discuss in
detail how we have developed a Prolog application, called URank, that collects
the data, by a) extracting them from the various ranking list web sites using web
data extraction techniques, b) uniquely identifying the University entities within
the above lists by linking them to the DBpedia linked open data set, and
c) constructing a combined data set by merging the individual ranking list data
sets using their DBpedia URI as a primary key.

Keywords: University rankings, Web data extraction, Entity linking, Linked
open data, Semantic Web.

1 Introduction and Problem Definition

University / College / Higher Education rankings are rankings of institutions in higher
education, ordered by combinations of factors, such as measures of wealth, research
excellence and/or influence, student choices, eventual success and/or demographics,
on surveys, and others. Rankings are conducted by various organizations, such as
news media, websites, governments, academics and private corporations. Rankings
can evaluate institutions within a single country and / or region, or worldwide. In this
paper we consider worldwide / global university rankings.

Due to huge financial and sometimes political interests, the rankings of universities
worldwide recently received increasing attention. The rankings are based on different
criteria and collect data in various ways. As a result, there is a large divergence in the
specific rankings of different institutions. Therefore, rankings have produced much
debate about their usefulness and accuracy. The expanding diversity in rating

methodologies and accompanying criticisms of each indicate the lack of consensus in
the field. In order to compare rankings so that safe conclusions about their reliability
are drawn, data from the sites of different such ranking lists must be collected and
then statistically tested [1, 2, 3, 4, 9, 10, 19, 21, 22].

In this paper we present the first step needed in order to compare university
rankings, which is data collection. Actually, we have developed a Prolog application,
called URank after “University Ranking”, using SWI-Prolog [24], that a) extracts data
from the various ranking list web sites, b) uniquely identifies the University entities
within the above lists, and c) constructs a combined data set that can be fed to the
statistical comparison test. The actual comparison of rankings is beyond the scope of
this paper; an initial report of a statistical comparative analysis of rankings (based on
the data collection methodology described in this paper) can be found at [2].

Table 1 contains the University ranking lists we have used in this study, performed
during academic year 2012-2013. In order to collect data from all those different
ranking lists / sites several technical challenges exist. First of all is the acquisition of
data, which are published in heterogeneous ways and formats. Usually, there are no
downloadable and /or structured data, which in most cases must be extracted
(scrapped) from HTML pages. To this end, web data extraction tools must be
employed [7]. In our case, we have used DEiXTo [12], a powerful web data
extraction tool based on the W3C DOM. It allows users to create highly accurate
“extraction rules” (wrappers) that describe what pieces of data to scrape from a
website. Actually, we have used only the GUI of DEiXTo, a friendly graphical user
interface that is used to manage extraction rules (build, test, fine-tune, save and
modify). Then, we have used the extraction rules built with DEiXTo GUI for the
wrapper component of URank to extract data at run-time.

Table 1. University Ranking Lists used in the paper.

Acronym Full name URL
Collected

Universities
ARWU Academic Ranking of

World Universities
www.shanghairanking.com 500 / 500

Leiden CWTS Leiden Ranking www.leidenranking.com 500 / 750
QS Quacquarelli Symonds www.topuniversities.com 600 / 800
THE Times Higher

Education
www.timeshighereducation.co.uk 400 / 400

URAP University Ranking by
Academic Performance

www.urapcenter.org 750 / 2000

Webometrics Ranking Web of
Universities

www.webometrics.info 600 / ~12000

Data acquisition also “suffers” from the heterogeneity of the schemata of the data

extracted from the various sites. In order to resolve this we have developed a small
OWL ontology that describes ranked universities homogeneously and we have
customized extraction rules (using Prolog) in order to map the extracted data
(sometimes using tailored transformations) into this common schema. Actually, as a
byproduct of our project, each extracted data set takes the form of RDF data that can

be published into the Linked Open Data (LOD) cloud individually from the rest of the
datasets.

The second and third challenges depend on each other. In order to merge different
ranking lists into a single table (third challenge) one has to find a unique identification
key for the Universities along the different ranking lists (second challenge). This is
not a trivial task, since the names used in the different ranking lists are not always the
same. For example, in the ARWU list (Table 1) the Imperial College1 is mentioned as
“The Imperial College of Science, Technology and Medicine”, whereas in the QS list
it is mentioned as “Imperial College London”. In order to find a unique primary key
for each list that can be safely used across datasets in order to merge them together,
we should consider finding a unique immutable identifier for each University entity.
We decided to consider DBpedia2, a crowd-sourced community effort to extract
structured information from Wikipedia and make this information available on the
Web. DBpedia offers the ability to ask sophisticated queries against Wikipedia and to
link the different data sets on the Web to Wikipedia data. So, linking the entities
extracted from the different ranking datasets to DBpedia could serve two goals:
a) linking the data extracted in the first step with a very well-known and rich linked
open dataset, and b) using the DBpedia ID (actually a URI) as a unique primary key
across datasets to enable dataset merging.

Linking entities to DBpedia is not a trivial task either. DBpedia (and Wikipedia)
contain crowd-sourced data, so they not always accurate or complete. For example,
there might cases where a DBpedia entity that represents a University is not classified
correctly under the University or Educational Institution class, but to a class higher in
the hierarchy of the DBpedia ontology (e.g. owl:Thing). Furthermore, there might be
synonym Universities in different places (e.g. Newcastle University3 in the UK,
University of Newcastle4 in Australia) or there might be University mergers or splits
along history, whose names still appear for historical reasons in Wikipedia and
DBpedia (e.g. University of Paris5 which split in 1970 into 13 Universities named
very similarly some times as “University of Paris I, II, …”).

In order to resolve all the above issues, general purpose entity linking software,
such as DBpedia Spotlight [14] or SILK [23], cannot possibly have a 100% accuracy,
simply because domain-specific knowledge on University naming, geographical
reasoning and temporal reasoning (to name a few), must be used additionally to
disambiguate University entities in DBpedia. Even using domain-specific knowledge,
sometimes the official DBpedia dataset does not contain up-to-date information
because Wikipedia articles are constantly being revised, so when some pieces of
information cannot be found at DBPedia, DBpedia Live6 is used. Finally, when
neither DBpedia nor DBpedia Live can provide a satisfactory disambiguation for an
entity, URank uses Wikipedia text search (which proved to be better than DBpedia’s
text search) and web extraction techniques to find better candidate entities.

1 http://www3.imperial.ac.uk/
2 http://dbpedia.org/
3 http://www.ncl.ac.uk/
4 http://www.newcastle.edu.au/
5 http://en.wikipedia.org/wiki/University_of_Paris
6 http://wiki.dbpedia.org/DBpediaLive

In the rest of the paper, we present the architecture and functionality of the URank
system in section 2, we report on the extensive evaluations we have performed on
URank, and finally we conclude with a critical discussion on the ability to extend
URank to become a general purpose tool, some thought for future work and a small
comparison to relevant systems.

2 URank Architecture and Functionality

The architecture of the URank application is shown in Fig. 1. The main components
of our system are: a) the Web data extractor or Entity Extractor, that extracts the
University entities from the ranking sites, b) the Entity Linker, that links the extracted
University entities with DBpedia entities, and c) the Entity Merger, that generates a
single entity for each University by merging the different datasets, using the DBpedia
entity URI as a primary key. In the following subsections we present in detail each of
these components.

Fig. 1. URank Architecture

2.1 Entity Extractor

The Entity Extractor is the component of URank that acquires needed data from
University ranking sites. The Entity Extractor is driven by users who use the DeiXTo
GUI in order to define site-specific extraction rules for each ranking list web site.
Fig. 2 shows an example of using DeiXTo for defining an extraction rule for the
ARWU site. More details about using DeiXTo are beyond the scope of this paper and

URank

Entity
Extractor

Site-specific
transformations

Extraction
Rules

Extracted
Data

Ranking
sites

Entity
Linker

Ranking
datasets

Merged
dataset Entity

Merger

Domain-
specific
filtering

Ranking
ontology

can be found at DeiXTo site7 and at reference [12]. What is important to notice is that
the extraction rule (or pattern) defined using DeiXTo is exported in an XML file (Fig.
3). The contents of this file are fed to the Web data extractor component of URank
which uses the XML, XPath and http libraries of SWI-Prolog to extract the data from
the ranking sites. Although the interpretation of the XML DeiXTo extraction rules by
our wrapper component involves a rather sophisticated algorithm, its detailed
presentation is beyond the scope of this paper. For each site the name of the
University, its global rank and its country is collected. Notice that countries are
needed for name disambiguation purposes later, as already discussed in the
introduction. Furthermore, the URL that contains details about the specific University
is also extracted, in case the data transformation component needs to access it for
disambiguation purposes.

Fig. 2. DeiXTo GUI screenshot for defining extraction rule for the ARWU site

The extraction rules differ a lot, depending on the site. In the simplest case, such as
ARWU (Table 1), all data are found in a single page. However, there are cases where
data are found in several linked pages, such as Webometrics; therefore, web
extraction must load and scrape several consecutive pages, navigating through a
“next”-type link. In the case of THE list there is no “next” link, so the pages of all the
ranges of ranking must be manually collected and fed to the extractor.

After the extractor completes the task of retrieving every piece of raw data that can
be retrieved from the ranking web sites, site-specific transformations clear and
homogenize the data in order to create the site-specific datasets in RDF. These
transformations mostly deal with converting the retrieved country-related data into a
proper country name, common across the different ranking sites. For example, in
ARWU the country information is retrieved as a URL that contains all the

7 http://deixto.com/

Universities of this specific country contained in the ARWU list8. In this case,
specific string processing rules retrieve the name of the country. Other sites, such as
Webometrics, do not have a link to country pages / profiles, but they just show the
flag of the country, using a short country code in the image URL9. In this case, string
processing isolates the country code and a transformation table derived from the ISO
3166 Country Codes standard10 transforms it into a proper country name.

<!DOCTYPE Project SYSTEM "wpf.dtd">
<Project>
 <TargetUrls>
 <URL Address="http://www.shanghairanking.com/ARWU2012.html"/>
 </TargetUrls>
 <MultiplePage Enabled="false" ContainsText="" MaxCrawlDepth="5"/>
 <ExtractionPattern>
 <Node tag="TR" stateIndex="grayed" IsRoot="true">
 <Node tag="TD" stateIndex="grayed">
 <Node tag="TEXT" stateIndex="checked"/>
 </Node>
 <Node tag="TD" stateIndex="grayed">
 <Node tag="A" stateIndex="grayed">
 <Node tag="TEXT" stateIndex="checked"/>
 </Node>
 </Node>
 <Node tag="TD" stateIndex="grayed">
 <Node tag="A" stateIndex="grayed">
 <Node tag="IMG" stateIndex="checked"/>
 </Node>
 </Node>
 </Node>
 </ExtractionPattern>
 <OutputFile Filename="ARWU-2012.dat" Format="TabDelimited"/>
</Project>

Fig. 3. DeiXTo extraction rule for the ARWU site

The rest of the site-specific transformations deal with clearance of the University
names, such as removing extra spaces, transforming names from URL to ASCII
encoding, removing trailing numbers from Webometrics entries when Universities
maintain multiple web domains11, etc. Finally, in the case of Leiden the main ranking
page used to contain abbreviated University names only, while full names could be
found in the detailed pages of the Universities. Therefore, data transformation
included additional web data extraction activities. In the current version of the Leiden
ranking site full University names are included in the main ranking page as tooltips.

After extracted data are cleared and transformed the individual datasets for each
ranking site can be constructed. These datasets are in RDF and can be published in the
LOD cloud. In order to have a common schema for all sites, we have developed a
lightweight University ranking ontology which consists of two classes (Fig. 4):
RankingOrganization and RankedInstitution. The former has six instances,

8 E.g. http://www.shanghairanking.com/World-University-Rankings-2012/USA.html
9 E.g. http://www.webometrics.info/sites/default/files/logos/us.png
10 http://www.iso.org/iso/country_codes.htm
11 http://www.webometrics.info/en/node/36

representing the six ranking list/sites of Table 1 included in this study. The latter will
have as many instances as per University entities extracted from each ranking site.
Table 2 presents the properties for the two classes, while Fig. 5 shows the instance of
the RankingInstitution class for the ARWU list. Notice the use of the dc:title property
for the name of the ranking institution and owl:sameAs property for linking our
datasets to the LOD cloud, i.e. the DBpedia entry for the ranking list. Instances for the
RankedInstitution class will be shown later, after the entity linking with DBpedia
entries is discussed.

Fig. 4. The University Ranking Ontology and the 6 ranking list instances

Table 2. Properties of the University Ranking Ontology

Property Domain Range
hasURL RankingOrganization xs:anyURI
rankingOrganization RankedInstitution RankingOrganization
rankURL RankedInstitution xs:anyURI
institutionRegion RankedInstitution xs:string
rank RankedInstitution xs:int

Fig. 5. The ARWU instance of RankingOrganization class

Individual: urank:ARWU

Types: urank:RankingOrganization

Facts:

 dc:title "Academic Ranking of World Universities"^^xs:string

 urank:hasURL "http://www.shanghairanking.com/"^^xs:anyURI

SameAs:

 dbpedia:Academic_Ranking_of_World_Universities

2.2 Entity Linker

Linking our dataset entities to DBpedia is performed as indicated by Algorithm 1,
which is a non-formal high-level description of the main DBpedia matching
algorithm. The algorithm consists of two main loops, for each ranking list and for
each University entry retrieved from each list. Inside the second loop, there are a
number of steps to retrieve matching DBpedia entries using 3 different approaches,
explained later. At each step, if a satisfactory match is found the algorithm terminates

Algorithm 1. The basic matching algorithm.

1. For each Ranking list R
2. For each University U in R
3. Candidate Universities Cand = 
4. Find Top-N1 instances of EducationalInstitution class using DBpedia lookup

service with keyword U.name. Each instance must adhere to domain-specific
spatiotemporal restrictions.

5. If CheckMatchFound(Top-N1) then
 Result = CheckMatchFound(Top-N1); break;
 else Cand = Cand  Top-N1

6. Find Top-N2 instances of EducationalInstitution class using DBpedia
SPARQL endpoint and a query template with list of words from U.name.
Each instance must adhere to domain-specific spatiotemporal restrictions.

7. If CheckMatchFound(Top-N2) then
 Result = CheckMatchFound(Top-N2); break;
 else Cand = Cand  Top-N2

8. Find Top-N3 entries in Wikipedia using keyword search (keyword U.name)
9. Top-N3’ = 

10. For each alternative University name A in Top-N3 find the corresponding
DBpedia entry A’ and form Top-N3’

11. Check if Wikipedia entry A corresponds to a DBPedia entry A’ with URI
transformation. A’ must adhere to domain-specific spatiotemporal
restrictions.

12. If the above is true then
 Top-N3’ = Top-N3’  {A’}
 Else

 Repeat steps 4, 6 using alternative name A. Give priority to
EducationalInstitution instances. In case of failure relax this
requirement. For each alternative name A, a set of Top-N1’ and Top-
N2’ entries will be returned.

 Top-N3’ = Top-N3’  Top-N1’  Top-N2’
13. end for
14. If CheckMatchFound(Top-N3’) then

 Result = CheckMatchFound(Top- N3’); break;
 else Cand = Cand  Top-N3’

15. Score each C in Cand using the string distance between U.name and
C.name, source of C and the method that C was obtained

16. Sort Cand in descending score order
17. Result = Cand[1]
18. end for
19. end for

immediately and returns that match for each University. Otherwise, candidate
DBpedia matching entries are collected into a candidate set, scored according to our
own scoring function and then the best scored candidate is returned as a match.

Table 3. Thresholds for satisfactory maching.

Steps Threshold
4, 6 0.98
14 (EducationalInstitution instances) 0.97
14 (owl:Thing instances) 0.99
14 (search Wikipedia via Google) 1.00

The “satisfactory match” (CheckMatchFound function in Algorithm 1) for a

DBpedia entry depends on the string distance between the name of the University
extracted from the ranking list and the name of the matching DBpedia University
entry. The distance threshold depends on the step of the algorithm. More specifically,
in order to measure string distance we use the isub/4 built-in function of SWI-Prolog,
which is based on a string metric for ontology alignment [20]. This metric is more
appropriate in our case than the Levenshtein distance metric, since it mainly concerns
substring matching, which is appropriate for matching names of Universities. For
example, recall the case for “Imperial College” from the introductory section. Table 3
shows these thresholds, which have been experimentally found and are very high to
ensure termination only for almost absolutely certain matches.

The two main methods for retrieving DBpedia entities by matching extracted
University names is a) DBpedia lookup service12 and b) OpenLink Virtuoso built-in
SPARQL endpoint, on the DBpedia host instance13, using a template query derived
from the Faceted Browser, and Search & Find Service14. For the DBpedia lookup
service the query template is:

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?
 QueryClass=<Class>&MaxHits=<Top-N1>&QueryString=<U.Name>

Notice that the above query returns results in an XML file, which is parsed using

the same SWI-Prolog libraries as for extracting Universities from HTML files, above.
The query template for DBpedia SPARQL endpoint is as follows:

1. select ?u, ?n where {
2. ?u rdf:type <Class> .
3. ?u ?p ?v .
4. ?v bif:contains <U.Name.Words> option (score ?sc) .
5. ?u rdfs:label ?n .
6. FILTER (lang(?n) = "en") }
7. order by desc (?sc*0.3+sql: rnk_scale(<LONG::IRI_RANK> (?u)))
9. limit <Top-N2>

12 http://wiki.dbpedia.org/lookup/
13 http://dbpedia.org/sparql
14 http://dbpedia.org/fct/

In the above query, ?u is the URI of the matched DBpedia entry and ?n its name.
The query retrieves the values ?v of all properties ?p of the University and searches
them for words contained within the extracted University name (<U.Name.Words>)
using Virtuoso’s built-in bif:contains predicate.

In the above searches, the query class <Class> is EducationalInstitution for steps
4, 6 and owl:Thing for the relaxed search in step 12. Furthermore, the maximum
number of hits <Top-N1> and <Top-N2> are 2 for steps 4, 6 and 4 for the relaxed
search in step 12 and they have been established experimentally. Furthermore, in the
case of step 12, at line 3 in the SPARQL query template property ?p becomes
rdfs:label; therefore, search concentrates only on the property that contains the name
of the University. Notice that in step 12, DBpedia is searched using as a keyword the
name of a Wikipedia-retrieved University, not the name of the originally-retrieved
University.

During all DBpedia searches (steps 4, 6, 12), the retrieved instances are filtered
according to spatiotemporal domain-specific constraints. Namely, the retrieved
DBpedia University must be located in the same country as the University extracted
from the site and it must also be still operating. The check for the latter is performed
by checking if the property dbpprop:closed exists. Of course, this is not always the
case for all closed / suspended Universities, such as the dbpedia:University_of_Paris,
for example. When such information does not exist, then URank is susceptible to
errors, unless a better match is found.

The check for location / country compatibility is not always easy, since DBpedia
entries stem from Wikipedia articles and sometimes the infoboxes of these articles are
not complete. For example, University DBpedia entries may not have a country-
related property, but only City- or State-related information (USA and Spanish
Universities, mainly). Therefore, spatial inclusion reasoning must be employed in this
case, with additional SPARQL queries to find out in which country a city or State is
located, etc. Furthermore, sometimes there are multiple entries for the same entity in
DBpedia, similarly to Wikipedia. In this case, the original DBpedia search may not
retrieve the entry with the country-related information. In this case redirection links
are followed and the country-related search is repeated. Table 4 summarizes the
properties used for retrieving the country of the University DBpedia entry.

Table 4. DBpedia properties related to Location.

Location Information DBpedia properties
Country dbpedia-owl:country, dbpprop:country
State dbpedia-owl:state, dbpprop:state
City dbpedia-owl:city, dbpprop:city
Location dbpedia-owl:location, dbpprop:location
{Redirection to another instance} owl:sameAs, dbpedia-owl:wikiPageRedirects

To make things even more difficult, the retrieved country information may not be

exactly the same as the country data extracted from the raking site. For example, the
country information associated with dbpedia:Harvard_University is “U.S.”, while the
country data for this University from the ARWU list is “USA”. So, there is a need to
create a compatibility matrix for country names. This can be done only empirically /
experimentally by collecting compatible names for some countries. The majority of

country names though do not have such a synonymy problem. We do not include this
matrix in the paper because some synonyms we came up with are not “politically
correct” and may raise conflicts.

There are a few more subtle domain-dependent filtering criteria that must be taken
into account, such as using Roman or Arabic numbers in University names (e.g.
“University of Montpellier II” vs. “Montpellier 2 University”) or using synonyms for
the word University in other languages (e.g. “University of Freiburg” vs. “Universität
Freiburg”). These are also crucial for achieving a 100% precision and recall, but are
too detailed heuristics to be presented here.

In case steps 4 and 6 of Algorithm 1 do not retrieve a high match, step 8 uses the
keyword search engine of Wikipedia to retrieve Wikipedia articles as candidates for
alternative (and possibly better) names for the retrieved Universities. For example, the
ARWU list contains the entry “University of Paris Sud (Paris 11)”. This does not
return any result at DBpedia lookup service. Even if the string in parenthesis is
stripped, because for the ARWU list it is considered a synonym (therefore,
redundant), the DBpedia lookup service returns the entry dbpedia:Paris-
Sud_11_University, with label “Paris-Sud 11 University”. The string distance
between the two names is 0.93, which is lower than the thresholds in Table 3. A query
to Wikipedia returns as the best result the page with title “University of Paris-Sud”15,
which corresponds to the DBpedia entry dbpedia:University_of_Paris-Sud, with
rdfs:label “University of Paris-Sud”. The string distance now between the Wikipedia
article title and the DBpedia entry label is exactly 1, therefore above the threshold of
Table 3.

Of course, things are not simple here either. Wikipedia is asked to return <Top-
N3> articles with Top-N3 found experimentally to be 3 with the following query:

http://en.wikipedia.org/w/index.php?search=<U.name>&

 limit=<Top-N3>&go=Go

Sometimes Wikipedia just returns the most probable result, when its score exceeds

some threshold. When this happens, the returned page is scraped to extract the article
title and to check whether it involves indeed a University, located in the same country
as the University extracted from the ranking site and still operational, namely using
the same domain-dependent filters as in steps 4, 6. However, in the case of Wikipedia
this is done by scraping the HTML of the returned page, and most specifically, the
infobox and the categories box. For example, see Fig. 6 for an active public
University located in Australia, the University of Sydney16, and Fig. 7 for a suspended
University. Furthermore, general pages such as “Template:…”, “List of Universities in
…”, “Higher education in …”, and similar ones, must be excluded, along with
disambiguation pages. When a single result page does not exist, Wikipedia returns a
list of results and the above checks are performed for the Top-N3 results.

Finally, if the Wikipedia keyword search does not generate any alternative names
due to all the above restrictions, Google search restricted in the Wikipedia domain is
used as a last resort, using the query below and concentrating on the first result:

15 http://en.wikipedia.org/wiki/University_of_Paris-Sud
16 http://sydney.edu.au/

http://www.google.com/search?as_q=<U.name.words>&

 as_sitesearch=en.wikipedia.org

After step 8, list Top-N3 contains alternative names / entries for the original

University retrieved from the ranking site. These Wikipedia entries should lead to
DBpedia entries, possibly giving better results than the original University name. This
is the task of the loop in steps 10-13. There are 2 ways to map Wikipedia entries to
DBpedia entries. The first one is direct and rewrites the Wikipedia URL to a DBpedia
URI:

http://en.wikipedia.org/wiki/<Univ> 
 http://dbpedia.org/resource/<Univ>

However, before the DBpedia URI is considered a final match it must be verified

for the same domain-specific restrictions already discussed above for steps 4 and 6. If
the verification step succeeds then this DBpedia entry is added to list Top-N3’ which
contains candidate matching DBpedia entries. If the verification fails, then at step 12,
which is the second way to map a Wikipedia entry to a DBpedia entry, the Wikipedia
article titles are used as alternative University names that lead to new DBpedia
searches with these alternative names, as in steps 4, 6. From this search, new
candidate matching DBpedia entries are retrieved, which are added to list Top-N3’.

Fig. 6. Infobox and categories box for the University of Sydney Wikipedia entry17

Fig. 7. Infobox for the University of Paris Wikipedia entry18

Notice that actually step 12 performs two searches (using both search methods):

one strict with EducationalInstitution as the target class and one relaxed with

17 http://en.wikipedia.org/wiki/University_of_Sydney
18 http://en.wikipedia.org/wiki/University_of_Paris

owl:Thing as the target class. The results for the two searches are scored differently,
giving higher score to the stricter search, as it will be discussed later. The reason for
this is that step 12 is the last chance of the algorithm to discover a match, so in case
the strict match does not retrieve any DBpedia instances, the result of the relaxed
search will cover for it. Outside the loop, at step 14, list Top-N3’ is checked for
immediate results, i.e. results that give a string distance above the threshold of
Table 3.

The last important step of the matching algorithm is the scoring function for the
candidate DBpedia entities collected into set Cand. Recall that entities in this list have
string distances less than the thresholds of Table 3; otherwise, the algorithm would
have stopped and returned a confirmed match. So, the purpose of step 15 is to score
each candidate match using the string distance between the University name of the
DBpedia entry and the name of the University exported from the ranking site or the
alternative name retrieved from Wikipedia articles (in step 8). Furthermore, the
scoring function takes into account a) the source of the candidate match (original or
alternative name from Wikipedia), b) the method that the candidate match was
obtained (DBpedia lookup service, SPARQL endpoint, and direct transformation of
Wikipedia URL to DBpedia URI), and c) if the search was strict or relaxed,
concerning the target class. Table 5 summarizes the score additions that each of the
above dimensions adds to the string distance metric, which is in the range between 0
and 1. For example, when a candidate match was obtained from the original
University name retrieved from the ranking site using a strict search at the DBpedia
lookup service (step 4) and the string distance of the candidate match from the
University name is 0.92, the total score is 1000+200+10+0.92=1210.92. On the other
hand, if a candidate match is coming from step 11 (Wikipedia search, direct URL/URI
transformation) with a 0.95 string distance, the total score is
2000+200+20+0.95=2220.95. Notice that direct searches of step 11 and DBpedia
searches in steps 4 and 6 are always strict.

Table 5. Score additions along various dimensions.

Dimension Value Score addition
Original (ranking site) 1000 Source
Wikipedia / Google search 2000
Strict 200 Target class
Relaxed 100
DBpedia lookup service 10
SPARQL endpoint 10

Query method

Direct URL/URI transformation 20

From Table 5 it is obvious that when steps 4, 6 fail to produce a confirmed match,

then priority is given to candidate matches coming from Wikipedia retrieved
alternative University names, since Wikipedia keyword search engine is better than
DBpedia’s free text search engine. Furthermore, strict searches are preferred to
relaxed searches, for obvious reasons. Finally, direct URL/URI transformations (valid
only in step 11) are preferred to DBpedia searches (step 13), since the latter may
introduce more noise due to free text search. Notice that all these preferences have
been experimentally established and evaluated.

Finally, after Algorithm 1 terminates, the RDF datasets for each ranking site are
generated and saved permanently. Fig. 8 shows the RDF code for the “Imperial
College London” entry of the Leiden ranking site dataset. In the future, these datasets
will be uploaded into an RDF triplestore with a public SPARQL endpoint.

Fig. 8. Leiden dataset RDF entry for the “Imperial College London”

2.3 Entity Linker

The Entity Merger component of URank takes as input the datasets of the 6 ranking
sites and produces a single dataset that contains all the Universities with all the
rankings from every ranking site contained in a single entity. For example, the merged
dataset entry for the “Imperial College London” is shown in Fig. 9. The properties for
the merged dataset are slightly different from the individual datasets. Specifically,
there is no country-related information, since the purpose of the merged dataset is to
statistically compare rank positions, and there is no direct link to the
RankingOrganization instance, since each entry is ranked by multiple ranking
organizations. Furthermore, there are 6 new properties, which hold the ranks of the
individual ranking sites. All these are sub-properties of the urank:rank property and
are added to the ontology. For example, in Fig. 9 the Imperial College entity has a
urank:rankTHE property for the THE ranking list, a urank:rankQS property for the
QS list, etc. The following piece of OWL code shows how the urank:rankeTHE
property is defined:

<owl:DatatypeProperty rdf:ID="rankTHE">

 <rdfs:supbPropertyOf rdf:resource="#rank"/>

</owl:DatatypeProperty>

The merge of the datasets into a single one is performed with Algorithm 2. For

each RDF graph R that holds the corresponding ranking dataset (step 1) and for each
University instance in this dataset (step 2), a new University instance is created in the
merged dataset graph M and the appropriate property values are copied (step 5). From
the second iteration of the outer loop and onwards, it might be the case that the

<urank:RankedInstitution
 rdf:about= "&urank;Imperial%20College%20London"
 dcterms:title="Imperial College London">

 <urank:institutionRegion rdf:datatype="&xsd;string">United Kingdom

 </urank:institutionRegion>

 <urank:rank rdf:datatype="&xsd;int">41</urank:rank>

 <urank:rankingOrganization rdf:resource="&urank;Leiden"/>

 <owl:sameAs rdf:resource="&dbpedia;Imperial_College_London"/>

</urank:RankedInstitution>

University instance already exists in the merged dataset from previous iterations (step
3). In that case, only the corresponding rank property is copied (step 4).

Fig. 9. Merged dataset RDF entry for the “Imperial College London”

Algorithm 2. The algorithm form merging the individual ranking datasets into one.

1. For each individual RDF graph R (or the corresponding ranking site)
2. For each instance of urank:RankedInstitution U in R
3. Check if there is an instance U’ of urank:RankedInstitution in the merged

dataset graph M, such that U’.owl:sameAs = U. owl:sameAs
4. If yes, then U’.urank:rank<R> = U.urank:rank
5. If no, then

 Create a new U’ instance of urank:RankedInstitution with U’.ID = U.ID;
 U’.dc:title = U.dc:title;
 U’.owl:sameAs = U.owl:sameAs;
 U’.urank:rank<R> = U.urank:rank;
 end if

6. end for
7. end for

Notice that the existence check is based on the value of the owl:sameAs property
which is a link to the DBpedia entry for the University, discovered by Algorithm 1.
So, it is important to ensure that all DBpedia URIs for the same University are exactly
the same. Although this seems expected, it is not always the case. Sometimes there
exist many Wikipedia articles for the same topic, which are redirected to a single
Wikipedia page. This is also reflected to the corresponding DBpedia instances. For
the same real-world entity there might be several DBpedia instances that re-direct to
(possibly) a single DBpedia entry through the dbpedia-owl:wikiPageRedirects
property. Thus, the entity linking process (of the previous sub-section) ensures that
when a DBpedia URI is matched to a University name, a pointer-chasing algorithm
ends up to the instance at the end of the chain of the re-direction links.

<urank:RankedInstitution
 rdf:about="&urank;Imperial%20College%20London"

 dcterms:title="Imperial College London">

 <urank:rankARWU rdf:datatype="&xsd;int">24</urank:rankARWU>

 <urank:rankLeiden rdf:datatype="&xsd;int">54</urank:rankLeiden>

 <urank:rankQS rdf:datatype="&xsd;int">6</urank:rankQS>

 <urank:rankTHE rdf:datatype="&xsd;int">8</urank:rankTHE>

 <urank:rankURAP rdf:datatype="&xsd;int">14</urank:rankURAP>

 <urank:rankWebometrics rdf:datatype="&xsd;int">261

 </urank:rankWebometrics>

<owl:sameAs rdf:resource="&dbpedia;Imperial_College_London"/>

</urank:RankedInstitution>

Sometimes there are more-than-one instances with the above property, i.e. they are
at the end of different paths of the re-direction link sub-graph for the same real-world
entity. This is checked by a transitive algorithm that follows the re-direction links
until it finds instances that do not re-direct to another instance. In this case, URank
selects the most “informative” one, namely the one with the most triples. Another
problematic case is when this re-direction sub-graph is not acyclic, something that
happens rarely and usually it is temporary until the next DBpedia update.
Nevertheless, we catered for this case as well using a closed set search.

3 Evaluation

In order to evaluate URank, we have performed several experiments. First of all, we
clarify that we have the correct answers (namely the correct DBpedia entries) for all
the ranking sites, so we are able to evaluate and compare the effectiveness of each of
the search mechanisms of Algorithm 1. These correct answers have been obtained
manually by first running URank and then checking manually only the entries that did
not have an absolute match (string distance 1.0). Then, we have conducted for each
ranking site experiments turning on and off the following features / mechanisms of
URank, in many combinations:

 DBpedia lookup service
 SPARQL endpoint query
 Domain-specific restrictions
 Wikipedia keyword search

For each experiment we count the correct answers CA (i.e. those entries that the
retrieved URIs coincide with the correct URIs), the incorrect answers IA (i.e. those
entries that the retrieved URIs do not coincide with the correct URIs), and the
unanswered entries UA (i.e. the ones that the experiment did not manage to retrieve
any URI). Notice that we assume (and it is true for the experiments we have
conducted) that all Universities do have a Wikipedia / DBpedia entry. From the above
measurements we calculate the precision, recall and F-measure metrics for the
queries, using equations (1) – (3), respectively.

CA
precision

CA IA



 (1)

CA
recall

CA UA



 (2)

2
precision recall

F
precision recall


 


 (3)

Our first experiment measures the effectiveness of each query method, namely its
purpose is to compare the DBpedia lookup service against the SPARQL endpoint

query method using the template derived from the Faceted Browser, and Search &
Find Service14. Notice that the domain-specific restrictions and the Wikipedia
keyword search are turned off. Results are shown in Table 6 for the DBpedia lookup
service and Table 7 for the SPARQL endpoint query. Results clearly indicate the
superiority of the DBpedia lookup service in terms of Precision, for all ranking sites,
and the superiority of the SPARQL endpoint query in terms of recall, for almost all
ranking sites, with the sole exception of URAP. This is due to the fact that the
DBpedia lookup service is stricter than the SPARQL query; therefore, it returns less
results but with a better chance of being correct. The F-measure value is superior for
the DBpedia lookup service, with the exception of QS list.

Table 6. Measurements for the DBPedia lookup service.

Ranking site CA UA IA Precision Recall F

ARWU 433 60 7 98,41% 87,83% 92,82%

Leiden 472 24 4 99,16% 95,16% 97,12%

QS 512 80 8 98,46% 86,49% 92,09%

THE 382 12 6 98,45% 96,95% 97,70%

URAP 627 112 11 98,28% 84,84% 91,07%

Webometrics 521 65 14 97,38% 88,91% 92,95%

Total / Average 2947 353 50 98,33% 89,30% 93,60%

Table 7. Measurements for the SPARQL endpoint query.

Ranking site CA UA IA Precision Recall F

ARWU 398 25 77 83,79% 94,09% 88,64%

Leiden 429 6 65 86,84% 98,62% 92,36%

QS 520 23 57 90,12% 95,76% 92,86%

THE 356 4 40 89,90% 98,89% 94,18%

URAP 541 123 86 86,28% 81,48% 83,81%

Webometrics 511 20 69 88,10% 96,23% 91,99%

Total / Average 2755 201 394 87,49% 93,20% 90,25%

The same conclusion is evident from Fig. 10, Fig. 11 and Fig. 12, where a

graphical comparison between the two query methods is presented for the three
metrics. Furthermore, in these figures we compare the performance of each of these
query methods alone with their combination, namely we have conducted another set
of measurements where both query methods are used in combination. Results show
that precision is slightly worse, whereas recall and F-measure are better when the two
query methods are combined. This happens because the DBpedia lookup service is
stricter concerning its answers, whereas the SPARQL endpoint query method more

relaxed, therefore it tends to return more answers with lower accuracy, so their
combination exhibits the advantages of both worlds.

Our second experiment measures the effectiveness of the domain-specific
restrictions. Fig. 13 shows results for all the metrics and both query methods, with and
without the domain-specific restrictions. As expected, restrictions increase the
precision, since more restrictions mean more accurate results. The effect is evident for
the SPARQL endpoint query, because there was a lot of room for improvement, while
it is negligible for the DBpedia lookup service, since its precision was already high.
The exact opposite behavior is observed for recall, which is slightly worst for the
lookup service, but evidently worse for SPARQL query. This was expected, because
more restricted queries mean fewer results. Overall, F-measure is slightly worse for
both methods. The same behavior is observed for combining the two query methods.

Fig. 10. Precision comparison for query methods

Fig. 11. Recall comparison for query methods

Fig. 12. F-measure comparison for query methods

Fig. 13. Effectiveness of the domain-specific restrictions

Our last experiment measures the contribution of each of the query methods in
retrieving the correct results. Table 8 shows how many correct results are due to
which query method in the complete URank system. It is evident that the majority of
the correct results are returned by the DBpedia lookup service (step 4), which is
queried first. This choice was justified by the fact that the DBpedia lookup service has
better performance (f-measure) than the SPARQL endpoint query method. The
second best source of correct results is the direct URL/URI transformation (step 11)
of the Wikipedia results returned after step 8. Notice that there are very few (actually
4) results that were returned after with Google search on Wikipedia. Also very few
(only 2) are the correct results returned from step 12, making evident that the use of
Wikipedia search is a very competent complement of the DBpedia lookup service
method. Finally, there are also correct results due to SPARQL endpoint query, but

their overall contribution is very small (<4%). Fig. 14 visualizes this comparison
among methods.

Table 8. Contribution of each query method to the result.

Wikipedia / Google
Ranking site

DBpedia
Lookup

SPARQL
endpoint Direct URL/URI

transformation
DBpedia

Lookup/SPARQL
ARWU 418 20 61 1
Leiden 468 9 23 0
QS 485 37 78 0
THE 375 11 14 0
URAP 611 21 118 0
Webometrics 505 33 61 1
TOTAL 2862 131 355 2

Finally, Fig. 15 shows the contribution of each query method to the result of each

of the experiments reported in this section. In this figure we can also compare the
total correct results found by each of the tested stripped-down versions of URank,
compared to the complete system. It can be concluded that the effect of using
Wikipedia keyword search on top of either DBpedia lookup service or SPARQL
endpoint query has almost the same result as having both of them (combined with
Wikipedia). The actual results show a very small difference (1-5 less correct results,
namely ~0.1%). This finding could be used to remove one of the steps 4 or 6, to
increase the execution speed of URank.

Fig. 14. Contribution of each query method to the result for the complete system

Fig. 15. Contribution of each query method to the result for each experiment

4 Concluding Discussion and Future Work

In this paper we have presented our effort to extract, link and merge University
ranking datasets as Linked Open Data in the Semantic Web. This is a part of a larger
project [2] that aims to statistically compare different University rankings in order to
draw safe conclusions about their reliability. In order to collect the data found at
different University ranking sites, we have developed, presented and evaluated a
Prolog application, called URank, that a) extracts data (University entities) from the
various ranking list web sites, using the DeiXTo web extraction tool [12], b) uniquely
identifies the University entities within the above lists, by linking them to the
corresponding DBpedia entities, and c) constructs a combined data set that can be fed
to the statistical comparison test, by merging the individual ranking datasets based on
the discovered DBpedia link, as a unique primary key.

In order to develop the URank system several challenges had to be met. The first
one has to do with the heterogeneity of the data formats and schemata of the ranking
sites, as well as the different naming schemata for the Universities and the countries
they are located. These challenges were met by a) customized data extraction rules
that were easily developed using the GUI of the DeiXTo system, b) site-specific data
transformations that were developed in Prolog, and c) an ontology we developed for
the individual ranking datasets.

The challenges concerning the unique identification of Universities using DBpedia
required: a) to use the appropriate querying method with the appropriate list of words
in order to search for matching entities, and b) to recognize when a correct match has
been found. There are two main querying methods, the DBpedia lookup service and
the SPARQL endpoint that uses a query template derived from the Openlink
Virtuoso’s Search & Find Service of DBpedia. Both have their own advantages and
disadvantages and we decided to use them both complementary. In order to recognize

if a correct match has been found we have used the SWI-Prolog’s built-in string
difference metric, which is tailored to ontology alignment [20] and worked well in our
case.

The main problems encountered during the development and testing of URank had
mainly to do with the domain-specific nature of our search and the fact that DBpedia
is a crowd-sourced knowledge base; therefore, neither correct nor complete. In order
to overcome these problems we have developed a few domain-specific filters /
restrictions that the retrieved entities should obey in order to be considered correct
matches, on top of the string distance metric. This increased the precision of the
retrieved instances, as the evaluation phase has shown. However, domain-specific
restrictions lowered the recall rate, namely less correct results were retrieved because
the required information was simply not present in DBpedia entries.

A major boost to recall was given by a second phase that involved searching for
the University name into Wikipedia using either the Wikipedia’s search engine or
even Google. This was needed because the way University names are found and
retrieved from the ranking sites, usually differ a lot from their formal or usual names.
This search provided Wikipedia articles for the Universities where a more suitable
University name (the title of the Wikipedia article) could be found. Wikipedia entries
directly correspond to DBpedia entries through a trivial URL/URI transformation, so
in this way better matches can be found in the vast majority of cases. Of course,
extracting information from Wikipedia pages involves heuristic (thus error prone)
web extraction techniques, because pages are edited by humans. However, the use of
Wikipedia, along with the other querying methods and restrictions, increased our
precision and recall to 100%.

Finally, a very crucial part of the entity linker is the scoring mechanism for the
various DBpedia entries retrieved using all the above methods. Our scoring
mechanism gives priority to a) candidate entries retrieved through either the DBpedia
lookup service or a SPARQL endpoint query, with a name that is very close (≥98%)
to the original University name, then to b) candidate entries retrieved from direct
URL/URI transformations of Wikipedia retrieved entries, and finally to c) candidate
entries retrieved by the combination of (b) and (a). The results of our evaluation show
that 89.3% of the correct answers are given by method (a), 10.5% are given by
method (b), and only 0.2% by method (c).

The outcome of the entity linker is the individual RDF datasets for each ranking
site, linked to the DBpedia LOD dataset through the owl:sameAs property. In order to
generate a single merged dataset so that each university includes its rank at every
ranking site, a unique primary key for each University must exist across the individual
datasets. However, due to the different naming schemes of the ranking sites and due
to the multiple DBpedia / Wikipedia entries for the same University, the query
methods of the entity linker might end up to different DBpedia entries, for the same
University. Usually these DBpedia entries re-direct to a single one (following
Wikipedia redirections), so following this re-direction graph gives to URank a stable
primary key mechanism. The outcome of the entity merger is an RDF dataset that can
be used to compare the rankings of the Universities across the different ranking sites /
lists.

Looking critically at URank, we can draw the conclusion that the system has
achieved its purpose, namely to correctly collect and merge the University rankings

for further statistical processing. However, one may consider the possibility of
making the system independent from the domain of University rankings in the future,
thus being able to collect and merge into a single table various lists of similar nature
found in the Web. This needs a lot of improvements, mainly in the code itself, but
also to the architecture of the system. Currently, domain-independent and domain-
dependent features of the system are not so well separated in the code, despite their
clear distinction in Fig. 1. This is because there are various heuristics (domain-
dependent features) used in the code that need to be tightly integrated with the
domain-dependent features, such as querying DBpedia and / or Wikipedia. However,
this separation needs further exploration in order to develop a re-usable across
domains system.

Other improvements for the system would be a) a GUI (currently the text-based
interface of Prolog is used), including a tighter integration with the DeiXTo GUI, b) a
more efficient and general purpose web data extractor, exploiting the full range
capabilities of DeiXTo extraction rules, and c) integration with an RDF triplestore,
such as Openlink Virtuoso19 or Sesame20 [11], so that the generated datasets to persist
and be shared on the LOD cloud.

Compared to general purpose tools for entity extraction, such as [5, 13, 16, 17],
URank does neither have to detect names, since the user does that using DeiXTo
through its extraction rules, nor to classify the names by the type of entity (class) they
refer to, since it is a domain-dependent application and extracted names are known to
be University names. Therefore, URank cannot be characterized as an entity
extraction application, nor it can be compared to such software.
On the other hand, URank can be considered as an entity linking software, since its
purpose is to determine the identity of entities mentioned in a list of named entities,
which is distinct from entity extraction / recognition in that it identifies not the
occurrence of names (nor classifies them), but their reference. There are plenty of
general-purpose entity-linking tools, such as [6, 14, 15, 18, 24], which usually use one
knowledge base target to link entities, such as DBpedia, Wikipedia, or YAGO2 [8]
using various techniques for matching (e.g. lexical) and context disambiguation
(relatedness, similarity, coherence). URank instead is a domain-specific tool that
focuses on a specific target type of the linked entity and takes advantage of domain-
specific knowledge in order to improve precision and recall of the system. One of our
main future aims is to compare the performance of URank to one or more of the
above general purpose tools for entity linking. Initial experimentations with DBpedia
Spotlight [14] have resulted in ~86% F-measure, which is not as good as 100% that
URank achieved due to its domain-specific tweaking.

References

1. Aguillo, I.F., Bar-llan, J., Levene, M., Priego, J.L.O: Comparing University Rankings.
Scientometrics 85(1), 243--256 (2010)

19 http://virtuoso.openlinksw.com/
20 http://www.openrdf.org/

2. Angelis, L., Bassiliades, N., Manolopoulos, Y.: Evaluation of University International
Rankings (in Greek). In: Proc. Conference on Quality Assurance and Quality
Management: Governance and Good Practices. Thessaloniki (2012)

3. Buela-Casal, G., Gutiérrez-Martínez, O., Bermúdez-Sánchez, M.P., Vadillo-Muñoz O.:
Comparative Study of International Academic Rankings of Universities. Scientometrics
71, 349--365 (2007)

4. Cheng, Y., Liu, N.C.: Examining Major Rankings According to the Berlin Principles.
Higher education in Europe 33 (2-3), 201--208 (2008)

5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications. In: 40th
Anniversary Meeting of the Association for Computational Linguistics (2002)

6. Ferragina, P., Scaiella, U.: TAGME: On-the-Fly Annotation of Short Text Fragments (by
Wikipedia Entities). In: 19th ACM Int. Conf. on Information and Knowledge Management
(CIKM '10), pp. 1625--1628. ACM (2010)

7. Ferrara, E., de Meo, P., Fiumara, G., Baumgartner, R.: Web Data Extraction, Applications
and Techniques: A Survey. CoRR. arXiv:1207.0246 [cs.IR] (2012)

8. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A Spatially and
Temporally Enhanced Knowledge Base from Wikipedia. Artificial Intelligence 194, 28--
61 (2013)

9. Huang, M.-H.: A Comparison of Three Major Academic Rankings for World Universities:
From a Research Evaluation Perspective. Journal of Library and Information Studies 9(1),
1--25 (2011)

10. Ioannidis, J., Patsopoulos, N., Kavvoura, F., Tatsioni, A., Evangelou, E., Kouri, I.,
Contopoulos-Ioannidis, D., Liberopoulos, G.: International Ranking Systems for
Universities and Institutions: a Critical Appraisal. BMC Medicine 5(1) (2007)

11. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler. J. A. (eds.) ISWC
2002. LNCS, vol. 2342, pp. 54--68. Springer, London (2002)

12. Kokkoras, F., Ntonas, K., Bassiliades, N.: DEiXTo: A Web Data Extraction Suite. In: 6th
Balkan Conference in Informatics (BCI-2013) , pp. 9—12. ACM, Thessaloniki, Greece
(2013)

13. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The
Stanford CoreNLP Natural Language Processing Toolkit. In: 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pp. 55--60 (2014)

14. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding Light
on the Web of Documents. In: 7th Int. Conf. on Semantic Systems (I-Semantics 2011), pp.
1--8. ACM, Graz, Austria (2011)

15. Milne, D., Witten, I.H.: Learning to Link with Wikipedia. In: 17th ACM Conf. on
Information and Knowledge Management (CIKM '08), pp. 509--518. ACM (2008)

16. Nothman, J., Ringland, N., Radford, W., Murphy, T., Curran, J.R.: Learning Multilingual
Named Entity Recognition from Wikipedia. Artificial Intelligence 194, 151--175 (2013)

17. Ratinov, L., Roth, D.: Design Challenges and Misconceptions in Named Entity
Recognition. In: 13th Conf. on Computational Natural Language Learning (CoNLL '09) ,
pp. 147--155. Association for Computational Linguistics, Stroudsburg, PA, USA (2009)

18. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and Global Algorithms for
Disambiguation to Wikipedia. In: 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Volume 1 (HLT '11), Vol. 1,
pp. 1375--1384. Association for Computational Linguistics, Stroudsburg, PA, USA (2011)

19. Rauhvargers, A.: EUA Report on Rankings 2011. Global University Rankings and their
Impact. European University Association, Brussels (2011)

20. Stoilos, G., Stamou, G., Kollias, S.: A String Metric for Ontology Alignment. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005, LNCS, vol. 3729, pp. 624--
637. Springer, Berlin-Heidelberg (2005)

21. Stolz, I., Hendel, D.D., Horn, A.S.: Ranking of Rankings: Benchmarking Twenty-Five
Higher Education Ranking Systems in Europe. Higher Education 60(5), 507--528 (2010)

22. Taylor, P., Braddock, R.: International University Ranking Systems and the Idea of
University Excellence. J. of Higher Education Policy and Management 29(3), 245--260
(2007)

23. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and Maintaining Links on the
Web of Data. In: Bernstein, A. et al. (eds.) ISWC 2009, LNCS, vol. 5823, pp. 650--665.
Springer, Berlin-Heidelberg (2009)

24. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of
Logic Programming – Prolog Systems 12(1-2), 67--96 (2012)

25. Yosef, M.A., Hoffart, J., Bordino, I., Spaniol, M., Weikum, G.: AIDA: An Online Tool for
Accurate Disambiguation of Named Entities in Text and Tables. Proc. of the VLDB
Endowment 4(12), 1450--1453 (2011)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

