Using Logic

Running head: USING LOGIC

Using Logic for Querying XML Data

Nick Bassiliades, loannis Vlahavas
Dept. of Informatics
Aristotle University of Thessaloniki

54006 Thessaloniki, Greece

{nbassili,vlahavas}@csd.auth.gr

Dimitrios Sampson
Informatics and Telematics Institute
1 Kyvernidou Str.

54639 Thessaloniki, Greece

sampson@ath. forthnet.gr

Using Logic 2

Abstract

In this chapter, we propose the use of first-order logic, in the form of deductive database rules, as a
query language for XML data and we present X-DEVICE, an extension of the deductive object-oriented
database system DEVICE for storing and querying XML data. XML documents are stored into the
OODB by automatically mapping the DTD to an object schema. XML elements are treated either as
classes or attributes based on their complexity, without loosing the relative order of elements in the
original document. Furthermore, this chapter describes the extension of the system's deductive rule
query language with second-order variables, general path and ordering expressions, for querying over
the stored, tree-structured XML data and constructing XML documents as a result. The extensions
were implemented by translating all the extended features into the basic, first-order deductive rule

language of DEVICE using meta-data about stored XML objects.

Using Logic 3

Using Logic for Querying XML Data

Introduction

The success of the Internet depends on the availability of applications that will offer valuable
e-services. However, applications have always been depended on input data and most importantly on
their well-structuredness. So far, information is captured and exchanged over Internet through HTML
pages, without any conceptual structure. XML is the currently proposed standard for structured or
even semi-structured information exchange over the Internet (W3 Consortium, Oct 2000). However,
the maintenance of this information is equally important. Integrating, sharing, re-using and evolving
information captured from XML documents are essential for building long-lasting applications of
industrial strength.

The story of information management or data management has been told before in the form of
DBMSs. Over than three decades of research have been devoted to developing theory and systems for
capturing, storing, maintaining and retrieving data for a single or multiple users. Such a vast research
and development wealth should be re-used with the minimum of effort for managing semi-structured
data, i.e. XML or SGML, which is the super-set of XML. There already exist several proposals on
methodologies for storing, retrieving and managing semi-structured data stored in relational, object-
relational and object databases. Furthermore, there exist quite a few approaches in storing SGML
multimedia documents in object databases.

Capturing XML data in traditional DBMSs is one aspect of the story. Effective and efficient
querying and publishing these data on the Web is another aspect that is actually more important since
it determines the impact this approach will have on future Web applications. There have been several
query language proposals (Abiteboul, Quass, McHugh, Widom, & Wiener, 1997; Buneman,
Fernandez, & Suciu, 2000; Chamberlin, Robie, & Florescu, 2000; Deutsch, Fernandez, Florescu,
Levy, & Suciu, 1999; Hosoya & Pierce, 2000; Robie, Lapp, & Schach; W3 Consortium, Dec 2001d)
for XML data. Furthermore, recently the WWW consortium issued a working draft proposing XQuery
(W3 Consortium, Dec 2001a), an amalgamation of the ideas present in most of the proposed XML
query languages of the literature. Most of them have functional nature and use path-based syntax.
Some of them (Abiteboul et al, 1997b; Chamberlin et al., 2000; Deutsch et al., 1999a), including
XQuery, have also borrowed an SQL-like declarative syntax, which is popular among users. Some of
the problems relating to most of the above approaches is the lack of a comprehensible data model, a
simple query algebra, with the exception of (Buneman et al., 2000; Hosoya & Pierce, 2000) and query
optimization techniques. There are proposals for a data model (W3 Consortium, Dec 2001b) and a
query algebra (W3 Consortium, Jun 2001) for XQuery, however it is not yet clear how these will lead

to efficient data storage and query optimization.

Using Logic 4

In this chapter, we propose the use of deductive rules as a query language for XML data and
we present X-DEVICE, a deductive object-oriented database for managing XML data. X-DEVICE is an
extension of the active object-oriented knowledge base system DEVICE (Bassiliades, Vlahavas, &
Elmagarmid, 2000). DEVICE integrates high-level, declarative rules (namely deductive and production
rules) into an active OODB that supports only event-driven rules (Diaz & Jaime, 1997), built on top of
Prolog. This is achieved by translating each high-level rule into one event-driven rule. The condition
of the declarative rule compiles down to a set of complex events that is used as a discrimination
network that incrementally matches the rule conditions against the database.

X-DEVICE extends DEVICE by incorporating XML data into the OODB by automatically
mapping DTDs of XML documents to object schemata, without loosing the document's original order
of elements. XML elements are represented either as first-class objects or as attributes based on their
complexity. Furthermore, X-DEVICE extends the deductive rule language of DEVICE with new
operators that are used for specifying complex queries and materialized views over the stored semi-
structured data. Most of the new operators have a second-order syntax (i.e. variables range over class
and attribute names), but they are implemented by translating them into first-order DEVICE rules (i.e.
variables can range over class instances and attribute values), so that they can be efficiently executed
against the underlying deductive object-oriented database.

The advantages of using a logic-based query language for XML data come from the well-
understood mathematical properties and the declarative character of such languages, which both allow
the use of advanced optimization techniques, such as magic-sets. Furthermore, X-DEVICE compared to
other XML functional query languages (e.g. XQuery) has a more high-level, declarative syntax that
allows users to express everything that XQuery can express, in a more compact and comprehensible
way, with the powerful addition of general path expressions, which is due to fixpoint recursion and
second-order variables. Using X-DEVICE, users can express complex XML document views, a fact
that can greatly facilitate customizing information for e-commerce and/or e-learning. Furthermore, the
X-DEVICE system offers an inference engine that supports multiple knowledge representation
formalisms (deductive, production, active rules, as well as structured objects), which can play an
important role as an infrastructure for the impending semantic Web (W3 Consortium, Nov 2001).

In this chapter, we initially overview some of the related work done in the area of storing and
querying XML data in databases, and then we describe the mapping of XML data onto the object data
model of X-DEVICE. Based on this model, we present the X-DEVICE deductive rule language for
querying XML data through several examples that have been adopted from the XML Query working

group (W3 Consortium, Dec 2001c). Finally, we conclude this chapter and discuss future work.

Using Logic 5

Related Work

Managing XML data

There exist two major approaches to manage and query XML documents. The first approach
uses special purpose query engines and repositories for semi-structured data (Buneman, Davidson,
Hillebrand, & Suciu, 1996; Goldman & Widom, 1997; Lucie Xyleme, 2001; McHugh, Abiteboul,
Goldman, Quass, & Widom, 1997; Naughton et al., 2001). These database systems are built from
scratch for the specific purpose of storing and querying XML documents. This approach, however, has
two potential disadvantages. Firstly, native XML database systems do not harness the sophisticated
storage and query capability already provided by existing database systems. Secondly, native XML
database systems do not allow users to query seamlessly across XML documents and other
(structured) data stored in database systems.

Traditional data management has a vast research background that cannot be just thrown away.
The second approach to XML data management is to capture and manage XML data within the data
models of either relational (Deutsch, Fernandez, & Suciu, 1999; Florescu & Kossmann, 1999;
Schmidt, Kersten, Windhouwer, & Waas, 2000; Shanmugasundaram et al., 1999), object-relational
(Hosoya & Pierce, 2000; Shimura, Yoshikawa, & Uemura, 1999) or object databases (Chung, Park,
Han, & Kim, 2001; Nishioka & Onizuka, 2001; Renner, 2001; Yeh, 2000). Our system, X-DEVICE,
stores XML data into the object database ADAM (Gray, Kulkarni, & Paton, 1992), because XML
documents have by nature a hierarchical structure that better fits the object model. Also references
between or within documents play an important role and are a perfect match for the notion of object in
the object model. This better matching between the object and document models can also be seen in
the amount of earlier approaches in storing SGML multimedia documents in object databases

(Abiteboul et al., 1997a; Abiteboul et al, 1997b; Ozsu et al., 1997).

Relational mapping approaches

When XML data are mapped onto relations there are two major limitations: First, the relational
model does not support set-valued attributes, therefore when an element has a sub-element with the
multiple-occurrence expressions star (¥) or cross (+), the sub-element is made into a separate relation
and the relationship between the element and the sub-element is represented by introducing a foreign
key. The querying and reconstruction of the XML document requires the use of "expensive" SQL joins
between the element and sub-element relations. On the other hand, object databases support list
attributes; therefore, sub-elements (or rather references to sub-elements) can be stored with the parent
element and retrieved in a non-expensive way.

A second limitation of relational databases is that in order to represent relationships between

elements-relations, join attributes should be created manually. On the other hand, in object databases,

Using Logic 6

relationships between element-classes are represented in the schema by object-referencing attributes
(pointers), which are followed for answering queries with path expressions.

Finally, another problem is that relations are sets with no ordering among either their attributes
or tuples. However, in XML documents ordering of elements is important, especially when they
contain textual information (e.g. books, articles, Web page contents). Of course, there exist some
relational approaches that hold extra ordering information in order to be able to reconstruct the
original XML documents. However, these approaches add extra complication to the relation schema,

query processing and XML reconstruction algorithms.

Object-oriented mapping approaches

Object database and some of the object-relational approaches to storing and querying XML
data usually treat element types as classes and elements as objects. Attributes of elements are treated
as text attributes, while the relationships between elements and their children are treated as object
referencing attributes. There are some variations of the above schema between the various approaches.
For example, in (Abiteboul et al., 1997a) and (Yeh, 2000) all the elements are treated as objects, even
if their content is just PCDATA, i.e. mere strings. However, such a mapping requires a lot of classes
and objects, which wastes space and degrades performance, because queries have to traverse more
objects than actually needed. In (Nishioka & Onizuka, 2001) and in X-DEVICE this problem is avoided
by mapping PCDATA elements to text attributes.

Moreover, some other approaches (Boehm, Aberer, Neuhold, & Yang, 1997; Hosoya & Pierce,
2000; Ozsu et al., 1997) go further by treating some elements with an internal structure as text
attributes. The internal structure of these elements can only be accessed through special XML-aware
text processing methods. The decision on which elements should be treated as classes or text attributes
is either left on the database designer (Boehm et al., 1997; Ozsu et al., 1997) or it is heuristically taken
based on data usage and query statistics (Hosoya & Pierce, 2000). This approach can sometimes prove
more efficient regarding storage space requirements and faster query processing due to less
fragmentation of elements, however the querying process is more complex because different access
methods may be used for different portions of the same path expressions. Furthermore, the
implementation requires the extension of the object database itself to handle such XML-aware
attributes and possibly the extension of the basic object querying language to be aware of such
attributes.

On the other hand, the mapping scheme we employed in X-DEVICE does not require any
extension of either the database primitives or the basic query language. X-DEVICE is smoothly
integrated with the existing DEVICE system by translating every new construct into one or more rules
of the basic deductive rule language.

The in-lining approach that has been proposed in (Shanmugasundaram et al., 1999) for

relational databases is followed in (Chung et al, 2001) to avoid producing too many classes in the

Using Logic 7

schema. However, the rationale for the in-lining method in (Shanmugasundaram et al., 1999) was that
it reduces the amount of tables and joins between them, while in object databases there are no joins
and therefore there is no rationale for using it. Furthermore, the resolution of path expressions gets
complicated since some parts of the path consist of simple attribute names, while some others consist
of path fragments that are "in-lined" as a single attribute in a great master class. The decision on which

parts are simple or complex is based on five rules.

Handling of alternation

Another major issue that must be addressed by any mapping scheme is the handling of the
flexible and irregular schema of XML documents that includes alternation elements. Some mapping
schemes, such as (Nishioka & Onizuka, 2001) and (Shanmugasundaram et al., 1999), avoid handling
alternation by using some simplification rules, which transform alternation to sequence of optional
elements: (x|Y)->(x?,Y?). However, this transformation, along with some other ones, does not
preserve equivalence between the original and the simplified document. In the previous simplification
rule, for example, the element declaration on the left-hand side accepts either an X or an Y element,
while the right-hand side element declaration allows also a sequence of both elements or the absence
of both.

Alternation is handled by union types in (Abiteboul et al., 1997a), which required extensions to
the core object database O,. This approach is efficient, however it is not compatible with the ODMG
standard (Cattell, 1994) and cannot easily be applied in other object database systems. In X-DEVICE
instead of implementing a union type, we have emulated it using a special type of system-generated
class that its behavior does not allow more than one of its attributes to have a value. Furthermore, the
parent-element class hosts aliases for this system generated class, so that path resolution is facilitated.

A similar approach has been followed in (Yeh, 2000). However, their typing system involves
unnecessarily many class types. For example, multiple occurrences of elements are handled both by
lists and a special class, which is different for a single-occurrence element. Furthermore, they handle
even PCDATA elements as objects, which has certain drawbacks, as discussed above. Moreover, their
effort does not include a special query language for the stored XML data, but only a visual query
interface.

Finally, the representation of alternative and optional elements in (Chung et al, 2001) are
uniformly handled as an inheritance problem. Specifically, there is one superclass for the element that
contains optional and alternative elements and as many subclasses as the number of combinations of
the alternative and optional elements. The superclass is an abstract class, i.e. it just "hosts" the
mandatory sub-elements of an element, while the subclasses inherit the mandatory structure and define
additional (optional and alternative) sub-elements. The basic advantage of using such a mapping

scheme is that: a) null values are avoided since subclasses do not have optional attributes for optional

Using Logic 8

elements, and b) query processing is easily optimized by targeting only the subclass that satisfies the
structure implied by the query.

One major problem with the inheritance approach to alternation of (Chung et al, 2001) is that it
preserves ordering of elements only under simple types of alternation, while it is unclear what happens
when the combination of optionality and alternation is considered for the same group of elements. For
example, the method can handle a declaration like this: a-> (b, c*, (d|e)), while it is unable to
handle a declaration like the following: a-> (b, c, (d|e) *), without loosing the relative order of d

and e elements in an XML document.

Querying XML documents using logic-based languages

Logic has been used for querying semi-structured documents, in WebLog (Lakshmanan, Sadri,
& Subramanian, 1996) for HTML documents and in F-Logic/FLORID (Luddscher, Himmerdder,
Lausen, May, & Schlepphorst, 1998) and XPathLog/LoPix (May, 2001) for XML data. All these
languages have a syntax that is influenced by F-Logic, a graph-based data model and are evaluated by
bottom-up evaluation, similarly to X-DEVICE. None of them, however, supports generalized path
expressions, alternation of elements and negation, features that are offered by X-DEVICE. Furthermore,
X-DEVICE offers, in addition, incremental maintenance of materialized views when XML base data get

updated.

WebLog

WebLog is a deductive Web querying language, similar in spirit to DATALOG, operating in
an integrated graph-based framework. Although its syntax resembles F-Logic, it is not fully object-
oriented. Navigation along hyperlinks is provided by built-in predicates, but navigation in the form of
path expressions is not supported. Furthermore, there is no notion of generalized path expressions.
Instead, recursive DATALOG-like rules replace regular expressions over attributes, attribute
variables, and path variables. X-DEVICE offers both regular path expressions and generalized path

expressions, i.e. path expressions with unknown number and names of intermediate steps.

F-Logic/XPathLog

F-Logic and its successor XPathLog are logic-based languages for querying semi-structured
data. Their semantics are defined by bottom-up evaluation, similarly to X-DEVICE, however negation
has not been implemented. Both languages can express multiple views on XML data; XPathLog, in
addition, can export the view in the form of an XML document, much like X-DEVICE. However, none
of the languages offers incremental maintenance of materialized views when XML base data get
updated, as X-DEVICE does.

Both F-Logic and XPathLog are based on a graph data model, which can be considered as a
schema-less object-oriented (or rather frame-based) data model. However, alternation of elements is

not supported. Furthermore, F-Logic does not preserve the order of XML elements.

Using Logic 9

Both languages support path expressions and variables; XPathLog is based on the XPath
language syntax (W3 Consortium, Dec 2001d). The main advantage of both languages is that, similar
to X-DEVICE, they can have variables in the place of element and/or attribute names, allowing the user
to query without an exact knowledge of the underlying schema. However, none of the languages
supports generalized path expressions that X-DEVICE does, which compromises their usefulness as
semi-structured query languages.

A noticeable feature of both languages is that they resolve IDREF attributes, linking them with
the OIDs of object-elements that contain the equivalent ID attribute values. The implementation of
such a feature requires strict typing in the document schema, a feature that DTDs currently lack, but
the forthcoming XML Schema (W3 Consortium, May 2001) will support. The implementation of this
feature with only DTD structuring information requires extra algorithms that are outside the scope of
the basic mapping between the XML and object-oriented models. Nevertheless, this feature can be
easily implemented in X-DEVICE.

Finally, XPathLog allows the declarative definition of updates in XML data, a feature that
comes for free in X-DEVICE since the basic rule language supports multiple rule types (Bassiliades et
al., 2000), such as deductive, production, event-based rules and rules for derived and aggregate
attributes. Specifically, since XML data are smoothly captured in the object-oriented data model,
database operations for objects immediately apply to XML data, as well. Furthermore, new operations
specific to the tree-structured nature of XML can be supported. However, updating of XML

documents will not be discussed further, since it is out of the scope of this chapter.

a) URI b) URI
XML documentl T Results ocument)
PiLLoW Web Server
Parsed XML document i T Results (XML document)
X-DEVICE PiLLoW
OODB commands l T Results (XML document
in Prolog terms)
DEVICE X-DEVICE < Query

OODB Query i T Results (object data)

DEVICE

Figure 1. The architecture of the X-DEVICE system.

Using Logic 10

Mapping XML Data onto the Object-Oriented Data Model

The X-DEVICE system incorporates XML documents with a schema described through a DTD
into an object-oriented database. Figure 1 shows the architecture of the system. Specifically, XML
documents (including DTD definitions) are fed into the system through the PiLLoW library (Cabeza &
Hermenegildo, 2001), which parses them and transforms them into Prolog complex terms. DTD
definitions are translated into an object database schema that includes classes and attributes, while
XML data are translated into objects of the database. Generated classes and objects are stored within
the underlying object-oriented database ADAM (Gray et al., 1992). It must be noticed that when an
XML document lacks a DTD, then we can safely assume that one of the commercial XML editors,
such as XML Spy (Altova), can generate a DTD for the XML document. In the future, we will include
in the system a DTD induction algorithm.

Concerning the recently proposed XML Query Data Model (W3 Consortium, Dec 2001b), X-
DEVICE currently maps a subset of the model's node types, namely: document, element, value,
attribute, and node reference. These node types are mapped onto the object types presented in Figure
2. The mapping between a DTD and the object-oriented data model is done as follows:

e The document node type is represented by the xm1 doc class and each document node is an
instance of this class. The attributes of this class include the URI reference of the document and
the OIDs of its root element nodes.

e FElement nodes are represented as either object attributes or classes. More specifically:

» If an element node has PCDATA content (without any attributes), it is represented as an
attribute of the class of its parent element node. The name of the attribute is the same as the
name of the element and its type is string.

» If an element node has either a) children element nodes, or b) attribute nodes, then it is
represented as a class that is an instance of the xm1 seg meta-class. The attributes of the class
include both the attributes of the element and the children element nodes. The types of the
attributes of the class are determined as follows:

- Simple character children element nodes correspond to attributes of string type.

- Attribute nodes correspond to attributes of string type. Of course, this is an over-
simplification because the string type is very broad. Actually, each of the different attribute
type cases should be somehow maintained and handled within the OODB model. However,
this cannot be done easily within the DTD framework, since DTDs do not provide typing
information. Furthermore, typing information is important only for updating the XML
document and not for just inserting it into the OODB and querying it, because it can be
assumed that an XML validator has already taken care of typing and well-formdness
details.

- Children elements that are represented as objects correspond to object reference attributes.

Using Logic 11

- Special treatment needs the case when the content of an element is just PCDATA, but the
element has attributes. In this case, the element is represented as a class, the element

attributes as class attributes, and the element content as a string attribute called content.

class xml doc

attributes
uri (string, single, mandatory)
children (xml _elem, list, mandatory)
class xml elem
attributes
alias (attribute-xml elem, set, optional)
empty (attribute, set, optional)
class xml_ seq
is a xml elem
attributes
elem ord (attribute, 1list, optional)
att 1st (attribute, set, optional)
class xml alt
is a xml elem

Figure 2. X-DEVICE object types for mapping XML documents.

e Value nodes are represented by the values of the object attributes. Currently, only strings and
object references are supported since DTDs do not support data types. When XML Schema will be
supported by X-DEVICE, the primitive data types of the OODB data model will be utilized.

e Attribute nodes are represented as object attributes. For the types of the attributes, the status is the
same as for the value nodes. Attributes are distinguished from children elements through the
att 1lst meta-attribute.

e Node references are represented as object references.

Figure 5 shows an XML document that conforms to the TREE case DTD (Figure 3) and Figure
6 shows how this document is stored in X-DEVICE as a set of objects, whereas the class schema is
shown in Figure 4. Notice that when a new element-object has exactly the same set of attribute values
with an existing object (e.g. objects O#author, 5#book altl), then it is not re-created for space
efficiency. More examples of OODB schemata that are generated using our mapping scheme can be
found in (X-DEVICE Web site).

There are more issues that a complete mapping scheme needs to address, except for the above
mapping rules. First, elements in a DTD can be combined through either sequencing or alternation.
Sequencing means that a certain element must include a// the specified children elements with a
specified order. This is handled by the above mapping scheme through the existence of multiple
attributes in the class that represents the parent element, each for each child element of the sequence.
The order is handled outside the standard OODB model by providing a meta-attribute (elem ord)
that specifies the correct ordering of the children elements. This meta-attribute is used when (either
whole or a part of) the original XML document is reconstructed and returned to the user. The query

language also uses it, as it will be shown later.

Using Logic

12

<!ELEMENT book (title, author+, section+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT section (title, (p | figure | section)*)>

<!ATTLIST section id 1D #IMPLIED

difficulty CDATA #IMPLIED>

<!ELEMENT p (#PCDATA)>

<!ELEMENT figure (title, image)>

<!ATTLIST figure width CDATA #REQUIRED
height CDATA #REQUIRED>

<!ELEMENT image EMPTY>
<!ATTLIST image source CDATA #REQUIRED>

Figure 3. The DTD of the TREE case.

xml seq book

attributes
title (string, single, mandatory)
author (string, list, mandatory)
section (section, list, mandatory)
meta attributes
elem ord [title, author, section]
xml seq section
attributes
title (string, single, mandatory)
section altl (section altl, list, optional)
id (string, single, optional)
difficulty (string, single, optional)
meta attributes
elem ord [title, section altl]
att 1st [id, difficulty]
alias [p-section altl, figure-section altl,section-

section altl]
xml alt section altl

attributes
P (string, single, optional)
figure (figure, single, optional)
section (section, single, optional)
xml seq figure
attributes
title (string, single, mandatory)
image (image, single, mandatory)
width (string, single, mandatory)
height (string, single, mandatory)
meta attributes
elem ord [title, image]
att 1lst [width, height]
xml seqg image
attributes
source (string, single, mandatory)
meta attributes
att 1lst [source]

Figure 4. The X-DEVICE class schema for the TREE case.
On the other hand, alternation means that any of the specified children elements can be

included in the parent element. Alternation is also handled outside the standard OODB model by

creating a new class for each alternation of elements, which is an instance of the xm1 alt meta-class

Using Logic 13

and it is given a system-generated unique name. The attributes of this class are determined by the
elements that participate in the alternation. The types of the attributes are determined as in the
sequencing case. The structure of an alternation class may seem similar to a sequencing class, however
the behavior of alternation objects is different, because they must have a value for exactly one of the

attributes specified in the class (Figure 6).

<bib>
<book year="1994">
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price> 65.95</price>
</book>
<book year="1992">
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>
</book>
<book year="2000">
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price> 39.95</price>
</book>
<book year="1999">
<title>The Economics of Technology and Content for Digital TvV</title>
<editor>
<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>
</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>
</book>
</bib>

Figure 5. A sample XML document conforming to the TREE case DTD.

The alternation class is always encapsulated in a parent element. The parent element class has
an attribute with the system-generated name of the alternation class, which should be hidden from the
user for querying the class. Therefore, a meta-attribute (alias) is provided with the aliases of this
system-generated attribute, i.e. the names of the attributes of the alternating class.

Mixed content elements are handled similarly to alternation of elements. The only difference is
that one of the alternative children elements can also be plain text (PCDATA), which is handled by
creating a string attribute of the alternation class, called content.

Another issue that must be addressed is the mapping of the occurrence operators for elements,
sequences and alternations. More specifically, these operators are handled as follows:

e The "star"-symbol (*) after a child element causes the corresponding attribute of the parent

element class to be declared as an optional, multi-valued attribute.

Using Logic 14

e The "cross"-symbol (+) after a child element causes the corresponding attribute of the parent

element class to be declared as a mandatory, multi-valued attribute.

e The question mark (?) after a child element causes the corresponding attribute of the parent

element class to be declared as an optional, single-valued attribute.

object
instance
attributes
book
object
instance
attributes
year
title

1l4#bib
bib

[11#book, 12#book, 13#book]

10#book
book

'1994"
'TCP/IP Illustrated

book altl [5#book altl]
publisher 'Addison-Wesley'

price '65.95"
object 12#book
instance book
attributes
year '2000"
title 'Data on the Web'
book altl [6#book altl,
T#book altl,
8#book altl]
publisher 'Morgan Kaufmann
Publishers'
price '39.95"
object 5#book altl
instance book altl
attributes
author O#author
editor %)
object 6#book altl
instance book altl
attributes
author l#author
editor %)
object T#book altl
instance book altl
attributes
author 2#author
editor %)
object 8#book altl
instance book altl
attributes
author 3#author
editor %
object 9#book altl
instance book altl
attributes
author %
editor 4#editor

object 11l#book
instance book
attributes
year '1992"
title 'Advanced Programming
in the Unix
environment'
book altl [S#book altl]
publisher 'Addison-Wesley'
price '65.95"
object 13#book
instance book
attributes
year '1999"
title 'The Economics of
Technology and
Content for
Digital TV'
book altl [S#book altl]
publisher 'Kluwer Academic
Publishers'
price '129.95"
object O#author
instance author
attributes
last 'Stevens'
first 'W.!
object l#author
instance author
attributes
last 'Abiteboul’
first 'Serge’
object 2#author
instance author
attributes
last 'Buneman'’'
first 'Peter’
object 3#author
instance author
attributes
last 'Suciu'
first 'Dan'
object 4feditor
instance editor
attributes
last 'Gerbarg'
first 'Darcy’

affiliation 'CITI'

Figure 6. X-DEVICE representation for the XML document in Figure 5.

Using Logic 15

e Finally, the absence of any symbol means that the corresponding attribute should be declared as a
mandatory, single-valued attribute.

The order of children element occurrences is important for XML documents, therefore the
multi-valued attributes are implemented as lists and not as sets.

The combination of occurrence operators and encapsulated sequences of children elements
calls for special treatment. For example, consider the following DTD declaration:

<I!ELEMENT a (b, (c, d)*, e)>
The sequence (c, d) can appear multiple times inside the element a. However, the structure of a
class is only finite. This case is handled by a system-generated sequencing class that includes the
encapsulated elements c and d. The system-generated unique name of this class is also the name of the
attribute of the parent element class. Finally, a meta-attribute with the aliases for the system-generated
name exists, as it is the case for encapsulated alternating children elements (see above).

Empty elements are treated in the framework described above, depending on their internal
structure. If an empty element does not have attributes, then it is treated as a PCDATA element, i.e. it
is mapped onto a string attribute of the parent element class. The only value that this attribute can take
is yes, if the empty element is present. If the empty element is absent then the corresponding attribute
does not have a value. On the other hand, if an empty element has attributes, then is represented by a

class. Finally, unstructured elements that have content ANY are not currently treated by X-DEVICE.

The X-DEVICE Deductive Query Language

Users can query the stored XML documents using X-DEVICE, by: a) submitting the query
through an HTML form, b) submitting an XML document that encapsulates the X-DEVICE query as a
string, or c) entering the query directly in the text-based Prolog environment. In any of the above
ways, the X-DEVICE query is finally forwarded to the X-DEVICE query processor, which translates it
into the first-order language of DEVICE (Figure 1). The latter executes the query and returns the results
to the X-DEVICE component. The results are then transformed into Prolog terms that represent XML
data. These data structures are fed into the PiLLoW library, which returns them to the user in the form
of an XML document.

In this section, we initially give a brief overview of the DEVICE deductive rule language, which
serves as the basis for querying the stored XML data. More details about DEVICE can be found in
(Bassiliades et al., 2000; Bassiliades, Vlahavas, Elmagarmid, & Houstis, 2001).

The Basic Deductive Query Language of DEVICE

The syntax for X-DEVICE deductive rules is given in the Appendix. Rules are composed of
condition and conclusion, whereas the condition defines a pattern of objects to be matched over the

database and the conclusion is a derived class template that defines the objects that should be in the

Using Logic 16

database when the condition is true. The following rule defines that an object with attribute end=v
exists in class path from one if there is an object with OID 2 in class arc with attributes start=1,
end=Y.

if A@arc(start=1,end:Y)
then path from one(end:Y)

Class path from one is a derived class, i.e. a class whose instances are derived from
deductive rules. Only one derived class template is allowed at the THEN-part (head) of a deductive
rule. However, there can exist many rules with the same derived class at the head. The final set of
derived objects is a union of the objects derived by the two rules. For example, the transitive closure of
the set of nodes reachable from node 1 is completed with the following (recursive) rule:

if P@path from one(end:Y) and
AQarc (start:Y,end:7z\=1)
then path from one(end:Z)

The syntax of the basic DEVICE rule language is first-order. Variables can appear in front of
class names (e.g. P, &), denoting OIDs of instances of the class, and inside the brackets (e.g. v, 2),
denoting attribute values (i.e. object references and simple values, such as integers, strings, etc).
Conditions also can contain comparisons between attribute values, constants and variables (e.g.
end:z\=1). Negation is also allowed if rules are safe, i.e. variables that appear in the conclusion must
also appear at least once inside a non-negated condition.

A query is executed in DEVICE by submitting the set of stratified rules (or logic program) to
the system, which translates them into active rules and activates the basic events to detect changes at
base data. Data then are forwarded to the rule processor through a discrimination network (much alike
in a production system fashion). Rules are executed with fixpoint semantics (semi-naive evaluation),
i.e. rule processing terminates when no more new derivations can be made. Derived objects are
materialized and are either maintained after the query is over or discarded on user's demand. DEVICE
also supports production rules, which have at the THEN-part one or more actions expressed in the
procedural language of the underlying OODB (Gray et al., 1992).

The main advantage of the DEVICE system is its extensibility that allows the easy integration
of new rule types as well as transparent extensions and improvements of the rule matching and
execution phases. The current system implementation includes deductive rules for maintaining derived
and aggregate attributes. Among the optimizations of the rule condition matching is the use of a
RETE-like discrimination network, extended with re-ordering of condition elements for reducing time
complexity and virtual-hybrid memories for reducing space complexity (Bassiliades & Vlahavas,
1997). Furthermore, set-oriented rule execution can be used for minimizing the number of inference

cycles (and time) for large data sets (Bassiliades et al., 2000).

Using Logic 17

Extending DEVICE for Querying XML Data

The deductive rule language of DEVICE is extended with new constructs and operators in order
to facilitate traversing and querying of the tree-structured XML data. The new constructs are
implemented using second-order logic syntax (i.e. variables can range over class and attribute names)
that has been introduced to DEVICE for integrating heterogeneous schemata (Bassiliades et al., 2001).

Both the new constructs and the second-order syntax are translated into a combination of: a) a
set of first-order logic deductive rules, and/or b) a set of production rules that their conditions query
the meta-classes of the OODB, they instantiate the second-order variables, and they dynamically
generate first-order deductive rules.

Throughout this section, we will demonstrate the use of X-DEVICE for querying XML data
using examples taken from the XML Query Use Cases proposed by the WWW consortium (W3
Consortium, Dec 2001c¢). Furthermore, we present the translation of the various new constructs to the
basic DEVICE rule language. The general procedures for query translation can be found in (X-DEVICE
Web site).

Path Expressions

X-DEVICE supports several types of path expressions into rule conditions. The simplest case is
when all the steps of the path must be determined. This case can be handled by the basic mechanism of
path expressions of DEVICE without any extension. The following example demonstrates fully

determined path expressions, using the query Q3 of the SGML use case (Figure 7).

<!ELEMENT report (title, chapter+)>
<!ELEMENT title (#PCDATA | emph) *>
<!ELEMENT chapter (title, intro?, section*)>
<!ATTLIST chapter shorttitle CDATA #IMPLIED>
<!ELEMENT intro (para | graphic)+>
<!ELEMENT section (title, intro?, topic*)>
<!ATTLIST section shorttitle CDATA #IMPLIED
sectid ID #IMPLIED>
<!ELEMENT topic (title, (para | graphic)+)>
<!ATTLIST topic shorttitle CDATA #IMPLIED
topicid ID #IMPLIED>
<!ELEMENT para (#PCDATA | emph | xref)*>
<!ATTLIST para security (u | ¢ | s | ts) "u">
<!ELEMENT emph (#PCDATA | emph) *>
<!ELEMENT graphic EMPTY>

<!ATTLIST graphic graphname ENTITY #REQUIRED>
<!ELEMENT xref EMPTY>
<IATTLIST xref xrefid IDREF #IMPLIED>

Figure 7. The DTD of the SGML case.

SGML Case - Q3. Locate all paragraphs in the introduction of a section that is in a chapter that
has no introduction (all "para" elements directly contained within an "intro" element directly contained
in a "section" element directly contained in a "chapter" element. The "chapter" element must not

directly contain an "intro" element).

Using Logic 18

The X-DEVICE version of the above query is the following:

if C@chapter (intro \= I, para.intro.section 3 P)
then result (para:list(P))

Several features of X-DEVICE are demonstrated through this example. First of all, the path
expressions are composed using dots between the "steps", which are attributes of the interconnected
objects that represent XML document elements. The innermost attribute should be an attribute of
"departing" class, i.e. section is an attribute of class chapter. Moving to the left, attributes belong
to classes that represent their predecessor attributes. Notice that we have adopted a right-to-left order
of attributes, contrary to the C-like dot notation that is commonly assumed, because we would like to
stress out the functional data model origins of the underlying ADAM OODB (Gray et al., 1992).
Under this interpretation the chained "dotted" attributes can be seen as function compositions.

The rules that contain path expressions are transformed into equivalent rules that contain only
single-step path expressions, during the pre-compilation phase of DEVICE. The above rule is

transformed into the following:

if C@chapter (intro \= I, section 3 XX1) and
XX1l@section (intro:XX2) and

XX2@intro (para 3 P)
then result (para:list(P))

Variables xx1 and xx2 are generated by the system. Variables are instantiated through the ':
operator when the corresponding attribute is single-valued, and the '>' operator when the
corresponding attribute is multi-valued. Since multi-valued attributes are implemented through lists
(ordered sequences) the '3' operator guarantees that the instantiation of variables is done in the
predetermined order stored inside the list.

The 1ist (P) construct in the rule condition denotes that the attribute para of the derived
class result is an attribute whose value is calculated by the aggregate function 1ist. This function
collects all the instantiations of the variable P and stores them under a strict order into the multi-valued
attribute para. More details about the implementation of aggregate functions in DEVICE can be found
in (Bassiliades et al., 2000).

Notice that the attribute para of the class intro is part of an encapsulated alternation;
therefore, the para objects are accessible through an alternation class called intro altl.
Consequently, the condition xx2@intro (para 3 P) is actually expanded to the following
expression, wherever it occurs in the above translation:

XX2@intro(intro altl 3 XX3) and XX3Q@intro altl(para:P)

Actually, the above expansion is performed in all the path expressions that involve elements
included in an alternation. In the rest of the examples we will not further present this expansion to
keep the presentation simple. O

The same query in XQuery is expressed as follows:

Using Logic 19

<result>
{ for $c in //chapter
where empty($c/intro)
return $c/section/intro/para

}
</result>

Comparing XQuery with X-DEVICE, we notice that in XQuery there are explicit functional-
style looping constructs, while in X-DEVICE looping is implicit since it is a declarative DATALOG-
like language that follows the semi-naive evaluation algorithm. Furthermore, XQuery has separate
syntactical constructs for selecting and returning results, whereas XML results are built in a template-
like manner. Notice that the (/ /) operator searches an element throughout the XML tree, whereas the
(/) operator searches an element only among the children of the predecessor element. In general,
XQuery has not a clear and simple syntax but follows multiple different paradigms. In contrast, the
syntax of X- DEVICE follows a simple paradigm, that of a logic-like notation enhanced with OODB
and general path extensions.

Another case in path expressions is when the number of steps in the path is determined, but the
exact step name is not. In this case, a variable is used instead of an attribute name. This is
demonstrated by the following example, which is a simplification of the question Q2 of the SEQ case
(Figure 8): "In the Procedure section, what Instruments were used?"

Knowing that between instrument elements and the section content element there is one other

element whose name is unknown, the above query in X-DEVICE looks like the following:

if S@section(section title='Procedure', instrument.C.section content > I)
then result (instrument:list (I))

<!ELEMENT report (section*)>
<!ELEMENT section (section.title, section.content)>
<!ELEMENT section.title (#PCDATA) >

<!ELEMENT section.content (#PCDATA | anesthesialpreplincision|action
| observation) *>

<!ELEMENT action ((#PCDATA | instrument)*)>

<!ELEMENT prep ((#PCDATA | action)*)>

<!ELEMENT incision ((#PCDATA | geography | instrument)*)>

<!ELEMENT anesthesia (#PCDATA)>
<!ELEMENT observation (#PCDATA)>
<!ELEMENT geography (#PCDATA) >

<!ELEMENT instrument (#PCDATA) >

Figure 8. The DTD of the SEQ case.

Variable C is in the place of an attribute name, therefore it is a second-order variable, since it
ranges over a set of attributes, and attributes are sets of things (attribute values). Deductive rules that
contain second-order variables are always translated into a set of rules whose second-order variable
has been instantiated with a constant. This is achieved by generating production rules, which query the
meta-classes of the OODB, instantiate the second-order variables, and generate deductive rules with
constants instead of second-order variables. The above deductive rule is translated into the following

(simplified) production rule:

Using Logic 20

if section content@xml seg(elem order > C) and
Ceéxml seq(elem order > instrument)
then new rule('if S@section(section title='Procedure',6 section content 3 XXI1)
and XXl@section content (C > XX2) and
XX2@C (instrument > I)

then result (instrument:list(I))")
=> deductive rule

Notice that variable C is now a first-order variable in the condition of the production rule,
while the deductive rule generated by the action of the production rule has C instantiated. The above
rule will actually produce two deductive rules, namely C is bound to incision and action. The
result consists of the union of the results of the two deductive rules. The conditions of the two rules
begin with the same condition element, which leads to an optimized execution due to the compact
discrimination network that DEVICE produces. O

The most interesting case of path expressions is when some part of the path is unknown,
regarding both the number and the names of intermediate steps. This is handled in X-DEVICE by using
the "star" (*) operator in place of an attribute name. Such path expressions are called "generalized" or

"general". The previous example can be re-written using the "star" (*) operator as:

if S@section(section title='Procedure', instrument.*.section content > I)
then result (instrument:1list(I))

The following set of rules, that represents the translation of the above rule, first establish the
beginning of the path, starting from the "departing" class, then recursively navigate the elements of the
XML tree, and finally terminate the path, either with a fixed element or with an element that does not
have children. The last rule is a production rule that iterates over the discovered paths, which have

been stored in a temporal class, and creates the corresponding deductive rules.

if section@xml seg(elem order > section content)
then tmp eleml (cnd elem:section content,path string:'section content')

if XX1@tmp eleml (cnd elem:XX2 \= instrument,path string:XX3) and

XX2@xml seq(elem order 3 XX5 \= instrument)
then tmp eleml (cnd elem:XX5,path string:'XX5.XX3"')

if XX1@tmp eleml (cnd elem:XX2 \= instrument,path string:XX3) and
XX2@xml seqg(elem order > instrument)
then tmp elem2(path string:'instrument.XX3'")

if XX1@tmp elem2 (path string:XX2)
then new rule('if S@section(section title='Procedure', XX2 > I)
then result (instrument:1list(I))")
=> deductive rule

Notice that the translation has been simplified for presentation purposes, by eliminating all
rules and attributes that have to do with recursive elements, since the SEQ case DTD does not contain
such elements. The translation procedure for rules containing generalized paths is more complex that
the previous example, because the intermediate path may contain recursive elements, i.e. elements that
contain other elements of the same type, as for example the element section of the TREE case

(Figure 3). The translation of a rule that contains a recursive element is presented in the next example.

Using Logic 21

TREE Case - Q2 (simple). Prepare a (flat) figure list for 'Book1', listing all the titles of the
figures.
The above query is expressed in X-DEVICE as:

if B@book(title='Bookl', title.figure.section*:T)
then figurel (title:list(T))

Notice that the result generates a class figurel, because class figure already exists. The
above rule contains a path expression with a recursive element section*. This means that the search
for figure titles will be performed in any nesting level of section elements. The nesting depth of
section elements cannot be determined by just looking at the schema of the document, therefore the
section* expression cannot be unfolded to multiple section.section...section paths of
increasing length. The translation of the recursive element path of the above query is the following:

if B@book (title='Bookl', title.figure.section:T)
then figurel (title:list(T))

if B@book(title="'Bookl', section 3 XX1)
then tmp eleml (cnd obj:XX1)

if XX2@tmp eleml (cnd obj:XX1) and
XX1l@section(section 3 XX3)
then tmp eleml (cnd obj:XX3)

if XX1@tmp eleml (title.figure.cnd obj:T)
then figurel(title:list(T))

The algorithm traverses down the tree of sections originating from a specific book object,
copying the sections into the system-generated tmp eleml class. For each of these sections the figure
titles are retrieved and copied to the result. 0

We notice here that XQuery (W3 Consortium, Dec 2001a) cannot express queries with general
path expressions, i.e. queries with the star (*) operator, unless the star (*) operator lies at the beginning
of the path. The following example demonstrates that.

SGML Case - Q1. Locate all paragraphs in the report (all "para" elements occurring anywhere
within the "report" element) (Figure 7).

The above query is expressed in X- DEVICE as:

if R@report (para.* 3 P)
then result (para:list (P)

whereas in XQuery the query is expressed as:

<result>
{ //report//para
}

</result>
m
There are some cases that there are multiple solutions to a problem with a path expression and

the user may require the solution that involves the shortest of the paths. For such cases, X-DEVICE

Using Logic 22

offers the "cross" (+) operator in the place of the "star" (*) operator. The next example demonstrates
the use and translation of the "cross" (+) operator.

SGML Case - Q10. Locate the closest title preceding the cross-reference ("xref™) element
whose "xrefid" attribute is "top4" (the "title" element that would be touched last before this "xref"
element when touching each element in document order).

The above query is expressed in X-DEVICE as:

if P@Element (title:T, “xrefid.xref.+ = 'topd')
then result (title:T)

Notice that when the (*) symbol precedes an object attribute in X-DEVICE, then this designates
an XML attribute, such as “xrefid. In the SGML DTD (Figure 7), there are many elements that
encapsulate tit1le as a child element, so the class name in the above rule is a second-order variable
that iterates over all such elements. The following production rule finds all elements withatitle

sub-element and creates deductive rules with variable E1ement bound to constants.

if Element@xml seg(elem order > title)
then new rule('if PQ@Element (title:T, “xrefid.xref.+ = 'top4')
then result (title:T)")
=> deductive rule

The translation of each of the above deductive rules requires two rules: one for generating all
possible results for all possible paths using the "star" (¥) operator, and one for selecting the shortest of
the paths, which is identified by an element that belongs to the result that it does not contain any other
element that also belongs to the result.

if P@Element (title:T, “xrefid.xref.*="topd')
then tmp eleml (tmp varl:T,tmp obj:P)

if XX1@tmp eleml (tmp varl:T,tmp obj:XX2) and
not (XX3@tmp eleml (tmp obj:XX4\=XX2) and
XX2@Element (* 3 XX4))
then result (title:T)

m

Finally, the user should be able to perform arbitrary text search within an XML document
without having to worry about the internal structure of the document. X-DEVICE offers the (T)
operator that flattens an element returning a string consisting of all its sub-element contents (tags are
not included). Then the user is able to perform text search inside this string. The following example
demonstrates this operator.

SGML Case - Q8a. Locate all sections with a title that has "is SGML" in it (all "section"
elements that contain a "title" element that has the consecutive characters "is SGML" in its content).
The string can be interrupted by sub-elements (Figure 7).

The above query is expressed in X-DEVICE as:

if S@section(titleT $ 'is SGML')
then result(section:1list (S))

Using Logic 23

The flattening operator (1) is placed after the name of the element to be flattened. This

operator gets translated using two rules:

if S@section(*.title > XX1)
then tmp eleml (tmp varl:S,tmp val:string(XX1))

if XX1@tmp eleml (tmp varl:S,tmp val $ 'is SGML')
then result(section:1list (S))

The first rule collects the contents of all sub-elements of tit1e, using a "star" (¥) operator.
All these contents are stored in an attribute of a temporary class, through the st ring aggregate
function. This aggregate function collects all the (string) values of variable xx1 and concatenates them
together. The second rule searches inside the result string using the string search ($) operator of X-

DEVICE. O

Ordering Expressions

X-DEVICE supports expressions that query an XML tree based on the ordering of elements.
The implementation of such operators is based on the fact that multi-valued attributes are implemented
using lists in which the order of stored values is fixed. The translation of ordering expressions requires
multiple steps to preserve their semantics, especially when there are multiple such expressions in a
single rule.
When a rule contains exactly one ordering expression, then the original rule is transformed into
three rules that:
1. gather all the results,
2. restrict to as many results as the ordering expression requires, and
3. iterate over the correct results continuing with rest of the rule condition.

The following example demonstrates the use and translation of a simple ordering expression.

SEQ Case - Q2. In the Procedure section, what are the first two Instruments to be used?
(Figure 8)
The above query is expressed in X-DEVICE as:

if S@section(section title='Procedure', instrument.*.section content 3., I)
then result (instrument:1list(I))

The >_-, operator is an absolute numeric ordering expression that returns the first two elements
of the corresponding list-attribute. More such ordering expressions exist that are implemented

accordingly. The translation of this expression is the following:

if S@section(section title='Procedure', instrument.*.section content > XXI)
then tmp eleml (tmp obj:list (XX1))

if XX3@tmp eleml (tmp obj:XX1) and
prolog{select sub list('=<'(2),XX1,XX2)}
then tmp elem2 (tmp obj:XX2)

if XX1@tmp elem2 (tmp obj > I)
then result (instrument:1list(I))

Using Logic 24

If a rule contains more than one ordering expressions, then the original rule is transformed into
as many rules as the list operators. Furthermore, there is a shortcut notation for multiple absolute
numeric ordering expressions, which is demonstrated with the following example:

SGML Case - Q4. Locate the second paragraph in the third section in the second chapter (the
second "para" element occurring in the third "section" element occurring in the second "chapter"
element occurring in the "report") (Figure 7).

The above query is expressed in X-DEVICE as:

if R@report (para,.sections.chapter,:P)
then result (para:P)

The above shortcut notation is translated into a sequence of multiple ordering expressions:

if R@report (chapter 3, XX1) and
XX1l@chapter (section 3; XX2) and

XX2@section (para 3, P)
then result (para:P)

The operator 3, (or 5>_,) returns the n-th element in a sequence. The translation of the above
rule is:

if R@report (chapter 3, XX1)
then tmp eleml (tmp objl:1list (XX1))

if XX3@tmp eleml (tmp objl:XX1) and
XX1@chapter (section 33 XX2)
then tmp elem2 (tmp obj2:1list (XX2))

if XX3@tmp elem2 (tmp obj2 3 XX2) and

XX2@section (para 3, P)
then result (para:P)

m
The translation of relative ordering expressions follows the same general procedure with
absolute numeric ones. However, the combination of such expressions with alternation classes calls
for a special treatment. This will be better explained through the following example:
SEQ Case - Q5. What happened between the first Incision and the second Incision? (Figure 8)

The above query is expressed in X-DEVICE as:

if S@section(incision.section content 3; Il) and
S@section(incision.section content 3, I2) and
(

S@section(H.section content 3pcrueen(ri,2) W)
then result (happened:list (W))

The operator between (11, 12) is a relative ordering expression that returns all elements in a
sequence after the one with an OID identified by the instantiations of the variable 11 and before the
ones with OID 12. The problem here arises from the fact that the section content element has a
mixed content; therefore, all its children elements (including incision) are connected to element

section content indirectly through the class section content altl. Therefore, the attribute

Using Logic 25

section content altl ofclass section content contains objects of class

section content altl and not objects of any of the classes of its children elements, such as
incision, action, etc. Thus, the implementation of the operator between (11, 12) must take into
account that the OIDs of the children elements of section content do not co-exist in the same list
attribute.

The solution to the above problem is to replace all the variables that depend on the relative
ordering expression, namely I1, 12 and W, with new variables that represent their parent elements of
the corresponding alternation class section content altl.Furthermore, the parts of the condition
that contain these variables must be transformed using the equivalent alternation classes. The above

example is transformed as follows:

if S@section(section content altl.section content 3; XX1) and
XX1l@section content altl(incision 3 Il) and
S@section(section content altl.section content 3, XX2) and
XX2@section content altl(incision 3> I2) and
S@section(section content altl.section content 3pctueen 1,2y XX3) and
XX3@section content altl(H > W)

then result (happened:list (W))

m

In some cases, the relative ordering expression coexists with an absolute numeric ordering
expression, which is called a complex ordering expression. In these cases, the rule with the two
ordering expressions is cut down into two separate rules, each one containing one single ordering
expression. The following example demonstrates this:

SEQ Case - 03. What Instruments were used in the first two Actions after the second Incision?
(Figure 8)

The above query is expressed in X-DEVICE as:

if S@section(incision.section content 3, I) and
S@section(action.section content 3j.fter(ry, —2; A) and
AQaction (instrument 3 I2)

then result (instrument:1list (I2))

The operator 3(.¢ior (1), -<2; 1S @ complex ordering expression that consists of the relative
ordering expression after (I) followed by the absolute numeric ordering expression =<2. The

translation is:

if S@section(incision.section content 3, I) and

S@section(action.section content 3.fier(r) XX1)
then tmp eleml (tmp obj:list (XX1))

if XX1@tmp eleml (tmp obj >-., A) and
AQaction (instrument 3 I2)
then result (instrument:1list (I2))

O

Using Logic 26

Exporting Results

So far, only the querying of existing XML documents through deductive rules has been
discussed. However, it is important that the results of a query can be exported as an XML document.
This can be performed in X-DEVICE by using some directives around the conclusion of a rule that
defines the top-level element of the result document.

When the rule processing procedure terminates, X-DEVICE employs an algorithm that begins
with the top-level element designated with one of these directives and navigates recursively all the
referenced classes constructing a result in the form of an XML tree-like document. The procedure for
answering an X-DEVICE query consists of compiling and running the query and then constructing the
XML result document along with its DTD. Rule compilation and evaluation are not described here
since they are actually a part of the DEVICE system. However, what should be mentioned is that the
object schema of the derived classes is determined during the compilation phase, which returns the
name of the top-element class of the result document.

The following example demonstrates how XML documents (and DTDs) are constructed in X-
DEVICE for exporting them as results.

XMP Case - Q1. List books published by Addison Wesley after 1991, including their year and
title (Figure 9).

The above simple query is expressed in X-DEVICE as:

if B@book(title:T,publisher="'Addison Wesley', year:Y>1991)
then xml result (bookl(title:T,year:Y))

The keyword xm1 result is a directive that indicates to the query processor that the
encapsulated derived class (book1) is the answer to the query. This is especially important when the
query consists of multiple rules. In order to build an XML tree as a query result, the objects that
correspond to the elements must be constructed incrementally in a bottom-up fashion, i.e. first the
simple elements that are towards the leaves of the tree are generated and then they are combined into

more complex elements towards the root of the tree.

<!ELEMENT bib (book*) >

<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA) >

<!ELEMENT price (#PCDATA) >

<!ELEMENT last (#PCDATA) >

<!ELEMENT first (#PCDATA) >

<!ELEMENT affiliation (#PCDATA) >

<!ELEMENT publisher (#PCDATA)>

Figure 9. The DTD of the XMP case.
The above query produces a forest of book elements, with the following DTD:

<!DOCTYPE bookl [
<!ELEMENT bookl (title, year)>

Using Logic 27

1>
If a tree is wanted instead, then we should use one more rule to produce a top-level element
(bibl) to wrap the book1 elements:

if B@book (title:T,publisher='Addison Wesley', year:Y>1991)
then bookl (title:T,year:Y)

if B@bookl
then xml result (bibl (bookl:1list (B)))

with the following DTD:

<!DOCTYPE bibl [

<!ELEMENT bibl (bookl)*>
<!ELEMENT bookl (title, year)>
1>

Notice how the 11 st aggregate function is used to construct XML elements with multiple
children. In fact this kind of query is so common that X-DEVICE offers the following wrapping
construct that is translated into the above set of rules:

if B@book(title:T,publisher="'Addison Wesley', year:Y>1991)
then xml result (bibl (bookl (title:T,year:Y)))

m

One of the most important advantages of using a logic-like language for querying XML data is
the ability of X- DEVICE to recursively query XML documents and construct a hierarchic document of
arbitrary depth from flat structures stored in a database.

PARTS Case - Q1. Convert a flat list of parts that contain one another (Figure 10) to a tree of
parts (Figure 11). In the result document, part containment is represented by containment of one
<part> element inside another. Each part that is not part of any other part should appear as a separate
top-level element in the output document.

The above query is expressed in X-DEVICE as:

if P@part ("partid:ID, "name:Name)
then partl ("partid:ID, "name:Name)

if PPl@partl ("partid:ID) and
Pl@part ("partid:ID, "parent:Parent) and
PP2@partl ("partid:Parent)

then PP2@partl (part:list (PP1))

if Pl@partl and

not P2@partl (part 3> P1)
then xml result (parttree(partl:list(P1l)))

<!ELEMENT partlist (part*)>
<!ELEMENT part EMPTY>

<!ATTLIST part partid CDATA #REQUIRED
partof CDATA #IMPLIED
name CDATA #REQUIRED>

Figure 10. The DTD of the PARTS case.

Using Logic 28

The above set of rules recursively iterates through the hierarchies implicit in the flat part list
and transforms them into explicit complex object references in the recursive part1 element. When the
above algorithm finishes, the last rule makes top-level elements those that are contained within

another part in he hierarchy.

<!ELEMENT parttree (part*)>

<!ELEMENT part (part*)>

<!ATTLIST part partid CDATA #REQUIRED
name CDATA #REQUIRED>

Figure 11. The DTD for a tree of parts.
The same query in XQuery is expressed as:

define function one level (element $p) returns element
{ <part partid={ $p/@partid }
name={ Sp/@name } >
{ for $s in document ("data/parts-data.xml")//part
where $s/@partof = Sp/@partid
return one level ($s)

}
</part>
}

<parttree>
{ for $p in document ("data/parts—-data.xml")//part[empty (@partof)]
return one level ($p)

}
</parttree>

The complexity of the above query lies in the fact that XQuery is functional and therefore
requires explicit looping constructs, whereas the declarative, implicit loops of X-DEVICE allow a more
clear and concise syntax. Furthermore, XQuery constructs the result in heterogeneous ways, i.e. either
using templates or functions, which complicate things for the naive user, whereas X-DEVICE uses the
simple notion of defining derived classes that can be referenced by other classes through object
referencing. 0

Another directive for constructing XML documents is xm1 sorted, which is similar to
xml result and is used for sorting the elements of the result according to a group of element values
specified in the rule head. The following example demonstrates the use and translation of
xml sorted:

XMP Case - Q7. List the titles and years of all books published by Addison Wesley after 1991,
in alphabetic order (Figure 9).

if B@book (title:T,publisher='Addison Wesley', year:Y>1991)
then xml sorted([T],bibl (bookl (title:T,year:Y)))

Notice that the sorting is done on the values of the T variable, namely the book titles. This
directive is easily translated into two rules:

if B@book(title:T,publisher="'Addison Wesley', year:Y>1991)
then bookl (title:T, year:Y)

if XX1@bookl (title:T,year:Y)

Using Logic 29

then xml result (bibl (bookl:ord list (XX1-[T])))

The first rule creates the inner class (book1), while the second one creates the outer class
(bib1) and groups inside the single instance of the outer class all the instances of the inner class by
copying them to a list attribute (book1), sorted by the values of the T variable. The expression
ord 1list is another aggregate function of X-DEVICE that, similarly to 1ist, collects all the instances
of its argument (variable xx1) into a list, sorting them simultaneously according to the values of the
list that follows the argument ([T1). This function can be used independently of the xm1 sorted
construct, which means that the user can sort sibling elements anywhere in the result tree. 0

Finally, the user can choose to avoid producing deep XML documents, even if the result
contains elements that contain children elements, by using the shallow result directive. This
directive returns an XML document with two levels of nesting: the first contains only the root element
of the result tree, and the second level contains elements without children but only with attributes (if
any). The following example demonstrates this:

REF Case - Q2. Find Joe's children (Figure 12). Notice that the parent-child relationship is

represented through the recursive element person.

<!ELEMENT census (person*)>
<!ELEMENT person (person*)>

<!ATTLIST person name ID #REQUIRED
spouse IDREF #IMPLIED
job CDATA #IMPLIED >

Figure 12. The DTD of the REF case.

The above query is expressed in X-DEVICE as:

if P@person(”"name='Joe',person 3 Ch)
then result (person:1list (Ch))

if P@person(”"name='Joe', "spouse:S) and
Pl@person ("name=S, person > Ch)
then shallow result (result (person:1list(Ch)))

Notice that although both rules refer to the derived class result, only one of them contains
the shallow result directive. However, this is not a strict language rule; it does not matter if
several rules contain the shallow result or any other result directive, as long as the following
constraints are satisfied:

e Only one type of result directive is allowed in the same query.
e Only one derived class is allowed at the result.
The DTD for the above set of rules is the following:

<!DOCTYPE result [
<!ELEMENT result (person*)>
<!ELEMENT person EMPTY>

<!ATTLIST person name 1D #REQUIRED
spouse IDREF #IMPLIED
Jjob CDATA #IMPLIED >

Using Logic 30

although in the REF DTD the person element had sub-elements (Figure 12). 0

Alternative Attribute Expressions

It has already been mentioned that X-DEVICE path expressions can contain steps that refer
either to normal XML elements or attribute elements, using the (*) symbol as a prefix before the name.
There are two more types of special attributes that can be used in X-DEVICE, namely the empty
element attributes and the system attributes. The following example demonstrates the use of both
special attributes.

XMP Case - Q6. For each book, list the title and first two authors, and an empty "et-al"
element if the book has additional authors (Figure 9).

The above query is expressed in X-DEVICE as:

if B@book(title:T,author >.., A)
then bookl (title:T,author:1ist (A))

if Bl@bookl (title:T) and
B@book (title:T, author:A) and
prolog{length(A, L), L>2}
then Bl@bookl (Jet al)

The second rule above is a derived-attribute rule (Bassiliades et al., 2000), which creates a new
et al attribute for the class book1. This new attribute is actually an empty element prefixed by the
() symbol. Empty attributes are actually handled as strings with value yes if they are present. The
derived-attribute rule defines that only objects of class book1 that satisfy the condition will have such
an attribute. The rest will have no value for this attribute, which means that no such element will
appear at the result.

Another noticeable feature of both DEVICE and X-DEVICE in the above derived-attribute rule is
the use of arbitrary Prolog goals inside the condition of rules. In this way the system can be extended
with several features, which are outside of the language and therefore cannot be optimized.

Finally, notice that the derived-attribute rule iterates over all books that have been copied to
the book1 class retrieving their titles, and then matches the titles with those of the original book
objects. If titles are not unique, however, this can produce wrong results. A safer way to do this would
be to store within the book1 objects the OID of the original book objects, which are unique. However,
theses OIDs should not really be part of the query result; their purpose is merely auxiliary. This can be
achieved by prefixing the auxiliary attribute with the (!) symbol, which indicates that it is a system

attribute. Using a system attribute, the above query is now expressed as follows:

if B@book(title:T,author >.., A)
then bookl (title:T,author:1list (A), loriginal:B)

if Bl@bookl (!original:B) and
B@book (author:A) and
prolog{length(A, L), L>2}
then Bl@bookl (LJet al)

Using Logic 31

The original attribute is a system attribute that will not appear at the final XML result. This
is achieved by simply not placing the attribute name in the elem order class attribute. Its
functionality is to keep track (in book1 objects) of the original book objects so that their XML

attributes can be preserved through the first rule, for using them in the second rule. 0

Conclusions and Future Work

In this chapter, we have considered the problem of storing an XML document into an OODB
by automatically mapping the schema of the XML document (DTD) to an object schema and XML
elements to database objects. Our approach maps elements either as classes or attributes based on the
complexity of the elements of the DTD, without loosing the relative order of elements in the original
document.

Furthermore, we have provided a deductive rule query language for expressing queries over
the stored XML data. The deductive rule language has certain constructs (such as second-order
variables, general path and ordering expressions) for traversing tree-structured data that were
implemented by translating them into first-order deductive rules. The translation scheme is mainly
based on the querying of meta-data (meta-classes) about database objects. Comparing X-DEVICE with
the XQuery query language, it seems that the high-level, declarative syntax of X-DEVICE allows users
to express everything that XQuery can express, in a more compact and comprehensible way, with the
powerful addition of general path expressions, fixpoint recursion and second-order variables.

Users can also express complex XML document views using X-DEVICE, a fact that can greatly
facilitate customizing information for e-commerce and/or e-learning. Furthermore, the X-DEVICE
system offers an inference engine that supports multiple knowledge representation formalisms
(deductive, production, active rules, as well as structured objects), which can play an important role as
an infrastructure for the impending semantic Web (W3 Consortium, Nov 2001). Production rules can
also be used for updating an XML document inside the OODB, a feature not yet touched upon the
XQuery initiative. However, the study of using production rules for updating XML documents is
outside the scope of this chapter and is a topic of future research.

Among our plans for further developing X-DEVICE is the definition of an XML-compliant
syntax for the rule/query language based on the upcoming RuleML initiative (Boley, Tabet, &
Wagner, 2001). Furthermore, we plan to extend the current mapping scheme to documents that

comply with XML Schema (W3 Consortium, May 2001).

Acknowledgements

Part of the work presented in this chapter was partially financially supported by the European
Commission under the IST No 12503 Project "KOD - Knowledge on Demand" through the

Information Society Technologies Programme (IST).

Using Logic

32

The first author is supported by a scholarship from the Greek Foundation of State Scholarships

(F.S.S. - LK.Y.).
Appendix: X-DEVICE Syntax

<rule> ::= 1f <condition> then <consequence>
<condition> ::= <inter-object>
<consequence> ::= {<action> | <conclusion> | <derived attribute template>}
<inter-object> ::= <condition-element> ['and' <inter-object>]
<inter-object> ::= <inter-object> 'and' <prolog cond>
<condition-element> ::= ['not'] <intra-object>
<intra-object> ::= [<inst expr>'@']<class expr>['('<attr-patterns>")']
<attr-patterns> ::= <attr-pattern>[', '<attr-patterns>]
<attr-pattern> = <attr-expr>['.'<path expr>] {':'<variable>

| <predicates>

<path expr>
<attr-expr> ::=
<nt-attr-expr>

| ':'<variable> <predicates>
| <list-operator> <variable>}
<nt-attr-expr> ['.'<path expr>]
{<nt—attr—expr>|<t—attr>|<normal—attr>'T'}
= <nt-attr>[{'*'|<integer>}]

<nt-attr-expr> ::= {'*"'"|"'+"'}

<nt-attr> ::= {<normal-attr>|<system-attr>}

<t-attr> ::= {<xml-attr>|<empty-attr>}

<normal-attr> = <attr>

<system-attr> ::= '!'<attr>

<xml-attr> ::= '""'<attr>

<empty-attr> = '@'<attr>

<attr> ::= {<attribute>|<variable>}

<predicates> = <rel-operator> <value> [{ '&' | ';' } <predicates>]
<predicates> = <set-operator> <set>

<rel-operator>

<date-operator>
<set-operator>
<list-operator>

<list-operator>
<order expr>

<abs order> ::= <rel-operator><integer> | <integer>

<rel order> ::= { 'before' | 'after' }'('<variable>")'

<rel order> ::= 'between' '('<variable>', '<variable>"')'

<value> = <constant> | <variable> | <arith expr>

<set> ::= '['<constants>']'

<prolog cond> ::= 'prolog' '{'<prolog goal>"'}"

<action> ::= <prolog goal>

<conclusion> ::= <derived class template>

<conclusion> = {'xml result' | 'shallow result'}'('<elem expr>"')"

<conclusion> = {'xml sorted' | 'shallow sorted'}'('[<group list>
['-'<order list>]"',']<elem expr>")

<elem expr> ::=
<elem expr> ::=

ci= =T > Ts=T | Y=< | T "\=" ‘

| <date-operator>
s = l$l{lyV|le|ld'}

P 'C' I V¢' | 'C' | 'e' | 'e' I 'D' | '\D'

ce= 13! | 1\31
::= '3'<order expr>

{<abs_order>|<rel order>|'{'<rel order>', '<abs order>'}"}

<derived class_template>

<derived class>'('<derived class template>')"

'D'

<derived class template> ::= <derived class>' ('<templ-patterns>"')'
<derived attribute template> ::= <variable>'Q'{<class>}

<templ-patterns
<templ-pattern>

<templ-pattern>
<aggregate expr

>

>

A} |l

('<templ-patterns>")
::= <templ-pattern> [',' <templ-pattern>]

1= {<normal-attr>|<system-attr>|<xml-attr>}':"'

{<value> | <aggregate expr>}
1= <empty-attr>

::= <aggregate function>' ('<variable>'")'}

A}

Using Logic 33

<aggregate expr> ::= 'ord list('<variable>['-'<group list>

B N ['—'<ordefilist>]]')'
<aggregate function> ::= 'count'l'sum'l'avg'l'max'\'ﬁin'\'list'l'string'
<group list> ::= '['"<variable>["', '<variable>]"']"
<order list> ::= '['<ord symbol>["', '<ord symbol>]"']"
<ord s§mbol> o= < | T>'} N
<inst expr> ::= {<variable>|<class>}
<clasgiexpr> ::= {<variable>|<class>|<inst expr>'/'<class>}
<class> ::= an existing class or meta-class of the OODB schema
<derived class> ::= an existing derived class or a non-existing base class of the OODB schema
<attribute> ::= an existing attribute of the corresponding OODB class
<prolog goal> ::= an arbitrary Prolog/ADAM goal
<constants> ::= <constant>[', '<constants>]
<constant> ::= avalid constant of an OODB simple attribute type
<variable> ::= avalid Prolog variable
<arith expr> ::= avalid Prolog arithmetic expression

References

Abiteboul, S., Cluet, S., Christophides, V., Milo, T., Moerkotte, G., Siméon, J. (1997a).
Querying Documents in Object Databases. International Journal on Digital Libraries, 1 (1), 5-19.

Abiteboul, S., Quass, D., McHugh, J., Widom, J., & Wiener, J. L. (1997b). The Lorel Query
Language for Semistructured Data. International Journal on Digital Libraries, 1 (1), 68-88.

Altova. (n.d.). XML Spy, Retrieved January 10, 2002 from http://www.xmlspy.com

Bassiliades, N. & Vlahavas, 1. (1997). Processing Production Rules in DEVICE, an Active
Knowledge Base System. Data & Knowledge Engineering, 24 (2), 117-155.

Bassiliades, N., Vlahavas, 1., & Elmagarmid, A. K. (2000). E-DEVICE: An extensible active
knowledge base system with multiple rule type support. [EEE Transactions on Knowledge and Data
Engineering, 12 (5), 824-844.

Bassiliades, N., Vlahavas, 1., EImagarmid, A. K., & Houstis, E. N. (2001). InterBase®":
Integrating a Knowledge Base System with a Multidatabase System for Data Warehousing. /[EEE
Transactions on Knowledge and Data Engineering, (to appear).

Boehm, K., Aberer, K., Neuhold, E. J., & Yang, X. (1997). Structured Document Storage and
Refined Declarative and Navigational Access Mechanisms in HyperStorM. Very Large Databases
(VLDB) Journal, 6 (4),296-311.

Boley, H., Tabet, S., & Wagner, G. (2001). Design Rationale of RuleML: A Markup Language
for Semantic Web Rules. Proceedings of the International Semantic Web Working Symposium, 381-
402. Retrieved January 10, 2002 from http://www.dfki.uni-kl.de/ruleml/

Buneman, P., Davidson, S. B., Hillebrand, G. G., & Suciu, D. (1996). A Query Language and
Optimization Techniques for Unstructured Data. Proceedings of the ACM SIGMOD Conference, 505-
516.

Buneman, P., Fernandez, M., & Suciu, D. (2000). UnQL: A query language and algebra for
semistructured data based on structural recursion. Very Large Databases (VLDB) Journal, 9 (1), 76-
110.

Cabeza, D., & Hermenegildo, M. V. (2001). Distributed WWW Programming using (Ciao-)
Prolog and the PiLLoW library. Theory and Practice of Logic Programming, 1 (3),251-282.

Cattell, R. G. G. (1994). The object database standard: ODMG-93. Morgan Kaufmann
Publishers.

Using Logic 34

Chamberlin, D., Robie, J., & Florescu, D. (2000). Quilt: an XML Query Language for
Heterogeneous Data Sources. Proceedings of the International Workshop on the Web and Databases,
53-62.

Chung, T.-S., Park, S., Han, S.-Y., & Kim, H.-J. (2001). Extracting Object-Oriented Database
Schemas from XML DTDs Using Inheritance. Proceedings of the International Conference on
Electronic Commerce and Web Technologies (EC-Web). Springer-Verlag, LNCS 2115, 49-59.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., & Suciu, D. (1999a). A Query Language
for XML. Computer Networks, 31 (11-16), 1155-1169.

Deutsch, A., Fernandez, M. F., & Suciu, D. (1999b). Storing Semistructured Data with
STORED. Proceedings of the ACM SIGMOD Conference, 431-442.

Diaz, O., & Jaime, A. (1997). EXACT: An Extensible Approach to Active Object-Oriented
Databases. Very Large Databases (VLDB) Journal, 6 (4), 282-295.

Florescu, D., & Kossmann, D. (1999). Storing and Querying XML Data using an RDMBS.
IEEE Data Engineering Bulletin, 22 (3), 27-34.

Goldman, R., & Widom, J. (1997). DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases. Proceeding of the International Conference on Very Large
Databases (VLDB), 436-445.

Gray, P. M. D., Kulkarni, K. G., & Paton, N. W. (1992). Object-Oriented Databases, A
Semantic Data Model Approach, London:Prentice Hall.

Hosoya, H., & Pierce, B. (2000). XDuce: A Typed XML Processing Language. Proceedings of
the International Workshop on Web and Database, 111-116.

Klettke, M., & Meyer, H. (2000). XML and Object-Relational Database Systems - Enhancing
Structural Mappings Based on Statistics. Proceedings of the International Workshop on Web and
Database, 63-68.

Lakshmanan, L. V. S., Sadri, F., & Subramanian, I. N. (1996). A Declarative Language for
Querying and Restructuring the Web. Proceedings of the International Workshop on Research Issues
in Data Engineering - Interoperability of Nontraditional Database Systems (RIDE-NDS), 12-21

Lucie Xyleme (2001). A Dynamic Warehouse for XML Data of the Web. /[EEE Data
Engineering Bulletin, 24 (2), 40-47.

Ludéascher, B., Himmerdéder, R., Lausen, G., May, W., & Schlepphorst, C. (1998). Managing
Semistructured Data with FLORID: A Deductive Object-Oriented Perspective. Information Systems,
23 (8), 589-613.

May, W. (2001). XPathLog: A Declarative, Native XML Data Manipulation Language.
Proceedings of the International Database Engineering and Application Symposium (IDEAS), 123-
128.

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., & Widom, J. (1997). Lore: A Database
Management System for Semistructured Data, ACM SIGMOD Record, 26 (3), 54-66.

Naughton, J. F., DeWitt, D. J., Maier, D., Aboulnaga, A., Chen, J., Galanis, L., et al. (2001).
The Niagara Internet Query System, IEEE Data Engineering Bulletin, 24 (2), 27-33.

Nishioka, S., & Onizuka, M. (2001). Mapping XML to Object Relational Model. Proceedings
International Conference on Internet Computing, 171-177.

Ozsu, M. T, Iglinski, P., Szafron, D., EI-Medani, S., & Junghanns, M. (1997). An Object-
Oriented SGML/HyTime Compliant Multimedia Database Management System. Proceedings of the
ACM Multimedia Conference, 239-249.

Renner, A. (2001). XML Data and Object Databases: A Perfect Couple?. Proceedings of the
International Conference on Data Engineering, 143-148.

Using Logic 35

Robie, J., Lapp, J., & Schach, D. (n.d.) XML Query Language (XQL). Retrieved January 10,
2002, from http://www.w3.org/TandS/QL/QL98/pp/xql.html

Schmidt, A., Kersten, M. L., Windhouwer, M., & Waas, F. (2000). Efficient Relational
Storage and Retrieval of XML Documents. Proceedings of the International Workshop on the Web
and Databases, 47-52.

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D. J., & Naughton, J. F. (1999).
Relational Databases for Querying XML Documents: Limitations and Opportunities. Proceedings of
the International Conference on Very Large Databases (VLDB), 302-314.

Shimura, T., Yoshikawa, M., & Uemura, S. (1999). Storage and Retrieval of XML Documents
Using Object-Relational Databases. Proceedings of the International Conference on Database and
Expert Systems Applications, 206-217.

W3 Consortium. (Oct 2000). Extensible Markup Language (XML) 1.0 (2" Edition),
Recommendation. Retrieved January 10, 2002 from http:/www.w3.org/TR/REC-xml

W3 Consortium. (May 2001). XML Schema Part 0: Primer, Recommendation. Retrieved
January 10, 2002 from http://www.w3.org/TR/xmlschema-0

W3 Consortium. (Jun 2001). XQuery 1.0 Formal Semantics, Working Draft. Retrieved January
10, 2002 from http://www.w3.org/TR/query-semantics

W3 Consortium. (Nov 2001). Semantic Web, Activity Statement. Retrieved January 10, 2002
from http://www.w3.0rg/2001/sw/Activity

W3 Consortium. (Dec 2001a). XQuery 1.0: An XML Query Language, Working Drafi.
Retrieved January 10, 2002 from http://www.w3.org/TR/xquery

W3 Consortium. (Dec 2001b). XQuery 1.0 and XPath 2.0 Data Model, Working Draft.
Retrieved January 10, 2002 from http://www.w3.org/TR/query-datamodel

W3 Consortium. (Dec 2001¢). XML Query Use Cases, Working Draft. Retrieved January 10,
2002 from http://www.w3.org/TR/xmlquery-use-cases

W3 Consortium. (Dec 2001d). XML Path Language (XPath) 2.0, Working Drafi. Retrieved
January 10, 2002 from http://www.w3.org/TR/xpath20/

X-DEVICE Web site. (n.d.). Retrieved January 10, 2002 from
http://www.csd.auth.gr/~Ipis/systems/x-device.html

Yeh, C.-L. (2000). A Logic Programming Approach to Supporting the Entries of XML
Documents in an Object Database. Proceedings of the International Symposium on Practical Aspects
of Declarative Languages (PADL), 278-292.

